首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim was to develop and optimize multiunit gastro-retentive floating beads (FBs) intended for localized and prolonged release of ginger for treating gastric ulcers. Protective effect of ginger extract (GE) against ulcer is well documented, but therapeutic use is compromised due to poor bioavailability and physicochemical properties. GE was only slightly soluble (3.19?±?0.38?mg/ml) in simulated gastric fluid (SGF; pH 1.2). The solubility decreased in water to 0.69?±?0.03?mg/ml and further by 26% in the presence of calcium carbonate (0.5% w/v). We prepared FBs of GE using calcium carbonate and sodium alginate in different proportions. Beads were evaluated for diameter, buoyancy, entrapment, and porosity. In vitro dissolution showed a Fickian release with a cumulative release of >80% at 24?h. Preclinical evaluation was done in cold-restraint stress induced gastric ulcers, in albino rats, in terms of (i) ulcer index, hemorrhagic streaks (l), mucus content, (ii) oxido-nitrosative stress, and (iii) histopathology. GE loaded FBs (200?mg/kg) were significantly better than free GE and better/equivalent to cimetidine (10?mg/kg). The system was evaluated for therapeutic effect (curative), i.e. after the induction of ulcers. Most of the natural phytochemical or antioxidants show pretreatment effectiveness. We, however, developed and established GE FBs for sustained curative effect.  相似文献   

2.
Abstract

This study aimed at improving the oral bioavailability of acyclovir (ACV) through incorporating it into gastroretentive dosage form based on floating hollow chitosan beads. Hollow chitosan beads were prepared using a solvent free, ionotropic gelation method. The effect of formulation parameters, including chitosan molecular weight and drug concentration, on bead characteristics was studied. The drug containing formulations had yields >70.5?±?0.31%. The entrapment efficiencies for the medium molecular weight chitosan formulations (56.29?±?0.94%–62.75?±?0.86%) was greater than the high molecular weight chitosan formulation (29.21?±?0.89%). The density of all formulations was below that of gastric fluid, the greatest density observed was 0.60?±?0.01?g?cm?3. Unsurprisingly, the formulations were immediate bouyant to different degrees in both pH 1.2 and pH 6.8 media. In addition, the chitosan beads were all seen to swell in pH 1.2 media and demonstrated mucoadhesive properties. A sustained release profile was observed from the chitosan beads, the developed formulations released drug at slower rates than a marketed ACV oral tablet. The developed system has the dual advantages of being gastroretentive, to increase oral bioavailability and releasing drug in a controlled manner, to reduce the required frequency of administration thereby promoting patient adherence.  相似文献   

3.
The objective of this study was to prepare the ?-viniferine and vincristine-loaded PLGA-b-PEG nanoparticle and to investigate advantages of these formulations on the cytotoxicity of HepG2 cells. Prepared nanoparticle has shown a homogeneous distribution with 113?±?0.43?nm particle size and 0.323?±?0.01 polydispersity index. Zeta potential was determined as ?35.03?±?1.0?mV. The drug-loading percentages were 6.01?±?0.23 and 2.01?±?0.07 for ?-viniferine and vincristine, respectively. The cellular uptake efficiency of coumarin-6-loaded nanoparticles was increased up to 87.8% after 4?h. Nanoparticles loaded with high concentrations of both drugs showed a cytotoxic effect on HepG2 cells, having the percentage of cell viability of between 43.23% and 47.37%. Unfortunately, the percentage of apoptotic cells after treated with drugs-loaded nanaoparticles (10.93%) was similar to free forms of drugs (12.1%) that might be due to low ?-viniferine release in biological pH at 24?h.  相似文献   

4.
《Drug delivery》2013,20(6):785-794
Abstract

The objective of this study was to evaluate the potential of using polymeric micelles modified with a peptide (termed GE11) ligand of epidermal growth factor receptor as the targeted carriers to achieve increased accumulation in laryngeal cancer and enhanced intracellular delivery for the encapsulated anticancer drugs. Poly (ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) micelles containing paclitaxel were prepared via film-hydration method followed by investigation of in vitro release of paclitaxel in phosphate-buffered saline. The average size of GE11-PEG-DSPE/paclitaxel micelle and mPEG-DSPE/paclitaxel were 35?±?2.8?nm [the polydispersity index (PDI)?=?0.207] and 28?±?2.1?nm (PDI?=?0.154), respectively. Micelles with or without GE11-modified had similar physicochemical properties. Transmission electron microscopy showed that the micelles were homogeneous and spherical in shape. Encapsulation efficiency and drug loading of the micelle were 74.11?±?3.89% and 3.58?±?2.82%, respectively. The in vitro targeting characteristic of GE11-modified micelles was investigated by observing the level of cellular uptake of fluorescent coumarin-6-loaded micelles on EGFR over-expressed human laryngeal cancer cell line Hep-2 and EGFR low-expressed human leukemic cell line U-937. Hep-2 cell proliferation was significantly inhibited by GE11-PEG-DSPE/paclitaxel micelle compared to mPEG-DSPE/paclitaxel micelle and Taxol in vitro. Our results suggested that GE11-PEG-DSPE micelle could be a promising strategy for enhancing paclitaxel’s chemotherapeutic effects on EGFR over-expressed cancer cells.  相似文献   

5.
PLGA nanospheres are considered to be promising drug carrier in the treatment of cancer. Inclusion complex of bendamustine (BM) with epichlorohydrin beta cyclodextrin polymer was prepared by freeze-drying method. Phase solubility study revealed formation of AL type complex with stability constant (Ks?=?645?M?1). This inclusion complex was encapsulated into PLGA nanospheres using solid-in-oil-in-water (S/O/W) technique. The particle size and zeta potential of PLGA nanospheres loaded with cyclodextrin-complexed BM were about 151.4?±?2.53?nm and???31.9?±?(?3.08)?mV. In-vitro release study represented biphasic release pattern with 20% burst effect and sustained slow release. DSC studies indicated that inclusion complex incorporated in PLGA nanospheres was not in a crystalline state but existed in an amorphous or molecular state. The cytotoxicity experiment was studied in Z-138 cells and IC50 value was found to be 4.3?±?0.11?µM. Cell viability studies revealed that the PLGA nanospheres loaded with complex exerts a more pronounced effect on the cancer cells as compared to the free drug. In conclusion, PLGA nanospheres loaded with inclusion complex of BM led to sustained drug delivery. The nanospheres were stable after 3 months of storage conditions with slight change in their particle size, zeta potential and entrapment efficiency.  相似文献   

6.
Abstract

Carbon nanotubes (CNTs) are the three-dimensional sp2 hybridized nano-containers that have attracted considerable interest in drug delivery by offering potential advantages such as biocompatibility, non-immunogenicity, high loading efficiency, intrinsic stability and low toxicities. The aim of the present investigation was to assess the potential of gemcitabine-loaded folic acid (FA) conjugated multi-walled CNTs (GEM/FA-NT) for targeting to breast cancer cells. Pristine MWCNTs was functionalized by FA followed by carboxylation, acylation and amidation and characterized by electron microscopy, FT-IR spectroscopy, X-ray diffraction, entrapment efficiency, cytotoxicity and in vivo studies. FDA-approved GEM was loaded to the purified (GEM-NT) and GEM/FA-NT, and % entrapment efficiency was found to be approximately 71.60?±?0.25 and 79.60?±?0.45, respectively. The developed formulation GEM/FA-NT was found to have significantly less hemolytic toxicity (8.23?±?0.65) as compared to free GEM (17.34?±?0.56). The in vitro release was found to be in sustained pattern at the lysosomal pH, which depicts more cytotoxic response on human breast cancer cell line (MCF-7). It may be interpreted that the GEM/FA-NT formulation is capable to carry drug and deliver it selectively at the tumor site while minimizing side effects and thus holds promise in chemotherapy.  相似文献   

7.
Abstract

The objective of this study was to evaluate the influence of solid lipid nanoparticles (SLN) loaded with the poorly water-soluble drug tamoxifen citrate (TC) on the in vitro antitumor activity and bioavailability of the drug. TC-loaded SLN were prepared by solvent injection method using glycerol monostearate (GMS) or stearic acid (SA) as lipid matrix. Poloxamer 188 or tween 80 were used as stabilizers. TC-loaded SLN (F3 and F4) prepared using GMS and stabilized by poloxamer 188 showed highest entrapment efficiency % (86.07?±?1.74 and 90.40?±?1.22%) and reasonable mean particle sizes (130.40?±?9.45 and 243.80?±?12.33?nm), respectively. The in vitro release of TC from F3 and F4 exhibited an initial burst effect followed by a sustained drug release. In vitro cytotoxicity of F3 against human breast cancer cell line MCF-7 showed comparable antitumor activity to free drug. Moreover, the results of bioavailability evaluation of TC-loaded SLN in rats compared to free TC indicated that 160.61% increase in the oral bioavailability of TC. The obtained results suggest that incorporation of the poorly water-soluble drug TC in SLN preserves the in vitro antitumor activity and significantly enhance oral bioavailability of TC in rats.  相似文献   

8.
The new mefenamic acid-alginate bead formulation prepared by ionotropic gelation method using 3 × 22 factorial design has shown adequate controlled release properties in vitro. In the present study, the irritation effects of mefenamic acid (MA), a prominent non-steroidal anti-inflammatory (NSAI) drug, were evaluated on rat gastric and duodenal mucosa when suspended in 0.5% (w/v) sodiumcarboxymethylcellulose (NaCMC) solution and loaded in alginate beads. Wistar albino rats weighing 200 ± 50 g were used during in vivo animal studies. In this work, biodegradable controlled release MA beads and free MA were evaluated according to the degree of gastric or duodenal damage following oral administration in rats. The gastric and duodenal mucosa was examined for any haemorrhagic changes. Formulation code A10 showing both Case II transport and zero order drug release and t50 % value of 5.22 h was chosen for in vivo animal studies. For in vivo trials, free MA (100 mgkg?1), blank and MA (100 mgkg?1) loaded alginate beads (formulation code A10) were suspended in 0.5% (w/v) NaCMC solution and each group was given to six rats orally by gavage. NaCMC solution was used as a control in experimental studies. In vivo data showed that the administration of MA in alginate beads prevented the gastric lesions.  相似文献   

9.
《Drug delivery》2013,20(1):94-99
Abstract

Background: Acetic acid ulcerative colitis (UC) is an experimental condition created due to intra-rectal administration of acetic acid which causes inflammation and ulceration in the lining of colon and rectum. In such condition, the colon cannot absorb liquid from the stools, resulting in larger volume of watery stools. Mesalazine is mainly used for the treatment of UC but suffers from the drawback of having poor bioavailability. UC is also characterized by alteration in colonic microflora. The present work was focused on delivering mesalazine along with probiotic, which would facilitate to refurbish customary growth of microflora. Mesalazine and probiotic were encapsulated in pectin beads with an aim to protect the drug from gastric environment and target to colonic region.

Methods: Pectin beads were prepared, formulation process was optimized for polymer concentration, drug concentration, cross-linking agent concentration. Formulation was characterized for surface morphology, in vitro drug release studies, determination of viable cell count, in vivo ulcer protective studies and stability studies.

Results: Average particle diameter of beads was ~1.44–1.72?mm. Drug entrapment efficiency was found to be optimal (78–79%). A sustained release of drug was observed for 5?h; nearly 60% of drug was released at the end of 10?h. Microbiological studies of probiotic showed best cell viability. In acetic acid induced UC model, Mesalazine–probiotic beads-treated group showed significant (p?<?0.01) ulcer protection index with respect to free drug-treated group.

Conclusion: In conclusion, mesalazine–probiotic loaded beads may serve as a useful colon specific drug delivery system for treatment of colitis.  相似文献   

10.
《Drug delivery》2013,20(4):293-301
Abstract

Two novel polymer–drug conjugates norcantharidin-poly(vinyl alcohol) and norcantharidin-chitosan (NCTD-PVA and NCTD-CS) were synthesized via alcoholysis reaction and characterized by 1H-NMR and FTIR. NCTD was released from the conjugates via hydrolysis, faster in PBS (pH 5.0) than that in PBS (pH 7.4). NCTD-PVA and NCTD-CS inhibited human esophageal carcinoma ECA-109 cell and murine breast cancer EMT6 cell growth in a dose-dependent manner. The IC50 values of NCTD, NCTD-PVA and NCTD-CS on ECA-109 cell at 48?h were 9.4?±?0.9, 55.3?±?3.0 and 168.8?±?8.9?μg/ml, respectively, and the IC50 values of the three compounds on EMT6 cell were 3.1?±?0.3, 30.5?±?5.4 and 90.7?±?8.1?μg/ml, respectively. The two conjugates both induced esophageal carcinoma ECA-109 cell apoptosis and arrested cell cycle at the S phase. Caspase-8 and caspase-3 were activated in the ECA-109 cell after incubating with NCTD-PVA or NCTD-CS. The primary in vivo antitumor activity was assessed in the EMT6 tumor-bearing mouse model. NCTD-PVA and NCTD-CS displayed higher tumor inhibition rates than that of free NCTD.  相似文献   

11.
Abstract

Topotecan hydrochloride (TPT) has potential for the treatment of ovarian cancer, but the activity of TPT tends to decrease due to the ring-opening at physiological pH. In this study, we proposed to incorporate TPT liposomes into injectable thermosensitive in situ hydrogel, consisting of chitosan (CS) and β-glycerophosphate (β-GP), for sustained release and preservation of active lactone form of TPT. The rheology studies were carried out to investigate the sol–gel temperature, flow behavior and viscosity of these CS/β-GP systems. The optimized formulation exhibited sol–gel transition at 40.2?±?0.4?°C, with pseudoplastic flow behavior. The drug release rate of TPT liposomes loaded CS/β-GP hydrogel in phosphate buffer saline (pH?=?7.4) was found to be slowed down, and the lactone fraction of TPT in the hydrogel matrix was maintaining 40% after 50?h. In addition, the antitumor efficacy in Kunming mice bearing Hepatoma-22 tumor, after intratumoral injection of TPT liposomes loaded CS/β-GP hydrogel, was higher than that of TPT in saline and TPT in CS/β-GP hydrogel. Those results demonstrated that TPT liposomes loaded CS/β-GP hydrogel could become a potential formulation for improving the antitumor efficacy of TPT and suggested an important technology platform for intratumoral administration of derivative of camptothecin-family drugs.  相似文献   

12.
In this study, folate receptor (FR) targeted liposome microbubbles loaded with oridonin (ORI) (F-LMB-ORI), liposome loaded with ORI (L-ORI) and liposome microbubbles loaded with ORI (LMB-ORI) were prepared. In vitro release properties, cellular uptake and cytotoxicity in HepG-2 cells as well as in vivo antitumor effects in HepG-2 cells tumor-bearing mice of F-LMB-ORI, L-ORI and LMB-ORI were evaluated upon ultrasound exposure. Results showed cytotoxicity assay on F-LMB-ORI gave IC50 of 0.508?±?0.018?µmol/mL on HepG-2 cells and LMB-ORI; L-ORI gave IC50 of 2.424?±?0.116?µmol/mL, 3.031?±?0.122?µmol/mL in vitro, respectively. These drug delivery carriers were able to control the release of ORI. F-LMB-ORI exhibited higher binding to HepG-2 cells in comparison to LMB-ORI and L-ORI. F-LMB-ORI improved antitumor activity of ORI obviously in comparison to L-ORI, LMB-ORI under in vivo ultrasound. After the treatment for 14 d, the tumor inhibition ratio for F-LMB-ORI (the dose of ORI: 1.5?×?10?2?g·kg?1, once a day) was 87.6%, obviously higher than that of LMB-ORI group, L-ORI group and free ORI (the dose of ORI: 1.5?×?10?2?g·kg?1, once a day) which were 71.5%, 64.3% and 43.4%, respectively.  相似文献   

13.
Purpose: Microspheres of chitosan (CS) cross-linked with polyethylene glycol (PEG) were prepared by emulsion-cross-linking followed by the solvent evaporation technique. The formulations were characterized and subjected to in vitro and in vivo tests to assess cell growth, changes in cell morphology, and activities by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on human HT-29 colon cancer cell-lines.

Methods: In vivo activity was evaluated for dimethyl hydrazine-induced colorectal cancer in albino male Wistar rats. Biochemical and histological parameters were evaluated to understand their effectiveness for colon cancer therapy.

Results: The 5-FU immediate release (IR) formulations suspended in SCMC produced an immediate cytotoxic effect, whereas microspheres inhibited proliferation of tumor cells to induce apoptosis over an extended time. Minimum inhibitory concentration (IC50) values for both standard plain 5-FU and 5-FU-loaded microspheres were respectively 5.00?±?0.004?µg/mL and 165?±?1.9?µg/mL which showed the improved safety profile of the microsphere formulation. Tissue distribution showed high concentration of 5-FU in colon that was higher than IC50 value required to stop the growth or death of colon cancer cells from the colonic dysplasia in Duke’s stage A. Significant reduction in tumor volume and multiplicity was observed with increased levels of liver enzymes in animals when treated with standard 5-FU formulation compared with 5-FU loaded microspheres. Elevated levels of serum albumin, creatinine, leukocytopenia, and thrombocytopenia were observed in animals for the standard 5-FU formulation.

Conclusion: The PEG cross-linked CS microspheres of this study slowly released 5-FU up to 24?h to colonic region and enhanced the antitumor activity.  相似文献   

14.
The present investigation was aimed at developing PEGylated PLGA nanoparticles of cytarabine. PLGA Nanoparticles were prepared by modified nanoprecipitation method, optimized for mean particle size (152?±?6?nm) and entrapment efficiency (41.1?±?0.8%) by a 32 factorial design. The PEGylated PLGA nanoparticles of cytarabine had a zeta potential of ?7.5?±?1.3?mV and sustained the release of cytarabine for 48?h by Fickian diffusion. The IC50 values for L1210 cells were 6.5, 5.3, and 2.2?µM for cytarabine, cytarabine loaded PLGA nanoparticles and cytarabine loaded PLGA-mPEG nanoparticles respectively. Confocal microscopy and flow cytometry showed that the nanoparticles were internalized by the L1210 cells and not simply bound to their surface. Biodistribution studies showed that the PEGylated nanoparticles of cytarabine were present in significantly higher concentrations in blood circulation as well as in brain and bones and avoided RES uptake as compared to the free drug.  相似文献   

15.
Abstract

The aim of this study was to develop and characterize the paclitaxel (PTX)-lapatinib (LPT) loaded micelles for simultaneous delivery against metastatic breast cancer. Efflux pump-mediated drug resistance influences the efficacy of chemotherapeutic regimens. However, in the newly developed delivery system, LPT was selected to act as chemosensetizer. LPT increases the intracellular level of PTX by inhibition of efflux pumps. Pluronic F127 was selected for the preparation of the micelles, and its critical micelle concentration was determined to be 0.012?mg/ml. D-optimal design was used to analyze the impact of different experimental parameters on PTX and LPT encapsulation ratio. PTX encapsulation ratio was optimized at 68.3%, while LPT encapsulation ratio found to be 70.1%. Transmission electron microscope analyses demonstrate that micelles possess a good core–shell structure without any sharp edge. Laser scattering method results indicated that size of the optimized micelles is 64.81?nm with acceptable polydispersity index (0.309). In vitro release studies showed a sustain release pattern. PTX–LPT-loaded micelles suppressed the proliferation of resistant T-47D cell line (IC50?=?0.6?±?0.1?µg/ml) compared to binary mixture of PTX and LPT (IC50?=?6.7?±?1.2?µg/ml). Therefore, it is concluded that the developed formulation might increase the therapeutic efficacy in drug resistant metastatic breast cancer.  相似文献   

16.
The treatment of ulcerative colitis (inflammatory bowel disease, IBD) has been achieved by using colon specific drug delivery system bearing 5-ASA and Camylofine dihydrochloride. Chitosan microspheres were prepared separately for both the drugs using emulsion method followed by enteric coating with Eudragit®S-100. The in vitro drug release was investigated in different simulated GIT medium. The drug release in PBS (pH7.4) and simulated gastric fluid has shown almost similar pattern and rate, whereas a significant increase in drug release (70.3?±?1.36 and 72.5?±?1.33% of 5-ASA and Camylofine, respectively) was observed in medium containing 3% rat caecal matter, after 24?h. In control study, 57.1?±?1.13% of 5-ASA and 59.2?±?1.2% of Camylofine release was observed in 24?h. For enzyme induction, rats were orally administered with 1?mL of 1% w/v dispersion of chitosan for 5 days and release rate studies were conducted in SCF with 3% w/v of caecal matter. An enhanced drug release (i.e., 92.3?±?3.81 and 95.5?±?3.52% 5-ASA and Camylofine, respectively) was observed after 24?h in dissolution medium containing 3% caecal content obtained from enzyme induced animals. In vivo data showed that microspheres delivered most of its drug load (76.55?±?2.13%) to the colon after 9?h, which reflects its targeting potential to the colon. It is concluded that orally administered microspheres of both drugs can be used together for the specific delivery of drug to the colon and reduce symptoms of ulcerative colitis.  相似文献   

17.
The aim of this study was to develop anti-EGFR antibody conjugated poly(lactide-co-glycolide) nanoparticles (NPs) to target epidermal growth factor receptor, highly expressed on non-small cell lung cancer cells to improve cytotoxicity and site specificity. Cetuximab was conjugated to docetaxel (DTX) loaded PLGA NPs by known EDC/NHS chemistry and characterised for size, zeta potential, conjugation efficiency and the results were 128.4?±?3.6?nm, –31.0?±?0.8?mV, and 39.77?±?3.4%, respectively. In vitro release study demonstrated sustained release of drug from NPs with 25% release at pH 5.5 after 48?h. In vitro cytotoxicity studies demonstrated higher anti-proliferative activity of NPs than unconjugated NPs. Cell cycle analysis and apoptosis study were performed to evaluate extent of cell arrest at different phases and apoptotic potential for the formulations, respectively. In vivo efficacy study showed significant reduction in tumour growth and so antibody conjugated NPs present a promising active targeting carrier for tumour selective therapeutic treatment.  相似文献   

18.
Large porous microparticles of PLGA entrapping insulin were prepared by solvent evaporation method and evaluated in diabetes induced rat for its efficacy in maintaining blood sugar level from a single oral dose. Incorporation of Eudragit L30D (0.03% w/v) in the external aqueous phase resulted in formation of pH responsive enteric coated polymer particles which release most of the entrapped insulin in alkaline pH. At acidic pH, release of insulin from uncoated PLGA microparticles and Eudragit L30D coated PLGA microparticles was 31.62?±?1.8% and 17.5?±?1.29%, respectively, for initial 30 min. However, in 24 h, in vitro released insulin from uncoated PLGA and Eudragit coated particles was 96.29?±?1.01% and 88.30?±?1%, respectively. Released insulin from composite polymer particles were mostly in monomer form without aggregation and was stable for a month at 37°C. Oral administration of insulin loaded PLGA (50 : 50) and Eudragit L30D coated PLGA (50 : 50) microparticles (equivalent to 25 IU insulin/kg of animal weight) in alloxan induced diabetic rats resulted in 37.3?±?11% and 62.7?±?3.8% reduction in blood glucose level, respectively, in 2 h. This effect continued up to 24 h in the case of Eudragit L30D coated PLGA microparticles. Results demonstrate that use of stabilizers during PLGA particle formulation, large porous particle for quick release of insulin and coating with Eudragit L30D resulted in a novel oral formulation for once a day delivery of insulin.  相似文献   

19.
Abstract

Aims: Lipid-core nanocapsules (LNCs) loaded with simvastatin (SV, SV-LNC) or lovastatin (LV, LV-LNC) were formulated for pulmonary administration.

Methods: The LNC suspensions were characterized physicochemically, their stability was evaluated, and drug delivery by the pulmonary route was tested in vitro.

Results: The loaded LNCs had a particle size close to 200?nm, a low polydispersity index, and a zeta potential around ?20?mV. The encapsulation efficiency was high for SV (99.21?±?0.7%) but low for LV (20.34?±?1.2%). SV release from nanocapsules was slower than it was from SV in solution, with a monoexponential release profile, and the drug emitted and aerosol output rate was higher for SV-LNCs (1.58?µg/s) than for SV in suspension (0.54?µg/s).

Conclusions: SV-LNCs had a median aerodynamic diameter of 3.51?µm and a highly respirable fraction (61.9%), indicating that nanoparticles are a suitable system for efficient delivery of simvastatin to the lung.  相似文献   

20.
Chitosan nanoparticles loaded with insulin (IN-CS-NPs) were prepared using ionic gelation method using sodium tripolyphophate as a crosslinker. Later the nanoparticles (NPs) were dispersed in buccal films. The physicochemical properties and the morphology of the nanoparticles were characterized. The stability and release of insulin from the NPs were investigated. Buccal films were prepared separately and their properties such as the weight, thickness, pH, and mucoadhesiveness were investigated. The best film was used to disperse IN-CS-NPs and the loaded film was characterized. The nanoparticles size, polydispersity index, zeta potential, entrapment efficacy, and the loading capacity were 325.07?±?1.32?nm, 0.38?±?0.03 and 8.41?±?0.80?mV, and 73.27 and 18.03%, respectively. The weight and thickness of the loaded film with IN-CS-NPs were 23.0?±?3.0?mg and 0.32?±?0.04?mm, respectively and the mucoadhesive force was 2.3?±?0.2 N. The drug was stable in the NPs and in the films for three months, and its release was controlled by the film and the nanoparticles. Finally, the films loaded with IN-CS-NPs were studied in vivo and were compared to the commercially available insulin. The films prepared in this work were found to decrease glucose level significantly in diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号