首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B lymphocytes in individuals with systemic lupus erythematosus (SLE) secrete pathogenic auto antibodies to DNA which cause clinical nephritis. (NZB x NZW) Fl (BW) female mice also secrete pathogenic anti-DNA auto antibodies, and therefore are considered to be an animal model of SLE. The rearranged immunoglobulin (Ig) genes that encode an anti-DNA antibody from a diseased BW mouse have been cloned, and transgenic (Tg) mice have been created by microinjection of these constructs into fertilized eggs from normal mice. As we reported previously, when the construct contains the Cγ2a heavy chain constant (CH) region, the mice spontaneously secrete anti-DNA IgG and they develop mild nephritis. This demonstrated that the Ig encoded by the transgene is pathogenic. In contrast, here we report that when the construct contains the same anti-DNA Ig variable (V) regions used previously, along with the Cμ region, the auto reactive B cells are rendered tolerant. Most B cells in the Tg mice express the μ transgene product on their surface, and rearrangement of endogenous light chain genes is partially suppressed. Furthermore, most hybridomas made from Tg B cells secrete IgM anti-DNA. Despite this, the Tg mice have reduced levels of total serum Ig and they do not secrete anti-DNA IgM either spontaneously or following immunization with DNA. We conclude that most B cells in the Tg mice have been rendered anergic. Anergy is however reversible in vitro; lipopolysaccharide stimulation of Tg B cells leads to the production of a significant amount of IgM anti-DNA antibody. The studies demonstrate that in this line of Tg mice on a normal mouse genetic background potentially pathogenic B cells that express a high-affinity Ig specific for a natural autoantigen are subject to tolerance by induction of anergy.  相似文献   

2.
Intrinsic defects in the B lymphoid lineage are involved in predisposition for systemic lupus erythematosus in (NZB x NZW)F(1) (NZB/W) mice. In addition, a contribution of CD4(+) T cells has been shown to be crucial for the development of fatal glomerulonephritis. To further dissect the role of B and T cells in lupus immunopathology we used Ig mu-heavy chain (muHC) transgenic (Tg) NZB/W mice that we recently established to study mechanisms of B cell tolerance. The Tg NZB/W mice have a very restricted B cell repertoire and only a very minor population of B cells having endogenously rearranged muHC Ig loci are able to undergo isotype switch. Here we analyzed the influence of the restricted B cell repertoire on the development of IgG anti-DNA antibodies and glomerulonephritis as well as the hyperactivation of T(h) cells. IgG anti-DNA antibodies developed delayed but consistently in the Tg NZB/W mice, suggesting that a strong selective mechanism for the development of these autoantibodies is operative. Despite significant autoantibody titers in Tg NZB/W mice, very little immune deposits in the glomeruli and no evidence for renal inflammation were found. The Tg mice have a significantly prolonged survival time and most of the Tg mice lived much longer than 1 year. Interestingly, the generalized T cell activation that normally correlates and coincides with the progression of the disease in NZB/W mice is strongly reduced in older Tg animals. The absence of IgG3 anti-DNA antibodies and the strong reduction of IgG2a anti-DNA antibodies in the Tg mice suggests that particularly the activation of T(h)1 cells is inhibited. This result shows that a significant restriction in the B cell repertoire prevents hyperactivation of T(h) cells and supports the model that T cell hyperactivation in NZB/W mice is secondary to specific interactions with a subpopulation of presumably autoreactive B lymphocytes.  相似文献   

3.
Marginal zone (MZ) B cells contain a large number of autoreactive clones and the expansion of this compartment has been associated with autoimmunity. MZ B cells also efficiently transport blood-borne antigen to the follicles where they activate T cells and differentiate into plasma cells. Using the B6.NZM2410.Sle1.Sle2.Sle3 (B6.TC) model of lupus, we show that the IgM+ CD1d(hi)/MZ B-cell compartment is expanded, and a large number of them reside inside the follicles. Contrary to the peripheral B-cell subset distribution and their activation status, the intrafollicular location of B6.TC IgM+ CD1d(hi)/MZ B cells depends on both bone marrow- and stromal-derived factors. Among the factors responsible for this intrafollicular location, we have identified an increased response to CXCL13 by B6.TC MZ B cells and a decreased expression of VCAM-1 on stromal cells in the B6.TC MZ. However, the reduced number of MZ macrophages observed in B6.TC MZs was independent of the IgM+ CD1d(hi)/B-cell location. B7-2 but not B7-1 deficiency restored IgM+ CD1d(hi)/MZ B-cell follicular exclusion in B6.TC mice, and it correlated with tolerance to dsDNA and a significant reduction of autoimmune pathology. These results suggest that follicular exclusion of IgM+ CD1d(hi)/MZ B cells is an important B-cell tolerance mechanism, and that B7-2 signaling is involved in breaching this tolerance checkpoint.  相似文献   

4.
The autoimmune disease systemic lupus erythematosus (SLE) is characterized by loss of tolerance to nuclear antigens such as chromatin, DNA, and RNA. This focused autoreactivity is thought to arise from the ability of DNA or RNA specific B cells to receive dual signals from the BCR and TLR9 or TLR7, respectively. The Tec kinase Btk is necessary for the production of anti-DNA antibodies in several murine models of SLE. To assess the role of Btk in the fate of DNA reactive B cells, we generated Btk-/- mice carrying the 56R anti-DNA Ig transgene on the C57BL/6 background. dsDNA specific B cells were present in 56R.Btk-/- mice, although they were not preferentially localized to the marginal zone. These cells were able to proliferate in response to large CpG DNA containing fragments that require BCR-induced internalization to access TLR9. However, anti-DNA antibodies were not observed in the serum of 56R.Btk-/- mice. A transgene expressing a low level of Btk in B cells (Btk(lo)) restored anti-DNA IgM in these mice. This correlated with partial rescue of proliferative response to BCR engagement and TLR9-induced IL-10 secretion in Btk(lo) B cells. anti-DNA IgG was not observed in 56R.Btk(lo) mice, however. This was likely due, at least in part, to a role for Btk in controlling the expression of T-bet and AID in cells stimulated with CpG DNA. Thus, Btk is required for the initial loss of tolerance to DNA and the subsequent production of pathogenic autoantibodies once tolerance is breached.  相似文献   

5.
The NZM2410 and NZM TAN (TAN) are two of 27 inbred strains derived from an intercross between the NZW and NZB strains. NZM2410 mice develop a highly penetrant lupus nephritis mediated by three susceptibility loci, Sle1, Sle2 and Sle3. These three loci have been combined on a C57BL/6 background in a triple congenic strain that reconstitutes the NZM2410 autoimmune phenotype. Remarkably, inspite of the presence of Sle1, Sle2 and Sle3, TAN mice display a mild autoimmune phenotype reminiscent of NZW. Contrary to the lupus-prone strains, the majority of TAN CD4(+) T cells are in a na?ve-inactivated stage. TAN mice show B-cell developmental abnormalities similar to lupus-prone mice, such an accumulation of transitional T1 cells and peritoneal B-1a cells. TAN mice show, however, a unique expansion of the splenic marginal zone, in which B cells express high levels of CD5 and CD9, fail to migrate to the follicles in response to LPS, and show sub-optimal binding of T-independent type 2 antigens. Therefore, TAN mice present a functional silencing of marginal zone B cells, which have been previously implicated with autoimmune process. The TAN strain thus provides a novel model for the analysis of the genetic determinants of B-cell autoreactivity.  相似文献   

6.
《Autoimmunity》2013,46(8):607-618
The AM14 rheumatoid factor (RF) transgenic (Tg) mouse has been valuable for studying how self-reactive B cells are regulated beyond central tolerance, because they remain ignorant in normal mice. AM14 B-cell activation can be studied on autoimmune-prone strains or by inducing activation with IgG2a anti-chromatin antibodies (Abs). Despite the utility of conventional Ig-Tg mice, site-directed Ig-Tg (sd-Tg) mice provide a more physiological model for B-cell responses, allowing class switch and somatic hypermutation. We report here the creation of an AM14 sd-Tg mouse and describe its phenotype on both normal and autoimmune-prone backgrounds. AM14 sd-Tg B cells develop normally but remain unactivated in the BALB/c background, even after significant aging. In contrast, in the autoimmune-prone strain MRL/lpr, AM14 sd-Tg B cells become activated and secrete large amounts of IgG RF Ab into the serum. Class-switched Ab-forming cells were found in the spleen and bone marrow. IgG RF plasmablasts were also observed in extrafollicular clusters in the spleens of aged AM14 sd-Tg MRL/lpr mice. Class switch and Ab secretion were observed additionally in AM14 sd-Tg BALB/c B cells activated in vivo using IgG2a anti-chromatin Abs. Development of IgG auto-Abs is a hallmark of severe autoimmunity and is related to pathogenesis. Using the AM14 sd-Tg, we now show that switched auto-Ab-forming cells develop robustly outside germinal centers, further confirming the extrafollicular expression of activation induced cytidine deaminase (AID). This model will allow more physiological studies of B-cell biology in the future, including memory responses marked by class switch.  相似文献   

7.
Transgenic mice expressing anti-DNA antibodies have been extensively studied as a model for understanding B cell regulation in systemic lupus erythematosus (SLE). BALB/c mice transgenic for the R4A-gamma2b heavy chain of an anti-double-stranded DNA (dsDNA) antibody produce two populations of high-affinity anti-dsDNA B cells, one deleted, and the other anergized. We generated double-transgenic BALB / c mice expressing both the R4A-gamma2b heavy chain and the anti-apoptotic bcl-2 gene in the B cell compartment to study whether bcl-2 overexpression differentially affected anergic and deleted B cells. The double-transgenic mice (R4A/bcl-2) express elevated serum titers of both high- and low-affinity anti-dsDNA antibodies and display rescue of autoreactive B cells that are normally either deleted or anergized. Despite the presence of anti-dsDNA antibodies in their serum, R4A/bcl-2-transgenic mice do not develop nephritis, demonstrating that overexpression of bcl-2 is not by itself sufficient to allow disease progression. This phenotype resembles that of some SLE patients who have high titers of anti-DNA antibodies without nephritis.  相似文献   

8.
Chu YP  Spatz L  Diamond B 《Autoimmunity》2004,37(1):27-32
Anti-DNA antibody is the serological hallmark of systemic lupus erythematosus (SLE). While antibodies with this specificity may be generated in many individuals, only patients with SLE fail to regulate them effectively. We have demonstrated previously that in non-autoimmune mice transgenic for the heavy chain of the R4A-gamma2b anti-DNA antibody, the existence of high affinity, IgG2b dsDNA binding B cells is tightly correlated with the co-expression of endogenous IgM heavy chain. These cells are anergic. In contrast, low affinity IgG2b dsDNA binding B cells do not express an endogenous heavy chain and represent a population of immunocompetent autoreactive B cells. In order to determine whether the presence of a second heavy chain permits the high affinity autoreactive B cells to escape deletion, the R4A-gamma2b mouse was mated to a strain with a targeted deletion of the transmembrane portion of the mu heavy chain, muMT mice, to produce R4A-gamma2b/muKO mice. Serum titers of anti-DNA antibodies were negligible in both R4A-gamma2b and R4A-gamma2b/muKO mice. In R4A-gamma2b/muKO mice, however, LPS was able to activate a DNA-reactive population although an LPS inducible DNA-reactive population. Light chain gene usage in transgene expressing B cells from R4A-gamma2b/muKO mice was similar to that of the previously defined low affinity anti-DNA B cells that escape tolerance. These data suggest a requirement for a second heavy chain for the survival of this anergic B cell subset.  相似文献   

9.
Src-like adaptor protein (SLAP) adapts c-Cbl, an E3 ubiquitin ligase, to activated components of the BCR signaling complex regulating BCR levels and signaling in developing B cells. Based on this function, we asked whether SLAP deficiency could decrease the threshold for tolerance and eliminate development of autoreactive B cells in two models of autoantibody production. First, we sensitized mice with a dsDNA mimetope that causes an anti-dsDNA response. Despite equivalent production of anti-peptide antibodies compared to BALB/c controls, SLAP−/− mice did not produce anti-dsDNA. Second, we used the 56R tolerance model. SLAP−/− 56R mice had decreased levels of dsDNA-reactive antibodies compared to 56R mice due to skewed light chain usage. Thus, SLAP is a critical regulator of B-cell development and function and its deficiency leads to decreased autoreactive B cells that are otherwise maintained by inefficient receptor editing or failed negative selection.  相似文献   

10.
The infection by a non-lethal strain of Plasmodium yoelii induces the formation of autoantibodies such as anti-DNA and anti-Sm antibodies in mice. The extent of the relative increase in serum levels of IgM and IgG anti-DNA and anti-Sm antibodies and their kinetics were found to be similar to those of anti-hapten antibodies and of total IgM and IgG levels. This strongly suggested that anti-DNA and anti-Sm autoantibody responses observed in malaria-infected mice are a result of polyclonal activation of B cells. The analysis of the IgG subclasses reacting with DNA antigen showed significant levels of the T cell-dependent isotypes, IgG1 and IgG2. The role of T cells in the activation of autoreactive B cells was confirmed by using athymic nude mice. Indeed, BALB/c-nu/nu and C57BL/6-nu/nu mice failed to produce IgG anti-DNA antibodies after infection with P. yoelii. Moreover, the reconstitution of BALB/c nude mice with lymph node cells from congenic euthymic BALB-Igb mice showed the activation of autoreactive B cells in nude mice by T cells from euthymic mice. Studies in mice depleted of CD4+ T cells strongly suggested that malaria-induced anti-DNA antibodies were almost entirely dependent on the presence of CD4+ T cells, as this depletion significantly decreased IgM anti-DNA antibodies and completely abolished the IgG anti-DNA production, including the IgG3 subclass in infected mice. In contrast, depletion of the CD8+ T cell subset had no effect on the production of autoantibody in malaria-infected mice. Our results indicate that CD4+ T cells play a major role for both IgM and IgG anti-DNA production during the course of malaria infection.  相似文献   

11.
Mice transgenic for the R4A-Cmu heavy chain of an anti-dsDNA antibody, maintain tolerance by anergy and deletion. In C57BL/6 mice overexpressing CD19, a molecule, which lowers the threshold for B cell activation, elevated levels of serum autoantibodies have been observed. In the present study, we wished to determine whether CD19 overexpression could alter the induction of tolerance in R4A-Cmu mice and lead to the secretion of transgenic anti-dsDNA antibodies. We, therefore, bred R4A-Cmu transgenic mice-to-mice transgenic for human CD19 (hCD19) and generated R4A-Cmu mice heterozygous and homozygous for hCD19. We, now report the spontaneous secretion of transgenic IgM anti-dsDNA antibody in the sera of R4A-Cmu mice overexpressing CD19, indicative of a loss of B cell tolerance. We observe that transgenic B cells secreting anti-dsDNA antibody in these mice are T independent and display a marginal zone like phenotype althought they do not reside in the MZ. In addition, they appear to be derived from the conventional B2 subset rather than the B1 subset. Interestingly, a subset of the anti-dsDNA B cells in these mice still display the phenotype and functional characteristics of anergic B cells. These B cells cannot be activated to secrete antibody following BCR crosslinking, however, they are hyper-responsive to activation by innate signaling mechanisms. This suggests that CD19 overexpression may promote anergic B cells to escape tolerance by converging with BCR independent pathways, thereby rendering these B cells hyper-responsive to innate signaling.  相似文献   

12.
B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen-specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self-antigens provide further insight into the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations.  相似文献   

13.
Polyclonal B-cell activation is the central theme in the production of autoantibodies and possible activation of autoreactive T cells in both human and murine lupus. The abnormal expansion of CD5+ B cells in murine lupus has been suggested, in particular, to be one of the most characteristic findings in these mice. Activated B cells can be separated from the B cells of resting stage by the difference in cell density. The aim of this study was to investigate the characteristics of different densities of the spleen cells separated by gradient density. Furthermore, the ability of anti-DNA antibody secretion in each percoll gradient fraction of B cells was also analysed. The results showed: a higher percentage of CD5+ B cells, which corresponded to the activated B-cell population, in percoll gradient 1 and 2 fractions; that splenic B cells of NZB/W F1 mice had proliferative response to interleukin (IL)-4 or IL-5 but not to IL-10 or interferon-γ (IFN-γ); and that B cells isolated by percoll gradient produced anti-DNA antibody after stimulation with lipopolysaccharide (LPS) plus IL-5 and IFN-γ, but not IL-4 and IL-10. These data suggest that B cells at different stages of activation express differential characteristics and functions.  相似文献   

14.
15.
《Journal of autoimmunity》2009,33(3-4):149-157
FcγRIIB is an inhibitory receptor which plays a role in limiting B cell and DC activation. Since FcγRIIB is known to dampen the signaling strength of the BCR, we wished to determine the impact of FcγRIIB on the regulation of BCRs which differ in their affinity for DNA. For these studies, FcγRIIB deficient BALB/c mice were bred with mice expressing the transgene-encoded H chain of the R4A anti-DNA antibody which gives rise to BCRs which express high, low or no affinity for DNA. The deletion of FcγRIIB in R4A BALB/c mice led to an alteration in the B cell repertoire, allowing for the expansion and activation of high affinity DNA-reactive B cells. By 6–8 months of age, R4A × FcγRIIB−/− BALB/c mice spontaneously developed anti-DNA antibody titers. These mice also displayed an induction of IFN-inducible genes and an elevation in levels of the B cell survival factor, BAFF. These data demonstrate that FcγRIIB preferentially limits activation of high affinity autoreactive B cells and can influence the activation of DC through an immune complex-mediated mechanism.  相似文献   

16.
The anti-DNA autoantibody responses of mice congenic for lpr and the Y-linked autoimmune accelerator (Yaa) genes were studied to evaluate genetic interactions in murine autoimmunity. Male B6-lpr, + mice failed to generate significant anti-DNA responses in comparison to B6-+, + mice. In contrast, B6-lpr mice bearing Yaa (B6-lpr, Yaa) had markedly increased IgG anti-DNA levels in comparison to both B6-+, + and B6-lpr, + mice. To determine whether anti-DNA levels reflected the overall B-cell response to lpr and Yaa, total IgG and IgM levels were also determined. This analysis demonstrated that the increase in IgG anti-DNA produced by mice with the Yaa gene was far greater than the increase in total IgG. Taken together, these results indicate that an impaired anti-DNA response related to one gene-determined mechanism for the development of autoimmunity does not preclude the response to another. Furthermore, it appears that the polyclonal B-cell activation during murine autoimmunity may be associated with the preferential expression of certain autoantibodies.  相似文献   

17.
The Src-family tyrosine kinase Lyn negatively regulates BCR signaling and also myeloid cell activity. Mice deficient in Lyn have substantially decreased numbers of peripheral B cells, despite spontaneously producing IgG anti-DNA antibodies. Here, we examine the mechanism underlying the B-cell depletion in these mice. Lyn-deficient B cells were out-competed by WT B cells in mixed BM chimeras at two steps, at the T1 to T2 transitional maturation stage in the spleen and again between the T2 or T3 stage and the mature follicular B-cell population. Lyn-deficient T2 and follicular B cells expressed elevated levels of the pro-apoptotic factor Bim and deletion of Bim restored splenic B cells of Lyn-deficient mice to close to WT numbers. Lyn-deficient T2 and later stage B cells also had changes in cell surface phenotype consistent with increased in vivo BCR signaling. Similarly, an increased proportion of T2 and follicular B cells had elevated basal intracellular free calcium levels. Overall, these observations suggest that increased BCR signaling is responsible for increased death of weakly self-reactive Lyn-deficient B cells both at the T2 stage and additionally as these cells mature to follicular B cells.  相似文献   

18.
Characterization of anti-DNA B cells that escape negative selection   总被引:7,自引:0,他引:7  
One of the challenges in the study of autoimmunity is to understand which autoreactive cells are subject to regulation and what mechanisms of regulation are operative. In mice transgenic for the R4A-gamma2b heavy chain of an anti-double stranded (ds) DNA antibody, the gamma2b heavy chain can pair with the full spectrum of endogenous light chains to produce a multitude of antibodies, including anti-dsDNA antibodies of different affinities and fine specificities. We have previously demonstrated the existence of two populations of anti-DNA B cells in non-autoimmune hosts: a high-affinity population which is rendered anergic in vivo, and a second high-affinity population which is deleted. We have now identified a third population of dsDNA-binding B cells. These cells produce germ-line-encoded antibodies with an apparent affinity for dsDNA that is 1 to 4 logs lower than the apparent affinities of antibodies made by anergic or deleted B cells, and represent a non-tolerized population which escapes regulation. Based on its characterization, we can define a molecular threshold for tolerance induction, and can speculate on the fate of these B cells when they are recruited to an immune response and undergo somatic mutation to become high-affinity anti-DNA B cells.  相似文献   

19.
《Journal of autoimmunity》2009,32(4):345-353
B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen-specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self-antigens provide further insight into the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations.  相似文献   

20.
Because the pathogenesis of anti-DNA Ab in SLE is correlated to Ab specificity for native DNA (dsDNA), understanding how such specificity is generated is important. The VH structures of most autoimmune anti-DNA antibodies include at least one arginine in VH–CDR3; moreover, antibody specificity for dsDNA can be correlated to the relative position of arginines in VH–CDR3. The coding sequences for most VH–CDR3 arginines among the anti-DNA MoAbs we have studied to date appeared to have been encoded by sequences generated during V–D–J recombination and would have been expressed in the primary B-cell repertoire. The frequency at which arginine codons are generated during V–D–J recombination therefore could potentially influence the frequency at which DNA-specific B cells are generated in the primary B-cell repertoire. The present study was undertaken to determine whether a higher percentage of B cells in the primary, preautoimmune repertoire of autoimmune-prone (NZB × NZW)F1 mice have immunoglobulin heavy chains with at least one VH–CDR3 arginine compared to B cells in the primary, preimmune repertoire of non-autoimmune-prone BALB/c mice. The present results indicate that mature B cells in preautoimmune (NZB × NZW)F1 mice, whether specific for DNA or not, are no more likely to have heavy chains with VH–CDR3 arginines than are B cells in BALB/c mice. The high frequency of recurrence of VH–CDR3 arginines among autoimmune anti-DNA in (NZB × NZW)F1 mice would appear to derive from the selective oligoclonal expansion of selected B cells that express such structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号