首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Drug delivery》2013,20(3):335-350
Abstract

Microneedles (MNs) have been shown to enhance the penetration depths of microparticles delivered by gene gun. This study aims to investigate the penetration of model microparticle materials, namely, tungsten (<1?μm diameter) and stainless steel (18 and 30?μm diameters) into a skin mimicking agarose gel to determine the effects of particle characteristics (mainly particle size). A number of experiments have been processed to analyze the passage percentage and the penetration depth of these microparticles in relation to the operating pressures and MN lengths. A comparison between the stainless steel and tungsten microparticles has been discussed, e.g. passage percentage, penetration depth. The passage percentage of tungsten microparticles is found to be less than the stainless steel. It is worth mentioning that the tungsten microparticles present unfavourable results which show that they cannot penetrate into the skin mimicking agarose gel without the help of MN due to insufficient momentum due to the smaller particle size. This condition does not occur for stainless steel microparticles. In order to further understand the penetration of the microparticles, a mathematical model has been built based on the experimental set up. The penetration depth of the microparticles is analyzed in relation to the size, operating pressure and MN length for conditions that cannot be obtained in the experiments. In addition, the penetration depth difference between stainless steel and tungsten microparticles is studied using the developed model to further understand the effect of an increased particle density and size on the penetration depth.  相似文献   

2.
A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively.  相似文献   

3.
Introduction: Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin’s protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below.

Areas covered: MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered.

Expert opinion: MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.  相似文献   

4.
Introduction: The skin, as the largest organ, is a better option for drug delivery in many diseases. However, most transdermal delivery is difficult due to the low permeability of therapeutics across the various skin layers. There have been many innovations in transdermal drug delivery to enhance the therapeutic efficacy of the drugs administered. Microneedles (MN), micron sized needles, are of great interest to scientists as a new therapeutic vehicle through transdermal routes, especially for vaccines, drugs, small molecules, etc.

Areas covered: This review covers new insights into different types of MNs such as solid, hollow, coated and dissolving MNs (SMNs, HMNs, CMNs, and DMNs) for selected biomedical applications in detail. Specific focus has been given to CMNs and DMNs for vaccine and drug delivery applications with recent developments in new MNs covered.

Expert opinion: This review explores the feasibility of innovative MNs used as a drug delivery carrier. Because most of the SMNs and HMNs have many limitations, it is difficult to achieve therapeutic efficacy. Therefore, many scientists are investigating functional modifications of MNs through covalent and non-covalent methods, especially for CMNs and DMNs. The biomedical applications of MNs are growing and new exciting improvements could be achieved, thus resulting in better micro/nano technologies in the near future.  相似文献   

5.
《Toxicology in vitro》2010,24(7):1971-1978
Microneedle (MN) arrays have attracted considerable attention in recent years due to their ability to facilitate effective transdermal drug delivery. Despite appreciable research, there is still debate about how different MN dimensions or application modes influence permeabilization. This study aimed to investigate this issue by taking transepidermal water-loss measurements of dermatomed human skin samples following the insertion of solid polymeric MNs. Insertions caused an initial sharp drop in barrier function followed by a slower incomplete recovery – a paradigm consistent with MN-generation of microchannels that subsequently contract due to skin elasticity. While 600 μm-long MNs were more skin-perturbing than 400 μm MNs, insertion of 1000 μm-long MNs caused a smaller initial drop in integrity followed by a degree of long term permeabilization. This is explainable by the longest needles compacting the tissue, which then decompresses over subsequent hours. Multiple insertions had a similar effect as increasing MN length. There was some evidence that increasing MN density suppressed the partial barrier recovery caused by tissue contraction. Leaving MNs embedded in skin seemed to reduce the initial post-insertion drop in barrier function. Our results suggest that this in vitro TEWL approach can be used to rapidly screen MN-effects on skin.  相似文献   

6.
Abstract

A study that combines microneedles (MNs) and sonophoresis pre-treatment was explored to determine their combined effects on percutaneous delivery of lidocaine from a polymeric hydrogel formulation. Varying ratios of carboxymethylcellulose and gelatine (NaCMC/gel ranges 1:1.60–1:2.66) loaded with lidocaine were prepared and characterized for zeta potential and particle size. Additionally, variations in the formulation drying techniques were explored during the formulation stage. Ex vivo permeation studies using Franz diffusion cells measured lidocaine permeation through porcine skin after pre-treatment with stainless steel MNs and 20?kHz sonophoresis for 5-and 10-min durations. A stable formulation was related to a lower gelatine mass ratio because of smaller mean particle sizes and high zeta potential. Lidocaine permeability in skin revealed some increases in permeability from combined MN and ultrasound pre-treatment studies. Furthermore, up to 4.8-fold increase in the combined application was observed compared with separate pre-treatments after 30?min. Sonophoresis pre-treatment alone showed insignificant enhancement in lidocaine permeation during the initial 2?h period. MN application increased permeability at a time of 0.5?h for up to ~17 fold with an average up to 4 fold. The time required to reach therapeutic levels of lidocaine was decreased to less than 7?min. Overall, the attempted approach promises to be a viable alternative to conventional lidocaine delivery methods involving painful injections by hypodermic needles. The mass transfer effects were fairly enhanced and the lowest amount of lidocaine in skin was 99.7% of the delivered amount at a time of 3?h for lidocaine NaCMC/GEL 1:2.66 after low-frequency sonophoresis and MN treatment.  相似文献   

7.
A set of well-defined experiments has been carried out to explore whether microneedles (MNs) can enhance the penetration depths of microparticles moving at high velocity such as those expected in gene guns for delivery of gene-loaded microparticles into target tissues. These experiments are based on applying solid MNs that are used to reduce the effect of mechanical barrier function of the target so as to allow delivery of microparticles at less imposed pressure as compared with most typical gene guns. Further, a low-cost material, namely, biomedical-grade stainless steel microparticle with size ranging between 1 and 20 pm, has been used in this study. The microparticles are compressed and bound in the form of a cylindrical pellet and mounted on a ground slide, which are then accelerated together by compressed air through a barrel. When the ground slide reaches the end of the barrel, the pellet is separated from the ground slide and is broken down into particle form by a mesh that is placed at the end of the barrel. Subsequently, these particles penetrate into the target. This paper investigates the implications of velocity of the pellet along with various other important factors that affect the particle delivery into the target. Our results suggest that the particle passage increases with an increase in pressure, mesh pore size, and decreases with increase in polyvinylpyrrolidone concentration. Most importantly, it is shown that MNs increase the penetration depths of the particles.  相似文献   

8.
Objectives The aim of the study was to investigate the effect of microneedle (MN) pretreatment on the transdermal delivery of a model drug (Rhodamine B, Rh B) encapsulated in polylactic‐co‐glycolic acid (PLGA) nanoparticles (NPs) focusing on the MN characteristics and application variables. Methods Gantrez MNs were fabricated using laser‐engineered silicone micro‐mould templates. PLGA NPs were prepared using a modified emulsion–diffusion–evaporation method and characterised in vitro. Permeation of encapsulated Rh B through MN‐treated full thickness porcine skin was performed using Franz diffusion cells with appropriate controls. Key findings In‐vitro skin permeation of the nanoencapsulated Rh B (6.19 ± 0.77 µg/cm2/h) was significantly higher (P < 0.05) compared with the free solution (1.66 ± 0.53 µg/cm2/h). Mechanistic insights were supportive of preferential and rapid deposition of NPs in the MN‐created microconduits, resulting in accelerated dye permeation. Variables such as MN array configuration and application mode were shown to affect transdermal delivery of the nanoencapsulated dye. Conclusions This dual MN/NP‐mediated approach offers potential for both the dermal and transdermal delivery of therapeutic agents with poor passive diffusion characteristics.  相似文献   

9.
Microneedles (MNs) system for transdermal drug delivery has the potential to improve therapeutic efficacy, proving an approach that is more convenient and acceptable than traditional medication systems. This study systematically researched dissolving polymer MNs fabricated from various common FDA-approved biocompatible materials, including gelatine, chitosan, hyaluronic acid (HA) and polyvinyl alcohol (PVA). Upon application of MN patches to the porcine cadaver skin, the MNs effectively perforated the skin and delivered drugs to subcutaneous tissue on contact with the interstitial fluid. Both the in vitro and in vivo drug release tests showed the similar trends but different release rates among the prepared MNs. Interestingly, the drug-release kinetics of PVA MNs were able to be altered by changing the molecular weight. To evaluate the feasibility using the proposed MNs for treating diabetes, an in vivo insulin absorption study in diabetic mice was performed. The results showed different insulin release properties of MNs fabricated from various kinds of polymer, leading to different decrease in blood glucose levels. We made a systematic and comprehensive study of some drug-loaded polymer MNs, and anticipated that dissolving polymer MNs have potential to improve therapeutic efficacy through controlled drug release.  相似文献   

10.
Transdermal naloxone delivery could be a potential option for treating opioid-induced pruritus, but naloxone does not permeate skin well because of its hydrophilic nature. Microneedles (MNs) could overcome the skin barrier by painlessly creating microchannels in the skin to permit naloxone absorption to therapeutic levels. This study investigated how ionization correlates with naloxone permeation across MN-treated skin. Hydrogels containing 0.2, 0.5, or 1% naloxone were formulated with 1% cross-linked polyacrylic acid (polymer) and adjusted to pH 5, 6.5, or 7.4. Porcine skin was treated with MNs and naloxone gel, and in vitro permeation studies were performed using an in-line diffusion setup. Gel structural properties were evaluated using rheology. All gels had viscoelastic properties and good spreadability. Naloxone permeation through intact skin was highest from pH 7.4 gels when naloxone is unionized, in contrast with undetectable concentrations permeated from pH 5 gels with 100% ionization. Combining MN treatment with pH 5 gels significantly enhanced permeation and resulted in steady-state flux that would achieve therapeutic delivery. Absorption lag time was affected by MN length and naloxone gel concentration. Polymer concentration did not influence drug permeability. This study demonstrates that transdermal naloxone delivery with MNs is a viable treatment option for opioid-induced pruritus.  相似文献   

11.
《Drug delivery》2013,20(4):187-207
Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight < 500?Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN.  相似文献   

12.
To reduce mucosal damage in the gastrointestinal tract caused by aspirin, we developed a dissolvable polymeric microneedle (MN) patch loaded with aspirin. Biodegradable polymers provide mechanical strength to the MNs. The MN tips punctured the cuticle of the skin and dissolved when in contact with the subcutaneous tissue. The aspirin in the MN patch is delivered continuously through an array of micropores created by the punctures, providing a stable plasma concentration of aspirin. The factors affecting the stability of aspirin during MNs fabrication were comprehensively analyzed, and the hydrolysis rate of aspirin in the MNs was less than 2%. Compared to oral administration, MN administration not only had a smoother plasma concentration curve but also resulted in a lower effective dose of antiplatelet aggregation. Aspirin-loaded MNs were mildly irritating to the skin, causing only slight erythema on the skin and recovery within 24 h. In summary, aspirin-loaded MNs provide a new method to reduce gastrointestinal adverse effects in patients requiring aspirin regularly.  相似文献   

13.
Transdermal drug delivery offers certain advantages over conventional oral or parenteral administration. However, transdermal delivery is not available to many promising therapeutic agents, especially high molecular weight hydrophilic compounds. This is due to the excellent barrier property of the superficial skin layer, the stratum corneum (SC). Only drugs with very specific physicochemical properties (molecular weight < 500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Of the several active approaches used to enhance the transport of drugs through the SC, the use of microneedles (MNs) has recently been shown to be very promising and has attracted considerable attention by researchers from both industry and academia. MNs, when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. However, for effective performance of these MNs in drug delivery applications, irrespective of the type, material, height and density, it is imperative that they penetrate into the skin with the greatest possible accuracy and reproducibility. Due to the inherent elasticity and irregular surface topography of the skin, it remains a major challenge to the reproducibility of MN penetration. Therefore, in order to achieve uniform and reproducible MN penetration into skin, an external source of assistance could be very useful. Accordingly, this review deals with various innovative applicator designs developed by industry and research centres in the context of effective application of MN arrays for transdermal drug delivery, as disclosed in the recent patent literature.  相似文献   

14.
Available formulations of sumatriptan succinate (SS) have low bioavailability or are associated with site reactions. We developed various types of self-dissolving microneedle arrays (MNs) fabricated from sodium hyaluronate as a new delivery system for SS and evaluated their skin permeation and irritation in terms of clinical application. In vitro permeation studies with human skin, physicochemical properties (needle length, thickness and density), and penetration enhancers (glycerin, sodium dodecyl sulfate and lauric acid diethanolamide) were investigated. SS-loaded high-density MNs of 800?µm in length were the optimal formulation and met clinical therapeutic requirements. Penetration enhancers did not significantly affect permeation of SS from MNs. Optical coherence tomography images demonstrated that SS-loaded high-density MNs (800?µm) uniformly created drug permeation pathways for the delivery of SS into the skin. SS-loaded high-density MNs induced moderate primary skin irritations in rats, but the skin recovered within 72?h of removal of the MNs. These findings suggest that high-density MNs of 800?µm in length are an effective and promising formulation for transdermal delivery of SS. To our knowledge, this is the first report of SS permeation across human skin using self-dissolving MNs.  相似文献   

15.
Controlled-release delivery of 6-β-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL’s hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. MN pore lifetime was estimated by pharmacokinetic evaluation, transepidermal water loss (TEWL) and visualization of MN-treated skin pore diameters using light microscopy. A 3.6-fold enhancement in steady-state plasma concentration was observed in vivo with MN treated skin with NTXOL HCl, as compared to NTXOL base. TEWL measurements and microscopic evaluation of stained MN-treated guinea pig skin indicated the presence of pores, suggesting a feasible nonlipid bilayer pathway for enhanced transdermal delivery. Overall, MN-assisted transdermal delivery appears viable for at least 48 h after MN-application. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3072-3080, 2010  相似文献   

16.
Context: Transdermal local anesthesia is one of the most applied strategies to avoid systemic adverse effects; there is an appealing need for a prolonged local anesthetic that would provide better bioavailability and longer pain relief with a single administration.

Objective: Layer-by-layer (LBL) technique was used in this study to explore a nanosized drug delivery system for local anesthetic therapy.

Materials and methods: LBL-coated lidocaine-loaded nanostructured lipid nanoparticles (LBL-LA/NLCs) were prepared and characterized in terms of particle size (PS), zeta potential, drug encapsulation efficiency (EE), in vitro skin permeation and in vivo local anesthetic studies.

Results: Evaluation of the in vitro skin permeation and in vivo anesthesia effect illustrated that LBL-LA/NLCs can enhance and prolong the anesthetic effect of LA.

Discussion and conclusion: LBL-LA/NLCs could function as a promising drug delivery strategy for overcoming the barrier function of the skin and could deliver anesthetic through the skin with sustained release behavior for local anesthetic therapy.  相似文献   

17.
Background: The delivery profile of Aztreonam lysine (AZLI) during mechanical ventilation (MV) is unknown. We evaluated the amount of AZLI drug delivered using an in vitro model of adult MV.

Methods: An adult lung model designed to mimic current clinical practice was used. Both nebulizers were placed before a Y-piece and 4 settings were tested: A) Aeroneb solo® [AS] with a t-piece; B) AS with the spacer; C) M-Neb® [MN] with a t-piece and D) MN with the spacer. Performance was evaluated in terms of: 1) Mass median aerodynamic diameter (MMAD); 2) Geometric standard deviation (GSD), 3) Fine particle dose (FPD), 4) Fine particle fraction (FPF), 5) Inhalable mass (IM), and 6) Recovery rate (RR).

Results: Both devices showed an adequate delivery of AZLI during MV, with MMAD between 2.4–2.5 µm and 87% of FPF. The FPD (38.8 and 31.7), IM (44.8 and 36.1) and RR (30 and 24) were similar for AS and MN respectively. Nebulizer aerosol delivery increased (50 and 70% respectively) for both nebulizers when using the spacer.

Conclusion: Both AS and MN showed a good aerosol delivery profile for AZLI during in vitro mechanical ventilation. Better aerosol delivery performance was obtained using the spacer.  相似文献   


18.
The effect of lipophilicity of drug on the microneedle (MN)-mediated iontophoretic delivery across dermatomed human skin was studied. Beta blockers with similar pKa but varied log P values were selected as model drugs in this study. Iontophoresis (ITP) or MNs, when used independently, increased the transdermal flux of beta blockers as compared with passive delivery (PD). ITP across the MN-treated skin (MN + ITP) increased the permeation rate of all beta blockers as compared with PD (p < 0.001). The enhancement ratios (ER) for hydrophilic molecules (atenolol and sotalol) were 71- and 78-fold higher for ITP + MN as compared with PD. However, for lipophilic molecule such as propranolol, there was 10-fold increase in the ER as compared with PD. These observations were further substantiated by the skin retention data; an inverse relationship between the skin retention and the hydrophilicity of the drug was observed. The results in the present study point out that the lipophilicity of the molecule plays a significant role on the electrically assisted transdermal delivery of drugs across the microporated skin. Using the combination of ITP + MN, hydrophilic drugs (atenolol and sotalol) were delivered at a much higher rate as compared with lipophilic molecules (propranolol and acebutolol).  相似文献   

19.
The purpose of this study was to determine the effect of microneedle (MN) technology and its combination with iontophoresis (ITP) on the in vivo transdermal delivery of salmon calcitonin (sCT). Maltose MNs (500 μm) were used to porate skin prior to application of the drug, with or without ITP. Micropores created by maltose MNs were characterized by histological sectioning and calcein imaging studies, which indicated uniformity of the created micropores. In vivo studies were performed in hairless rats to assess the degree of enhancement achieved by ITP (0.2 mA/cm2 for 1 h), MNs (81 MNs), and their combination. In vivo studies indicate a serum maximal concentration of 0.61 ± 0.42 ng/mL, 1.79 ± 0.72 ng/mL, and 5.51 ± 0.32 ng/mL for ITP, MNs, and combination treatment, respectively. MN treatment alone increased serum concentration 2.5-fold and the combination treatment increased the concentration ninefold as compared with iontophoretic treatment alone. Combination treatment of ITP and MNs resulted in the highest delivery of sCT and therapeutic levels were achieved within 5 min of administration.  相似文献   

20.
Introduction: Anterior and posterior segment eye diseases are highly challenging to treat, due to the barrier properties and relative inaccessibility of the ocular tissues. Topical eye drops and systemically delivered treatments result in low bioavailability. Alternatively, direct injection of medication into the ocular tissues is clinically employed to overcome the barrier properties, but injections cause significant tissue damage and are associated with a number of untoward side effects and poor patient compliance. Microneedles (MNs) has been recently introduced as a minimally invasive means for localizing drug formulation within the target ocular tissues with greater precision and accuracy than the hypodermic needles.

Areas covered: This review article seeks to provide an overview of a range of challenges that are often faced to achieve efficient ocular drug levels within targeted tissue(s) of the eye. It also describes the problems encountered using conventional hypodermic needle-based ocular injections for anterior and posterior segment drug delivery. It discusses research carried out in the field of MNs, to date.

Expert opinion: MNs can aid in localization of drug delivery systems within the selected ocular tissue. And, hold the potential to revolutionize the way drug formulations are administered to the eye. However, the current limitations and challenges of MNs application warrant further research in this field to enable its widespread clinical application.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号