首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two likely mechanisms for the initiation of arterial platelet thrombus formation under conditions of elevated fluid shear stresses are: (1) excessive adhesion and aggregation of platelets from rapidly flowing blood onto the exposed sub-endothelium of injured, atherosclerotic arteries; or (2) direct, fluid shear stress-induced aggregation of platelets in constricted arteries with intact endothelial cells. Mechanism (1) was simulated using a parallel plate flow chamber, fibrillar collagen type I-coated slides, and mepacrine-labeled (fluorescent) platelets in whole blood anticoagulated with citrate, hirudin, unfractionated porcine heparin, or low molecular weight heparin flowing for 1 to 2 minutes at wall shear rates of 100 to 3,000 seconds-1 (4 to 120 dynes/cm2). The precise sequence of interactions among von Willebrand factor (vWF), glycoprotein (GP)Ib, and GPIIb-IIIa during platelet adhesion and subsequent aggregation were resolved by direct real-time observation using a computerized epifluorescence video microscopy system. Adhesion at high shear rates was the result of the adsorption of large vWF multimers onto collagen and the binding of platelet GPIb to the insolubilized vWF. Aggregation occurred subsequently and required the binding of ligands, including vWF via its RGD binding domain, to GPIIb-IIIa. Mechanism (2) was modeled by producing shear stresses of 90 to 180 dynes/cm2 in a rotational cone and plate viscometer, which aggregates platelets from platelet-rich- plasma (PRP) anti-coagulated with citrate, hirudin, or either type of heparin in reactions that require large vWF multimers, Ca2+, adenosine diphosphate, and both GPIb and GPIIb-IIIa. Both vWF-mediated shear- aggregation in PRP and platelet-collagen adhesion in flowing whole blood (anticoagulated with citrate and hirudin) are inhibited by two potentially useful anti-arterial thrombotic agents: polymeric aurin tricarboxylic acid (ATA; 28.5 to 114 micrograms/mL), which binds to vWF and inhibits its attachment of GPIb, and a recombinant vWF fragment (rvWF445-733; 30 to 200 micrograms/mL) that binds to platelet GPIb (in the absence of any modulator) and blocks attachment of vWF multimers. Unfractionated heparin, but not low molecular weight heparin, apparently binds to rvWF445-733 and counteracts the inhibitory effects of the vWF fragment in vitro on shear-aggregation and platelet-collagen adhesion.  相似文献   

2.
Different types of platelets in various types of plasma were subjected to levels of shear stress that produce irreversible platelet aggregation in normal platelet-rich plasma (PRP). At shear stresses of 90 or 180 dyne/cm2 applied for 30 seconds or five minutes, aggregation was either absent or only transient and reversible using severe von Willebrand's disease (vWD) PRP (less than 1% von Willebrand factor, vWF); Bernard-Soulier syndrome (BSS) PRP (platelets deficient in the membrane glycoprotein Ib, GPIb); normal PRP plus monoclonal antibody (MoAb) to GPIb; thrombasthenic PRP (platelets deficient in membrane glycoprotein IIb-IIIa complex, GPIIb-IIIa); and normal PRP plus MoAb to GPIIb-IIIa. Shear-induced aggregation was inhibited under the above conditions, even though the platelets were activated to release their granular contents. Sheared normal platelets in vWD plasma aggregated in response to added vWF. These studies demonstrate that the formation of stable platelet aggregates under conditions of high shear requires vWF and the availability of both GPIb and GPIIb-IIIa on platelet membranes. The experiments demonstrate that vWF-platelet interactions can occur in the absence of artificial agonists or chemical modification of vWF. They suggest a possible mechanism for platelet aggregation in stenosed or partially obstructed arterial vessels in which the platelets are subjected to relatively high levels of shear stress.  相似文献   

3.
Fluid shear stress in arteries and arterioles partially obstructed by atherosclerosis or spasm may exceed the normal time-average level of 20 dyne/cm2. In vitro, at fluid shear stresses of 30 to 60 dyne/cm2 applied for 30 seconds, platelet aggregation occurs. At these shear stresses, either large or unusually large von Willebrand factor (vWF) multimers in the suspending fluid exogenous to the platelets mediates aggregation. Adenosine diphosphate (ADP) is also required and, in these experiments, was released from the platelets subjected to shear stress. At 120 dyne/cm2, the release of endogenous platelet vWF multimers can substitute for exogenous large or unusually large vWF forms in mediating aggregation. Endogenous released platelet vWF forms, as well as exogenous large or unusually large vWF multimers, must bind to both glycoproteins Ib and the IIb/IIIa complex to produce aggregation. Shear- induced aggregation is the result of shear stress alteration of platelet surfaces, rather than of shear effects on vWF multimers. It is mediated by either large plasma-type vWF multimers, endogenous released platelet vWF forms, or unusually large vWF multimers derived from endothelial cells, requires ADP, and is not inhibited significantly by aspirin. This type of aggregation may be important in platelet thrombus formation within narrowed arterial vessels, and may explain the limited therapeutic utility of aspirin in arterial thrombosis.  相似文献   

4.
J C Kermode  Q Zheng  E P Milner 《Blood》1999,94(1):199-207
Interaction of von Willebrand factor (vWF) with the platelet is essential to hemostasis when vascular injury occurs. This interaction elevates the intracellular free calcium concentration ([Ca2+]i) and promotes platelet activation. The present study investigated the temperature dependence of vWF-induced [Ca2+]i signaling in human platelets. The influence of temperature can provide invaluable insight into the underlying mechanism. Platelet [Ca2+]i was monitored with Fura-PE3. Ristocetin-mediated binding of vWF induced a transient platelet [Ca2+]i increase at 37 degrees C, but no response at lower temperatures (20 degrees C to 25 degrees C). This temperature dependence could not be attributed to a reduction in vWF binding, as ristocetin-mediated platelet aggregation and agglutination were essentially unaffected by temperature. Most other platelet agonists (U-46619, alpha-thrombin, and adenosine 5'-diphosphate [ADP]) induced a [Ca2+]i signal whose amplitude did not diminish at lower temperatures. The [Ca2+]i signal in response to arachidonic acid, however, showed similar temperature dependence to that seen with vWF. Assessment of thromboxane A2 production showed a strong temperature dependence for metabolism of arachidonic acid by the cyclo-oxygenase pathway. vWF induced thromboxane A2 production in the platelet. Aspirin treatment abolished the vWF-induced [Ca2+]i signal. These observations suggest that release of arachidonic acid and its conversion to thromboxane A2 play a central role in vWF-mediated [Ca2+]i signaling in the platelet at physiological temperatures.  相似文献   

5.
Phillips  MD; Moake  JL; Nolasco  L; Turner  N 《Blood》1988,72(6):1898-1903
Shear stress activated platelets undergo aggregation in the presence of large or unusually large von Willebrand factor (vWF) multimers without the addition of ristocetin or any other exogenous chemical. This phenomenon may be analogous to the platelet aggregation that leads to thrombosis in the narrowed arteries and arterioles of patients with atherosclerosis or vasospasm. A triphenyl-methyl compound, aurin tricarboxylic acid (ATA), inhibits shear-induced, vWF-mediated platelet aggregation in platelet-rich plasma (PRP) in concentrations above 200 mumol/L and in buffer suspensions of washed platelets at a concentration of 0.1 mumol/L. In a concentration-dependent manner, ATA also inhibits ristocetin-induced, vWF-mediated platelet clumping in both fresh and formaldehyde-fixed platelet suspensions. This inhibition can be overcome by increasing the concentration of vWF, following the kinetics of first order competitive inhibition. ATA prevents the attachment to platelets of the largest vWF multimeric forms found in normal plasma and of the unusually large vWF multimers derived from endothelial cells. The rate of aggregation and degree of inhibition by ATA is not accounted for by the binding of ristocetin or calcium. Arachidonic acid- and adenosine diphosphate (ADP)-induced aggregation are not inhibited by ATA. Platelets incubated with ATA can be easily separated from the compound. However, ATA binds to large vWF multimeric forms and inhibits their ristocetin-induced interaction with platelet glycoprotein Ib. Because ATA also inhibits shear-induced, vWF-mediated platelet aggregation in vitro in the absence of ristocetin, it may be a useful prototype compound to impede the development of arterial thrombosis in vivo.  相似文献   

6.
Naimushin YA  Mazurov AV 《Platelets》2004,15(7):419-425
In this study we investigated mechanisms of platelet interaction with von Willebrand factor (vWF) induced by activating anti-glycoprotein (GP)IIb-IIIa antibody CRC54 directed against LIBS (ligand-induced binding site epitope) in GPIIIa. It was demonstrated that aggregation of washed platelets (measured in Born aggregometer) could be stimulated by CRC54 not only in the presence of fibrinogen but vWF as well. The level of aggregation induced in the presence of saturating concentrations of vWF (approximately 80 microg/ml) was even higher than that in the presence of 1 mg/ml of fibrinogen. Aggregation supported by vWF unlike fibrinogen supported aggregation was almost completely inhibited not only by GPIIb-IIIa antagonists (F(ab')2 fragment of blocking anti-GPIIb-IIIa antibody CRC64 and peptidomimetic aggrastat) but also by anti-GPIb blocking antibody AK2. Aggregation response induced by CRC54 in the presence of vWF was much lower when normal platelets were substituted with GPIb-deficient platelets and this residual aggregation was not affected by anti-GPIb antibody AK2 but still inhibited by anti-GPIIb-IIIa blocking antibody fragment. CRC54-induced aggregation supported by vWF (as well as by fibrinogen) was only partially inhibited by prostaglandin E1, indicating that at least its initiation does not require activation of platelets. CRC54, both in the presence of vWF and fibrinogen, failed to stimulate serotonin secretion at physiological Ca2+ concentration of 1 mM, although substantial release reaction was detected when Ca2+ concentration was decreased to 0.1 mM. CRC54 could also stimulate platelet interaction with immobilized vWF and fibrinogen. However, unlike platelet aggregation in suspension mediated by flow phase vWF, platelet adhesion to adsorbed vWF (in a same way as to fibrinogen) was inhibited only by GPIIb-IIIa but not GPIb antagonists. The data obtained indicated that vWF support platelet aggregation induced by activating anti-GPIIb-IIIa via interaction with two receptors - activated GPIIb-IIIa and GPIb.  相似文献   

7.
W F Penny  J A Ware 《Blood》1992,79(1):91-98
The success of plasminogen activators in recanalizing occluded coronary arteries may be influenced by their effect on blood platelets; however, some previous studies have shown platelet activation by plasmin and thrombolytic agents while others have shown an inhibitory effect. Moreover, it has not been determined whether these effects reflect an alteration of intracellular signal transduction, fibrinogenolysis, degradation of adhesive protein receptors, or a combination of these events. To distinguish among these possibilities, the increase of cytoplasmic [Ca2+] [( Ca2+]i), which is an intracellular marker of platelet activation that precedes fibrinogen binding to the surface of activated platelets, was measured along with aggregation and release of 5-hydroxytryptamine (5-HT) in washed human platelets incubated with plasmin or recombinant tissue-type plasminogen activator (rt-PA). Plasmin (0.1 to 1.0 CU/mL) induced a prompt, concentration-dependent [Ca2+]i increase when added to platelets, but subsequently inhibited the [Ca2+]i increase in response to thrombin or the endoperoxide analog U44069. Platelet aggregation accompanied the [Ca2+]i increase if the platelets were stirred, while the aggregation of platelets unstirred during plasmin incubation was inhibited upon agonist addition and resumption of stirring. The release of 5-HT paralleled the [Ca2+]i increase induced by plasmin and was also inhibited after the subsequent addition of a second agonist. The effects of rt-PA, added with plasminogen (100 micrograms/mL), were similar to those of plasmin, and could be accounted for by the concentration of plasmin generated. The ADP scavengers apyrase and CP/CK each prevented the [Ca2+]i increase, and aggregation caused by plasmin or rt-PA, and also prevented their inhibitory effects on thrombin-induced activation. Thus, plasmin and rt-PA initially activate platelets, inducing a [Ca2+]i increase, and, if the platelets are stirred, aggregation. Such activation is followed by subsequent inhibition of cellular activation by a second agonist; the inhibitory effect is in proportion to the degree of initial activation, and ADP is an important cofactor in both processes. These platelet effects occur at rt-PA concentrations achievable clinically, and may affect the success of therapy with thrombolytic and adjunctive agents.  相似文献   

8.
Ross  JM; McIntire  LV; Moake  JL; Rand  JH 《Blood》1995,85(7):1826-1835
Type VI collagen is a subendothelial constituent that binds von Willebrand factor (vWF) and platelets. The interaction of platelets with type VI collagen and the roles of platelet glycoprotein (GP) receptors and vWF were studied under flow conditions using epi- fluorescent videomicroscopy coupled with digital image processing. We found that surface coverage was less than 6% on collagen VI at a relatively high-wall shear rate (1,000 s-1) and was approximately 60% at a low-wall shear rate (100 s-1). The molecular mechanisms involved in low-shear platelet binding were studied using monoclonal antibodies to platelet GPIb and GPIIb-IIIa, and polymeric aurin tricarboxylic acid. Anti-GPIIb-IIIa was the most effective in eliminating adhesion (surface coverage, 0.8%), followed by anti-GPIb (4.3%), and ATA (12.6%). Experiments with von Willebrand disease blood indicate that vWF is involved in platelet adhesion to collagen VI at 100 s-1. In the absence of vWF, there may be direct binding of platelet GPIIb-IIIa complexes to collagen VI. Adhesion and aggregation on collagen VI are different in shear rate dependence from collagen I. Our results suggest a possible role for collagen VI and vWF in platelet adhesion and aggregation in vascular regions with low shear rates.  相似文献   

9.
Ma Y  Wong K 《Platelets》2007,18(6):451-459
Platelet membrane glycoproteins IIb and IIIa form a calcium-dependent heterodimer that plays a key role in platelet adhesion and aggregation. The present objective was to measure the dissociation and reassociation of GPIIb-IIIa by flow cytometric analysis of platelets labelled with mAbs specific for the glycoprotein complex or each monomer. In agreement with previous studies, EDTA chelation of extracellular calcium, [Ca2+]o, dissociated the heterodimer in a time and temperature dependent manner. Agonist stimulation of EDTA-treated platelets induced subunits to reassociate with the following order of potency: thrombin > collagen > ADP. Two-fold increases in GPIIb-IIIa and GPIIb indicate that thrombin caused reassociation of surface subunits and concurrent translocation of complexes from intracellular pools. The latter was partially inhibited by cytochalasin B thus indicating that a subpopulation of GPIIb-IIIa required cytoskeletal remodelling for translocation. Surface GPIIIa as reported by anti-CD61 declined more and upregulated less compared with GPIIb-IIIa or GPIIb. Results suggest that EDTA incubation might have altered the conformation of this epitope and decreased mAb binding. Collagen induced GPIIb-IIIa reassociation but not translocation of cryptic complexes. BAPTA suppression of rises in cytosolic calcium concentration or low [Ca2+]o inhibited GPIIb-IIIa reassociation, thus indicating that this reaction was driven by signal transduction. Thrombin and collagen induced a comparable level of aggregation of EDTA-treated platelets despite a 3-fold difference in cell surface GPIIb-IIIa. It is concluded that the effects of EDTA on GPIIb-IIIa dissociation and loss of adhesive functions are largely but not completely reversible.  相似文献   

10.
Solutions of commercial aurintricarboxylic acid (ATA) inhibit ristocetin- or shear stress-induced, von Willebrand factor (vWF)-mediated platelet aggregation by interacting with vWF and blocking its attachment to platelet membrane glycoprotein Ib. ATA has also been shown to prevent cyclic platelet clumping in a dog model of coronary artery thrombosis. Because these ATA solutions are actually a heterogeneous mixture of polyanionic, polycarboxylic polyaromatic polymers of molecular weight (Mr) 200 to greater than 6,000, we separated the most effective inhibitory components of commercial ATA using exclusion chromatography. ATA polymers larger than Mr 700 inhibited ristocetin-induced, vWF-mediated platelet aggregation more effectively than smaller ATA polymers, whereas shear-induced, vWF-mediated platelet aggregation was optimally inhibited by ATA polymers of Mr greater than or equal to 2,500. Platelet aggregation mediated by vWF was not inhibited by a nonphenolic, polyanionic polymer (polyglutamic acid) or by a polyphenolic ATA-like polymer (aurin) devoid of carboxyl groups. Polyanionic, polysulfonated aromatic polymers (polystyrene sulfonate) of Mr 35, 17.4, 8, and 4.6 x 10(3) inhibited ristocetin- and shear-induced, vWF-mediated aggregation with less potency on a mass/volume basis than large polymers of ATA. We conclude that a polyanionic, polycarboxylated, polyphenolic ATA polymer of Mr 2,500 is optimally potent as an inhibitor of shear- and ristocetin-induced, vWF-mediated platelet aggregation and is likely to be more effective than solutions of commercial ATA as an anti-arterial thrombotic agent.  相似文献   

11.
Von Willebrand factor (vWF) was purified from the plasma of a patient with type IIB von Willebrand disease (vWF from such a patient, IIB vWF) who had a normal platelet count and showed no evidence of spontaneous platelet aggregation. Large multimers of IIB vWF were absent from purified preparations and from plasma. Ristocetin-induced platelet aggregation was enhanced by purified IIB vWF. The aggregation of washed normal platelets mixed with IIB vWF (0.4 microgram/ml) required lower amounts of ristocetin than the aggregation of normal platelets mixed with the same concentrations of normal vWF. Moreover, purified IIB vWF alone induced aggregation of platelet-rich plasma at concentrations as low as 10 micrograms of IIB vWF/ml in the absence of any other agonist. Aggregation was blocked by a monoclonal antibody against the platelet membrane glycoprotein, GPIb, as well as by an anti-GPIIb/IIIa antibody. Washed platelet suspensions were promptly aggregated by IIB vWF only when fibrinogen and CaCl2 were added to the mixture. Purified IIB vWF induces the binding of fibrinogen to platelets. Such binding was blocked by the anti-GPIb monoclonal antibody as well as by the anti-GPIIb/IIIa monoclonal antibody that inhibited aggregation. A second anti-GPIIb/IIIa antibody, which has the property of blocking vWF but not fibrinogen binding to platelets, blocked neither aggregation nor fibrinogen binding induced by IIB vWF. These studies demonstrate that platelet aggregation is triggered by the initial interaction of IIB vWF with GPIb which is followed by exposure of fibrinogen binding sites on GPIIb/IIIa. Fibrinogen binds to these sites and acts as a necessary cofactor for the aggregation response.  相似文献   

12.
The binding of multimeric von Willebrand Factor (vWF) to its specific receptor on platelets, glycoprotein (GP)Ib, is a critical event, allowing platelet activation and subsequent thrombus formation in the vessels. In this study, the effects of the monomeric A1 domain, which contains the GPIb-binding site of the vWF molecule, on platelet activation were examined. The binding of the A1 domain to GPIb resulted in Syk activation and association with Src, as is the case with intact vWF. However, the A1 domain, in contrast to vWF, did not induce platelet cytoskeletal association of tyrosine kinases, Src and Lyn. When platelet functional responses, such as aggregation and intracellular Ca 2+ mobilization, were monitored, the A1 domain failed to induce the responses by itself and blocked the responses induced by the multimeric vWF molecule. These results suggested that the A1 domain triggers at least some of tyrosine kinase-related signals via GPIb and may be a partial agonist as well as a competitive antagonist for the vWF–GPIb interaction.  相似文献   

13.
Rao  AK; Kowalska  MA 《Blood》1987,70(3):751-756
Platelet stimulation with ADP results in several responses, including shape change, increase in cytoplasmic ionized calcium concentration [Ca2+]i, an inhibition of adenylate cyclase. 5'-p-Fluorosulphonyl benzoyladenosine (FSBA), which covalently labels an ADP binding site on platelets, blocks platelet shape change but not the inhibition of cyclic AMP levels by ADP, whereas p-chloromercuribenzenesulfonate (pCMBS), a nonpenetrating thiol reagent, has the opposite effects. We examined the effect of FSBA and pCMBS on ADP-induced increase in [Ca2+]i using platelets loaded with fluorescent Ca2+ indicators quin2 and fura-2. FSBA (50 to 200 mumol/L) induced a dose-dependent rise in [Ca2+]i, indicating that it is a weak platelet agonist. Under conditions of covalent labeling of the ADP binding sites, FSBA (50 to 100 mumol/L) did not inhibit the ADP-induced increase in [Ca2+]i or its inhibition of adenylate cyclase, whereas pCMBS (up to 1 mmol/L) abolished both these responses but not shape change. These findings suggest that ADP-induced Ca2+ mobilization and inhibition of adenylate cyclase are mediated by platelet binding sites distinct from those mediating shape change.  相似文献   

14.
Peng  M; Lu  W; Beviglia  L; Niewiarowski  S; Kirby  EP 《Blood》1993,81(9):2321-2328
Echicetin, a new protein isolated from Echis carinatus venom by reverse phase and ion exchange chromatography specifically inhibited agglutination of fixed platelets induced by several platelet glycoprotein Ib (GPIb) agonists, such as bovine von Willebrand factor (vWF), alboaggregins, and human vWF in the presence of botrocetin. Unlike alboaggregins, echicetin bound to GPIb but did not induce agglutination of washed or fixed platelets. In contrast to disintegrins, it did not block adenosine 5'-diphosphate (ADP)-induced platelet aggregation in the presence of fibrinogen. The apparent molecular weight of echicetin measured on sodium dodecyl sulfate (SDS) gel electrophoresis was 26 Kd under nonreducing conditions. On reduction, echicetin showed 16 and 14-Kd subunits suggesting that the molecule is a dimer. Reduced echicetin retained its binding activity and its inhibitory effect on the agglutination of fixed platelets induced by bovine vWF. 125I-echicetin bound to fixed platelets with high affinity (kd = 30 +/- 1.8 nmol/L) at 45,000 +/- 2,400 binding sites per platelet. The binding was selectively inhibited by a monoclonal antibody to the 45-Kd N-terminal domain of platelet GPIb, but not by monoclonal antibodies to other regions on GPIb. Binding of 125I-bovine vWF to fixed platelets was strongly inhibited by echicetin. In contrast, bovine vWF showed a much weaker inhibitory activity on binding of 125I-echicetin to platelets. The half life of echicetin in blood was approximately 170 minutes with no detectable degradation. Echicetin significantly prolonged the bleeding time of mice, suggesting that it may inhibit vWF binding to GPIb in vivo as well as in vitro.  相似文献   

15.
Ware  JA; Clark  BA; Smith  M; Salzman  EW 《Blood》1989,73(1):172-176
Uremic patients have a hemorrhagic tendency, often associated with prolonged bleeding times and decreased platelet function in vitro. Whether these defects result from abnormalities in plasma factors affecting platelet activity, platelet surface receptors, intracellular platelet mediators, or other aspects of platelet behavior is unknown. To examine the possibility that the abnormality in platelet function may result from aberrations in Ca2+ homeostasis, blood was obtained from 29 patients with severe uremia. The platelets were washed, loaded with the Ca2+ -sensitive probes indo-1 and aequorin, gel-filtered, and resuspended in either plasma or buffer. Of the 29 patients, seven had template bleeding times prolonged to 11 minutes or more, but platelet aggregation in plasma was not consistently impaired in these patients. However, in aequorin-loaded platelets from the patients with long bleeding times, the highest elevation of cytoplasmic calcium [( Ca2+]i) in response to the Ca2+ ionophore A23187, arachidonate, adenosine diphosphate (ADP), or epinephrine was lower than that seen in platelets from both uremic patients with less prolonged bleeding times and normal volunteers. The reduced [Ca2+]i response was associated with decreased aggregation of gel-filtered platelets suspended in buffer. Suspending washed aequorin-loaded uremic platelets in normal plasma for 20 minutes did not reverse the decreased agonist-induced rise in [Ca2+]i; platelets from a normal donor resuspended in uremic plasma aggregated and produced a normal increase in [Ca2+]i in response to agonists. We conclude that the platelet defect seen in some patients with uremia is associated with a decreased rise in platelet [Ca2+]i after stimulation and that this is a manifestation of an intrinsic platelet defect.  相似文献   

16.
To clarify the physiological role of calcium-activated neutral protease (CANP) in human platelets, we loaded the platelets with a Ca2+ -sensitive fluorescent dye, fura-2, and measured the degree of aggregation, cytosolic calcium ion concentration [( Ca2+]i), and proteolysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). At physiological concentration of Ca2+ (1 mM) in the incubation medium, [Ca2+]i was below 0.5 microM and platelet aggregation was not shown. Ionomycin (0.15 microM) or collagen (50 micrograms/ml), but not ADP (10 microM), sharply enhanced the [Ca2+]i to near 1 microM and caused the aggregation. A calcium entry blocker, verapamil, completely abolished both the [Ca2+]i rise and the aggregation. NCO-700, a membrane permeable inhibitor against cysteine proteases (including CANP), dose-dependently blocked the aggregation but did not change the [Ca2+]i transient. SDS-PAGE revealed that filamin, talin, and 70 kDa protein were specifically degraded when platelets were aggregated by ionomycin or collagen and that the proteolysis was not observed when the aggregation was blocked by verapamil or NCO-700. These data provided evidence that Ca2+ entry exceeding 0.5 microM is essential, but not sufficient per se, and that activation of cysteine protease, most likely CANP, is involved in the platelet aggregation by collagen or calcium ionophore.  相似文献   

17.
The binding of multimeric von Willebrand Factor (vWF) to its specific receptor on platelets, glycoprotein (GP)Ib, is a critical event, allowing platelet activation and subsequent thrombus formation in the vessels. In this study, the effects of the monomeric A1 domain, which contains the GPIb-binding site of the vWF molecule, on platelet activation were examined. The binding of the A1 domain to GPIb resulted in Syk activation and association with Src, as is the case with intact vWF. However, the A1 domain, in contrast to vWF, did not induce platelet cytoskeletal association of tyrosine kinases, Src and Lyn. When platelet functional responses, such as aggregation and intracellular Ca2+ mobilization, were monitored, the A1 domain failed to induce the responses by itself and blocked the responses induced by the multimeric vWF molecule. These results suggested that the A1 domain triggers at least some of tyrosine kinase-related signals via GPIb and may be a partial agonist as well as a competitive antagonist for the vWF-GPIb interaction.  相似文献   

18.
Jones  GD; Gear  AR 《Blood》1988,71(6):1539-1543
The regulation and kinetics (less than 5 seconds) of cytosolic calcium changes ([Ca2+]i) in stimulated blood platelets have been investigated under physiological blood flow conditions. Using a newly-developed continuous-flow approach with indo-1-loaded human platelets, adenosine diphosphate (ADP, 10 mumol/L) and thrombin (5 U/mL) were equally effective in significantly increasing [Ca2+]i by 0.5 seconds. ADP induced a transient [Ca2+]i peak of 1 to 2 mumol/L near 2 seconds, whereas thrombin caused a sustained and larger response. The first phase (less than 2 seconds) was not influenced by a lack of extracellular Ca2+, in contrast to the subsequent [Ca2+]i increase that only reached about 0.7 mumol/L for either ADP or thrombin. The shear rates used in our continuous-flow apparatus were physiological (less than 1,258 sec-1) and only slightly increased the basal [Ca2+]i of 0.1 mumol/L. Platelet aggregation (less than 5 seconds), assessed by single- particle counting, was not altered in platelets loaded with indo-1/AM (2.5 mumol/L).  相似文献   

19.
Hybridoma antibodies to human von Willebrand factor   总被引:1,自引:0,他引:1  
Hybridoma antibodies specific for seven independent topographical sites were used to characterize von Willebrand factor (vWF) and to relate the epitopes to functional loci required for vWF-mediated adhesion of platelets to subendothelium and ristocetin-induced platelet aggregation. The capacity of antibodies to influence the adhesion of human platelets to rabbit aortic subendothelium was analysed in annular perfusion chambers. At a high shear rate similar to that of the microcirculation, four monoclonal antibodies inhibited adhesion. In contrast, no inhibition was observed at low shear. Only one of the four antibodies that inhibited platelet adhesion also attenuated ristocetin-cofactor activity (VIIIR:RCo). Conversely, one antibody that inhibited VIIIR:RCo had no effect upon platelet adhesion. These data support the hypothesis that the molecular loci involved in the two biological functions of vWF are not identical. When these conclusions are considered within the context of a spatial map of the vWF protein surface developed by competitive displacement analysis, the epitopes related to platelet adhesion appear to be spaced and differ from those involved in ristocetin-induced platelet-platelet interaction.  相似文献   

20.
The effects of activation of plasminogen by streptokinase and tissue-type-plasminogen activator on platelet activation and the membrane glycoproteins (GPs) that mediate platelet adhesion and aggregation are not yet fully defined. To clarify effects on platelets during activation of plasminogen in vitro, we used monoclonal antibodies (MoAbs), flow cytometry, and platelets surface-labeled with 125I to characterize changes in receptors for fibrinogen (GPIIb-IIIa), von Willebrand factor (GPIb), and collagen (GPIa-IIa). Activation of plasminogen in plasma with pharmacologic concentrations of plasminogen activators did not degrade GPIIb-IIIa or GPIb, and caused only a modest decrease in GPIa. In washed platelets GPIIb-IIIa was extensively degraded by plasmin at 37 degrees C in the absence of exogenous Ca2+, conditions that destabilize the IIb-IIIa complex. Degradation of GPIb in washed platelets displayed a similar although less-marked dependence on temperature and the absence of Ca2+. The binding of activation-specific MoAbs did not increase during activation of plasminogen in plasma. We conclude that during pharmacologic fibrinolysis, reported inhibition of platelet function in plasma is not due to degradation of platelet-adhesive receptors. In addition, platelet activation observed during thrombolytic therapy does not appear to be a direct consequence of plasminogen activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号