首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:将利福布汀(rifabutin,RFB)制成利福布汀纳米结构脂质载体(RFB-NLC),提高其水溶性、缓释性.方法:首先进行RFB含量测定方法学考察,以乳化剂用量、药物与脂质用量比、固液脂质用量比为处方因素,以包封率和载药量为指标,单因素考察基础上,以Box-Behnken效应面法进行处方优化,采用差式扫描量热法...  相似文献   

2.
Introduction: Angiogenesis is a process that provides a blood supply for cancer cells. The discovery that the blockade of this blood supply results in the inhibition of cancer cell growth has been applied in cancer treatment. This antiangiogenic strategy is mainly directed at the inhibition of the binding process between proangiogenic growth factors and their receptors or the inhibition of the activity of proteolytic enzymes of the extracellular matrix. The toxicity of some antiangiogenic agents, such as small-molecule inhibitors, and the instability of antiangiogenic proteins require their formulation in an appropriate delivery system. On the other hand, active drug targeting to selective markers expressed on tumor vasculature could improve antiangiogenic treatment.

Areas covered: The present review focuses on nanoparticulate systems (nanoparticles, liposomes, polymeric micelles, etc.) because their properties could enable both the targeting of endothelial cells and the efficient delivery of antiangiogenic agents. The most important properties of nanoparticles that influence both processes, such as their size, charge and surface modification, are also discussed. Various examples illustrating the targeting ability of nanoparticles are reported, in particular conjugated nanoparticles targeting VEGF and its receptors, fibroblast growth factor and its receptors, EGFRs, MMPs, tubulin function and so on.

Expert opinion: Targeting of nanoparticles (e.g., by tumor-penetrating peptides) allows the co-administration of antiangiogenic and anticancer drugs, facilitates drug penetration into extravascular tumor tissue and improves the therapeutic effect at reduced drug doses.  相似文献   

3.
肝靶向氟尿嘧啶类脂纳米粒的研究   总被引:31,自引:0,他引:31  
目的 为了提高氟尿嘧啶(5-Fu)的疗效,降低其毒副作用,制备具肝靶向的5-Fu类脂纳米粒。方法 利用氟尿嘧啶与硬脂酰氯进行反应,制备了5-Fu前体药物N1-硬脂酰-5-Fu,通过红外光谱及核磁共振谱对合成的目标化合物进行结构确认。同时研究了前体药物的性质及稳定性。采用物理凝聚法制备类脂纳米粒,并研究其形态、粒径及粒径分布、载药量、体外释药特征、动物体内分布与药代动力学参数等。结果 平均粒径dav=240.19 nm,载药量为20.53%。体外释药速率符合一级动力学模型。与5-Fu水针剂比较,类脂纳米粒组在肝脏中药物含量平均增加了一倍以上。家兔体内主要药动学参数为:Vc=0.04336 L.kg-1,T1/2β=1.2834 h,CL=0.1632 L.h-1。结论 利用前体药物可提高药物的脂溶性,首次以物理凝聚法制备类脂纳米粒,小鼠体内分布研究表明类脂纳米粒有明显的肝靶向,有一定的优越性和参考价值。  相似文献   

4.
目的介绍固体脂质纳米粒和纳米结构脂质载体在经皮给药系统中的应用与优势,为其开发利用提供参考。方法查阅国内外相关文献共30余篇,从固体脂质纳米粒和纳米结构脂质载体用于经皮给药系统的优势、药物在固体脂质纳米粒和纳米结构脂质载体中的分布形式及固体脂质纳米粒和纳米结构脂质载体在经皮给药领域中的应用等方面进行综述。结果固体脂质纳米粒和纳米结构脂质载体可以增强药物稳定性,能在皮肤表面产生包封效应,增加皮肤水合作用,具有药物靶向性。结论固体脂质纳米粒和纳米结构脂质载体是极有发展前景的新型经皮给药系统。  相似文献   

5.
Abstract

Objective: The aim of this study was to develop nanostructured lipid carriers (NLCs) as well as solid lipid nanoparticles (SLNs) and evaluate their potential in the topical delivery of meloxicam (MLX).

Materials and methods: The effect of various compositional variations on their physicochemical properties was investigated. Furthermore, MLX-loaded lipid nanoparticles-based hydrogels were formulated and the gels were evaluated as vehicles for topical application.

Results and discussion: The results showed that NLC and SLN dispersions had spherical shapes with an average size between 215 and 430?nm. High entrapment efficiency was obtained ranging from 61.94 to 90.38% with negatively charged zeta potential in the range of ?19.1 to ?25.7?mV. The release profiles of all formulations exhibited sustained release characteristics over 48?h and the release rates increased as the amount of liquid lipid in lipid core increased. Finally, Precirol NLC with 50% Miglyol® 812 and its corresponding SLN were incorporated in hydrogels. The gels showed adequate pH, non-Newtonian flow with shear-thinning behavior and controlled release profiles. The biological evaluation revealed that MLX-loaded NLC gel showed more pronounced effect compared to MLX-loaded SLN gel.

Conclusion: It can be concluded that lipid nanoparticles represent promising particulate carriers for topical application.  相似文献   

6.
Pyrazinamide, a highly specific agent against Mycobacterium tuberculosis is used as first-line drug to treat tuberculosis. The current work aims to formulate polymeric nanoparticles based drug delivery system to sustain the release profile and reduce the dosing frequency of pyrazinamide. Further aim was to target the macrophages within body fluid. These polymeric nanoparticles were prepared by simultaneous double-emulsion (W/O/W) solvent evaporation/diffusion technique. The prepared dispersions were characterized for various biopharmaceutical parameters such as particle size, zeta potential, polydispersity index, drug loading capacity, entrapment efficiency and targeting to alveolar macrophages. The formulated polymeric nanoparticles were in the particle size range of 45.51 to 300.4 nm with a maximum drug entrapment efficiency of 80.9%. The stability study of optimized batch conducted at 40±2°/75±5% relative humidity showed no significant changes up to 90 days. X-Ray Diffraction spectrum exhibits the transformation of crystalline form of drug to amorphous in the formulation. Scanning Electron Microscope image showed nanoparticles spherical in shape with smooth surface. In vitro release profiles were biphasic in nature with burst release followed by controlled release over a period of 24 h obeying diffusion mechanism. In vivo and ex vivo studies results of the study show significant uptake of the nanoparticles by alveolar macrophages through fluorescent micrograph. Polymeric nanoparticles formulation of pyrazinamide could encompass significant uptake by alveolar macrophages, the high first-pass metabolism, sustain the release of drug leading to reduction in dose, toxicity and improvement of patient compliance.  相似文献   

7.
Importance of the field: The last 10 years have seen a dramatic growth in understanding and controlling how complex, drug-loaded (nano)structures, as well as pathogens, or biopharmaceuticals can gather access to the cytoplasm, which is a key step to increasing the effectiveness of their action.

Areas covered in this review: The review offers an updated overview of the current knowledge of endocytic processes; furthermore, the cell surface receptors most commonly used in drug delivery are here discussed on the basis of their reported internalization mechanisms, with examples of their use as nanocarrier targets taken from the most recent scientific literature.

What the reader will gain: Knowledge of molecular biology details is increasingly necessary for a rational design of drug delivery systems. Here, the aim is to provide the reader with an attempt to link a mechanistic knowledge of endocytic mechanisms with the identification of appropriate targets (internalization receptors) for nanocarriers.

Take home message: Much advance is still needed to create a complete and coherent biological picture of endocytosis, but current knowledge already allows individuation of a good number of targetable groups for a predetermined intracellular fate of nanocarriers.  相似文献   

8.
The mannosylated gelatin nanoparticles (Mn-GNPs) were prepared for the selective delivery of an antitubercular drug, isoniazid (INH), to the alveolar macrophages. The gelatin nanoparticles (GNPs) were prepared by using a two-step desolvation method and efficiently conjugated with mannose. Various parameters such as particle size, polydispersity index, zeta potential, % entrapment efficiency, in vitro drug release, macrophage uptake, in vivo biodistribution, antitubercular activity and hepatotoxicity of plain and Mn-GNPs were determined. The size of nanoparticles (both plain and Mn-GNPs) was found to be in range of 260–380?nm, and maximum drug payload was found to be 40–55%. Average particle size of Mn-GNPs was more, whereas drug entrapment was lesser compared to plain GNPs. The organ distribution studies demonstrated the efficiency of Mn-GNPs for spatial delivery of INH to alveolar tissues. Intravenous administration of INH loaded Mn-GNPs (I-Mn-GNPs) resulted in significant reduction in bacterial counts in the lungs and spleen of tuberculosis-infected (TB-infected) mice and also reduction in the hepatotoxicity of the drug. This study revealed that mannose conjugated GNPs may be explored as potential carrier for safer and efficient management of TB through targeted delivery of INH when compared to plain GNPs and free drug.  相似文献   

9.
The efficacy of aerosol-based delivery of azithromycin (AZM) for the treatment of respiratory infections caused by pathogenic microorganisms infected in alveolar macrophages (AMs) was evaluated by comparison with oral administration. The aerosol formulation of AZM (0.2?mg/kg) was administered to rat lungs using a Liquid MicroSprayer®. The oral formulation of AZM (50?mg/kg) was used for comparison. Time-courses of concentrations of AZM in AMs following administration were obtained, and then the therapeutic availability (TA) was calculated. In addition, the area under the concentrations of AZM in AMs – time curve/minimum inhibitory concentration at which 90% of isolates ratio (AUC/MIC90) were calculated to estimate the antibacterial effects in AMs. The TA of AZM in AMs following administration of aerosol formulation was markedly greater than that following administration of oral formulation. In addition, the AUC/MIC90 of AZM in AMs was markedly higher than the effective values. This indicates that the aerosol formulation could be useful for the treatment of respiratory infections caused by pathogenic microorganisms infected in AMs. This study suggests that aerosolized AZM is an effective pulmonary drug delivery system for the treatment of respiratory infections.  相似文献   

10.
The present study describes the design and characterization of nanostructured lipid carriers (NLCs) for controlled delivery of methotrexate (MTX). A series of NLCs with or without MTX were prepared using different ratios of liquid–lipid to solid–lipid and type and concentration of surfactants. The effect of different formulation parameters on the physical properties of NLCs, entrapment efficiency of MTX and in vitro drug release was evaluated. In addition, the in vitro delivery and cytotoxicity of MTX-loaded NLCs against human prostate cancer DU-145 cells and ovarian human cancer A2780 cells were investigated. Drug loading capacity, particle size and surface charge of the prepared NLCs and the in vitro MTX release were affected by the formulation parameters. In vitro growth inhibition assay using DU-145 and A2780 cancer cell lines showed that drug-free NLCs maintained cell viability while MTX-loaded NLCs inhibited the growth of both cell lines. In addition, MTX-loaded NLCs showed superior inhibitory effect on cell growth over the free drug especially in A2780 cell lines and a higher cytotoxic effect on DU-145 at higher drug concentration. The results of the current study warrant further exploration for the use NLCs as a controlled delivery system for chemotherapeutic agents.  相似文献   

11.
Background: The skin is the largest organ of our body and acts as a protective barrier with sensory and immunological functions. Its peculiar structure influences the passage of bioactives and only its modulation can facilitate the drug dermal/transdermal diffusion. In the past few years research in this field has assured better use of this application area. Methods: One of the most promising approaches is the use of drug delivery devices; this review explains the state of the art of drug transport through the skin by means of vesicular (classic liposomes, Transfersomes, niosomes and ethosomes) and particulate systems. Results/conclusion: Colloidal drug delivery systems are important in the field of drug delivery systems as their different characteristics make them suitable for various purposes.  相似文献   

12.
Introduction: Lipid-based formulations have emerged as potential dosage forms to harvest effectively the therapeutic benefits of existing lipophilic molecules and new chemical entities. Compared with existing excipients, lipids by virtue of their unique physicochemical properties and resemblance to in vivo components demonstrate the extra advantage of improving the bioavailability of lipophilic and highly metabolizable drugs. Moreover, if used as the major excipient, lipids can reduce the required dose and even the toxicity of drugs with poor aqueous solubility.

Areas covered: This review deals with the importance of multiparticulate systems in drug delivery, the therapeutic and manufacturing advantages of lipids as excipients, and the technological advances made so far in utilizing lipids for multiparticulate dosage forms, with emphasis on their application and success on an industrial scale. Lipids are being widely formulated into different multiparticulate dosage forms using innovative modifications of conventional equipment with relative ease, using methods such as melt-granulation, adsorption on solid support, spray-cooling, melt-extrusion/spheronization, freeze-pelletization, pastillation, and so on.

Expert opinion: There is still a need to design new simple dosage forms and to upgrade existing manufacturing technology, in order to open up new avenues in drug delivery, for preparing patent non-infringing formulations of existing drug products, and to help patients receive treatment at an affordable cost.  相似文献   

13.
Introduction: Tuberculosis (TB) ranks the second leading cause of death from an infectious disease worldwide. However, treatment of TB is affected by poor patient compliance due to the requirement for daily drug administration, for lengthy periods of time, often with severe drug-induced side effects. Nanomedicines have the potential to improve treatment outcomes by providing therapies with reduced drug doses, administered less frequently, under shortened treatment durations.

Areas covered: In this article, we present the pathophysiology of the disease, focusing on pulmonary TB and the characteristics of drugs used in treatment and discuss the application of nanomedicines within this scope. We also discuss new formulation approaches for TB nanomedicines and directions for future research.

Expert opinion: Nanomedicines have the potential to improve TB treatment outcomes. New approaches such as nanoparticle systems able to impact the immune response of macrophages and deliver drug intracellularly, as well as the use of polymer–drug conjugates for drug delivery, are likely to play an important role in TB nanomedicines in future. However, further research is required before TB nanomedicines can be translated to the clinic.  相似文献   

14.
线粒体是细胞内具有一定结构和功能特性的细胞器,线粒体功能失调将导致机体疾病的发生,它在调节细胞凋亡方面也发挥着重要作用。为了修复线粒体功能的损伤,研究线粒体靶向给药系统显得尤为重要。本文对国内外的研究情况做简要综述。  相似文献   

15.
Introduction: Prodrugs are inactive compounds which are metabolized in the body to produce parent active agents. It has been shown that prodrugs hold some advantages over conventional drugs, such as increased solubility, improved permeability and bioavailability, reduced adverse effects and prolonged half-lives. Optimization of the vehicles used is very important in order to employ the advantages of prodrugs. Nanocarriers are currently being widely used as prodrug vehicles because of their ability to enhance storage stability, modulate prodrug release and tumor-targeted delivery and protect against enzymatic attack. This combined approach of prodrugs and nanoparticles has a particular attraction for developing anticancer therapies.

Areas covered: This paper discusses liposomes, polymeric nanoparticles and lipid nanoparticles, which are all carriers commonly used for prodrug encapsulation. Macromolecular prodrugs can spontaneously form self-assembled nanoparticles with no intervention of other additives. This review also describes recent developments in prodrug delivery using nanoparticulate strategies. Pharmacokinetic, pharmacodynamic and cytotoxicity evaluations of anticancer prodrugs are systematically elucidated in this review.

Expert opinion: More profiles involved in animal and clinical studies will encourage the future applicability of prodrug nanocarrier therapy. The possible toxicity associated with nanoparticles is a concern for development of prodrug delivery.  相似文献   

16.
Introduction: Chemotherapy remains the major form of treatment for cancer. However, chemotherapy often fails due to a variety of barriers, resulting in a limited intratumoral drug disposition. Recently, lipid nanoparticles (LNs, i.e., solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs)) have been shown to provide a favorable means for efficiently delivering drugs to tumor sites, while minimizing their side effects.

Areas covered: The delivery of drugs to tumors is restricted by a series of barriers, including the tumor abnormalities, strong adverse effects and poor specificity of cytotoxic drugs, and the induction of multidrug resistance (MDR). The present review summarizes the strategies using SLNs and/or NLCs to improve the anticancer efficacy of cytotoxic drugs, including passive targeting, active targeting, long circulating and MDR reversing. Specifically, the most significant in vitro and in vivo results on the use of SLNs and/or NLCs are highlighted.

Expert opinion: The future success of SLNs and NLCs for administration of cytotoxic drugs will depend on their ability to efficiently encapsulate and release drugs, the possibility for large-scale production, selective tumor cells targeting and increased antitumor efficacy with reduced tissue toxicity.  相似文献   

17.
Mannose receptor (MR) is a highly effective endocytic receptor. It is closely related to tumour immune escape and metastasis. We found that MR was highly expressed in some colon cancer cell lines such as CT26 and HCT116 cells. Therefore, MR might be a potential target in colon cancer therapy. In this study, we aimed to develop mannosylated liposomes containing anticancer drug paclitaxel and investigate the potential effects on targeted therapy for colon cancer. Mannosylated liposomes were prepared by film dispersion method. Characterisation, drug release behaviour, cytotoxicity, cellular uptake, anti-tumour efficacy and safety profiles of liposomes were investigated. The results showed that mannosylated liposomes had a higher CT26 cells uptake efficiency and tumour inhibition rate, which might be due to the target effect to MR. And no notable toxicity was observed. Taken together, these data demonstrated that mannosylated liposomes could target colon cancer and improve the efficacy of chemotherapy.  相似文献   

18.
Ferritin coupled solid lipid nanoparticles were investigated for tumour targeting. Solid lipid nanoparticles were prepared using HSPC, cholesterol, DSPE and triolien. The SLNs without ferritin which has similar lipid composition were used for comparison. SLNs preparations were characterized for shape, size and percentage entrapment. The average size of SLNs was found to be in the range 110–152 nm and maximum drug entrapment was found to be 34.6–39.1%. In vitro drug release from the formulations is obeying fickian release kinetics. Cellular uptake and IC50 values of the formulation were determined in vitro in MDA-MB-468 breast cancer cells. In vitro cell binding of Fr-SLN exhibits 7.7-folds higher binding to MDA-MB-468 breast cancer cells in comparison to plain SLNs. Ex-vivo cytotoxicity assay on targeted nanoparticles gave IC50 of 1.28 µM and non-targeted nanoparticles gave IC50 of 3.56 µM. In therapeutic experiments, 5-FU, SLNs and Fr-SLNs were administered at the dose of 10 mg 5-FU/kg body weight to MDA-MB-468 tumour bearing Balb/c mice. Administration of Fr-SLNs formulation results in effective reduction in tumour growth as compared with free 5-FU and plain SLNs. The result demonstrates that this delivery system possessed an enhanced anti-tumour activity. The results warrant further evaluation of this delivery system.  相似文献   

19.
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease. Long-term, high-dose glucocorticoid therapy can be used to treat the disease, but the fact that the drug distributes systemically can give rise to severe adverse effects. Here we develop a targeted system for treating RA in which the glucocorticoid prednisolone (PD) is encapsulated within solid lipid nanoparticles (SLNs) coated with hyaluronic acid (HA), giving rise to HA-SLNs/PD. HA binds to hyaluronic receptor CD44, which is over-expressed on the surface of synovial lymphocytes, macrophages and fibroblasts in inflamed joints in RA. As predicted, HA-SLNs/PD particles accumulated in affected joint tissue after intravenous injection into mice with collagen-induced arthritis (CIA), and HA-SLNs/PD persisted longer in circulation and preserved bone and cartilage better than free drug or drug encapsulated in SLNs without HA. HA-SLNs/PD reduced joint swelling, bone erosion and levels of inflammatory cytokines in serum. These results suggest that encapsulating glucocorticoids such as PD in HA-coated SLNs may render them safe and effective for treating inflammatory disorders.  相似文献   

20.
Introduction: With the advancement in the field of medical colloids and interfacial sciences, the life expectancy has been greatly improved. In addition, changes in the human lifestyle resulted in development of various organic and functional disorders. Central nervous system (CNS) disorders are most prevalent and increasing among population worldwide. The neurological disorders are multi-systemic and difficult to treat as portal entry to brain is restricted on account of its anatomical and physiological barrier.

Areas covered: The present review discusses the limitations to CNS drug delivery, and the various approaches to bypass the blood brain barrier (BBB), focusing on the potential use of solid lipid nanoparticles (SLN) for drug targeting to brain. The methods currently in use for SLN production, physicochemical characterization and critical issues related to the formulation development suitable for targeting brain are also discussed.

Expert opinion: The potential advantages of the use of SLN over polymeric nanoparticles are due to their lower cytotoxicity, higher drug loading capacity and scalability. In addition, their production is cost effective and the systems provide a drug release in a controlled manner up to several weeks. Drug targeting potential of SLN can be enhanced by attaching ligands to their surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号