首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王梦迪  何广卫 《安徽医药》2013,17(10):1649-1651
白蛋白纳米粒作为一种新型制剂,显示出独特的靶向肿瘤机制,且本身具有可生物降解、无毒、无抗原性、病人耐受等特点而表现出良好的应用前景。该文通过对白蛋白纳米粒国内外研究近期文献的归纳整理,较为系统的介绍了白蛋白纳米粒及其制备工艺、质量评价、药代动力学研究等。  相似文献   

2.
《Drug delivery》2013,20(6):862-868
Abstract

The objectives of this study were first to encapsulate norcantharidate into albumin microspheres by the emulsion crosslinking method and second to characterize the microspheres in terms of the morphological examination, particle size, and encapsulation efficiency. The in vitro release of norcantharidate from the microspheres was studied by using the dialysis bag method. Pharmacokinetics and biodistribution studies were used to evaluate the advantages of microspheres than the conventional formulations. The microspheres prepared by crosslink emulsion were with uniform size, smooth surface, spherical shape, and disperse evenly. The particle size was uniform (13.3?±?0.4?µm) and the encapsulation efficiency was 54.3?±?4.18%. In vitro release indicated that the norcantharidate microspheres had a well-sustained release efficacy and fitted Korsmeyer’s Peppas release model. In vivo studies showed that pharmacokinetics of norcantharidate microspheres could be described by the model of two-compartment after i.v. administration and had higher AUC inside liver and spleen than the injection group. No histological change occurred to the rat liver after the administration of norcantharidate microspheres.  相似文献   

3.
Clinical viability of gene delivery systems has been greatly impacted by potential toxicity of the delivery systems. Recently, we reported the nanoparticle (NP) preparation process that employs biocompatible materials such as Gelucire® 44/14 and cetyl alcohol as matrix materials. In the current study, the NP preparation was modified for pDNA loading through: (i) inclusion of cationic lipids (DOTAP or DDAB) with NP matrix materials; or (ii) application of cationic surfactants (CTAB) to generate NPs with desired surface charges for pDNA complexation. Colloidal stability and efficiency of loading pGL3-DR4X2-luciferase plasmid DNA in NPs were verified by gel permeation chromatography. Compared to pDNA alone, all the NPs were effective in preserving pDNA from digestion by DNase. While pDNA loading using CTAB-NPs involved fewer steps compared to DOTAP-NPs and DDAB-NPs, CTAB-NPs were greatly impacted by elevated cytotoxicity level which could be ascribed to the concentrations of CTAB in NP formulations. In vitro transfection studies (in HepG2 cells) based on luciferase expression showed the ranking of cell transfection efficiency as DOTAP-NPs?>?DDAB-NPs?>?CTAB-NPs. The overall work provided an initial assessment of gelucire-stabilized NPs as a potential platform for gene delivery.  相似文献   

4.
The purpose of this study was to develop a novel drug delivery system for a sustained and targeted delivery of honokiol (HK) to the nasopharyngeal carcinoma (NPC) HNE-1 cell lines, since the folate receptor (FR) is over-expressed on their surface. Emulsion solvent evaporation was used to develop the active targeting nanoparticles-loaded HK (ATNH) using copolymerpoly (?-caprolactone)-poly (ethyleneglycol)-poly (?-caprolactone) (PCEC), which was modified with folate (FA) by introducing Polythylenimine (PEI). ATNH characterization, including particle size distribution, morphology, drug loading, encapsulation efficiency and drug release, was performed. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) were employed to evaluate the shape and construction, respectively. MTT assay, cell uptake study and apoptosis test were assayed to detect the antitumor properties and targeting uptake by HNE-1 cells in vitro. Cell-cycle redistribution, 18?F-FDG PET/CT and immunohistochemistry were performed in vivo. The ATNH we developed were successfully synthesized and showed a suitable size distribution, high encapsulation efficiency, gradual release, and targeting uptake by the cells in vitro. Moreover, ATNH significantly inhibited tumor growth, metabolism, proliferation, micro-vessel generation, and caused cell-cycle arrest at G1 phase. Thus, these nanoparticles we developed might represent a novel formulation for HK delivery and a promising potential therapy in the treatment of cancer.  相似文献   

5.
目的综述白蛋白纳米粒作为药物传递系统的最新研究进展。方法依据国内外研究文章及专利文献共63篇,将白蛋白的性质及功能、白蛋白纳米粒的制备工艺、靶向肿瘤作用机理、上市药物及其临床前和临床实验结果进行了概括。结果白蛋白是一种良好的药物载体,显示独特的靶向肿瘤机理;白蛋白纳米粒的制备方法中二硫键形成法相对于其他制备方法具有显著优点,避免了很多基于溶剂传递的传统剂型中存在的潜在问题,由其制备的上市药物紫杉醇白蛋白纳米粒(Abraxane)具有较好的临床疗效。结论白蛋白纳米粒给药系统的研究有着重要的临床意义及发展前景。  相似文献   

6.
Albumin is used as a plasma expander in critically ill patients and for several other clinical applications mainly via intravenous infusion. Oral administration of albumin can improve patient compliance although limited oral bioavailability of proteins is still a major challenge. Although nanomaterials have been extensively utilized for improving oral delivery of proteins, albumin has been utilized only as either a model drug or as a carrier for drug delivery. In the current study, for the first time, chitosan nanoparticles have been developed and extensively optimized to improve oral bioavailability of albumin as a therapeutic protein. Several characterizations have been performed for the albumin-loaded nanoparticles (e.g. drug encapsulation efficiency, DSC, FTIR, particle size, zeta potential, morphology, release kinetics, and enzymatic stability). Nanosized spherical particles were prepared and demonstrated high stability over three months either in a powdered form or as suspensions. Sustained release of albumin over time and high enzymatic stability as compared to the free albumin were observed. In vivo, higher serum concentrations of albumin in normal rabbits and cirrhotic rats were attained following oral and intraperitoneal administrations of the albumin-loaded nanoparticles as compared to the free albumin. The nanoparticles developed in the current study might provide efficient nanovehicles for oral administration of therapeutic albumin.  相似文献   

7.
《Drug delivery》2013,20(3-4):143-155
Abstract

The glutathione-conjugated bovine serum albumin (BSA) nanoparticles were constructed in the present exploration as a novel biodegradable carrier for brain-specific drug delivery with evaluation of its in vitro and in vivo delivery properties. BSA nanocarriers were activated and conjugated to the distal amine functions of the glutathione via carbodiimide chemistry using EDAC as a mediator. These nanoparticles were characterized for particle shape, average size, SPAN value, drug entrapment and in vitro drug release. Further, presence of glutathione on the surface of BSA nanoparticles was confirmed by Ellman’s assay, which has suggested that approximately 750 units of glutathione were conjugated per BSA nanoparticle. To evaluate the brain delivery properties of the glutathione-conjugated BSA nanoparticles fluorescein sodium was used as a model hydrophilic compound. Permeability and neuronal uptake properties of developed formulations were evaluated against the MDCK-MDR1 endothelial and neuro-glial cells, respectively. The permeability of glutathione-conjugated BSA nanoparticles across the monolayer of MDCK-MDR1 endothelial tight junction was shown significantly higher than that of unconjugated nanoparticles and fluorescein sodium solution. Similarly, glutathione-conjugated nanoparticles exhibited considerably higher uptake by neuro-glial cells which was inferred by high fluorescence intensity under microscope in comparison to unconjugated nanoparticles and fluorescein sodium solution. Following an intravenous administration, nearly three folds higher fluorescein sodium was carried to the rat brain by glutathione-conjugated nanoparticles as compared to unconjugated nanoparticles. The significant in vitro and in vivo results suggest that glutathione-conjugated BSA nanoparticles is a promising brain drug delivery system with low toxicity.  相似文献   

8.
Despite advances in the development of new therapeutic agents and diagnostic imaging techniques, the 5-year survival of osteosarcoma, the most common type of bone cancer, remains practically unaltered for the last three decades at around 60%. Nanoparticle-based carriers have emerged as new class of drug delivery systems that could potentially overcome conventional chemotherapy limitations, by promoting a better drug biodistribution profile by allowing a preferential accumulation of the drug in the desired tissue, while minimising non-targeted tissue toxicity, thus resulting in an improved overall therapeutic effectiveness. Hydroxyapatite nanoparticles (HANP) are known to be biocompatible and non-immunogenic and have shown to be preferentially accumulated in bone tissues being considered a promising carrier to bone tissues. Herein, we successfully synthesised mesoporous hydroxyapatite nanoparticles with mean size of 285.32?±?10.29?nm and superficial area of 103.5 m2/g, containing significant quantities of chemotherapeutic drug vincristine. A spectrophotometric method was developed and validated aiming to quantify the vincristine (VCR)-loaded in nanoparticles. Chorioallantoic membrane assay revealed relevant anti-angiogenic activity of system, leading to accentuated reduction in the number of blood vessels in fertilised eggs. Findings presented in this paper suggested that VCR-loaded HANP has a promising future as a nanocarrier for bone cancer treatment.  相似文献   

9.
Objective This study aims at formulating solid lipid nanoparticles (SLNs) of quercetin, a natural flavonoid with established antioxidant activity, for intravenous administration in order to improve its permeation across the blood–brain barrier into the CNS, and eventually to improve the therapeutic efficacy of this molecule in Alzheimer's disease. Methods The SLNs of quercetin were formulated using Compritol as the lipid and Tween 80 as the surfactant through a microemulsification technique, and optimized employing a 32 central composite design (CCD). Selection of the optimized SLN formulation, using brute‐force methodology and overlay plots, was based on its efficiency of entrapping quercetin inside the lipophilic core, particle size, surface charge potential and ability of the SLNs to release the entrapped drug completely. The optimized formulation was subjected to various in‐vivo behavioral and biochemical studies in Wistar rats. Key findings The optimized formulation exhibited a particle size of less than 200 nm, 85.73% drug entrapment efficiency and a zeta potential of 21.05 mV. In all the in‐vivo behavioral and biochemical experiments, the rats treated with SLN‐encapsulated quercetin showed markedly better memory‐retention vis‐à‐vis test and pure quercetin‐treated rats. Conclusions The studies demonstrated successful targeting of the potent natural antioxidant, quercetin, to brain as a novel strategy having significant therapeutic potential to treat Alzheimer's disease.  相似文献   

10.
Background: Delivery of drugs to brain is a subtle task in the therapy of many severe neurological disorders. Solid lipid nanoparticles (SLN) easily diffuse the blood–brain barrier (BBB) due to their lipophilic nature. Furthermore, ligand conjugation on SLN surface enhances the targeting efficiency. Lactoferin (Lf) conjugated SLN system is first time attempted for effective brain targeting in this study.

Purpose: Preparation of Lf-modified docetaxel (DTX)-loaded SLN for proficient delivery of DTX to brain.

Methods: DTX-loaded SLN were prepared using emulsification and solvent evaporation method and conjugation of Lf on SLN surface (C-SLN) was attained through carbodiimide chemistry. These lipidic nanoparticles were evaluated by DLS, AFM, FTIR, XRD techniques and in vitro release studies. Colloidal stability study was performed in biologically simulated environment (normal saline and serum). These lipidic nanoparticles were further evaluated for its targeting mechanism for uptake in brain tumour cells and brain via receptor saturation studies and distribution studies in brain, respectively.

Results: Particle size of lipidic nanoparticles was found to be optimum. Surface morphology (zeta potential, AFM) and surface chemistry (FTIR) confirmed conjugation of Lf on SLN surface. Cytotoxicity studies revealed augmented apoptotic activity of C-SLN than SLN and DTX. Enhanced cytotoxicity was demonstrated by receptor saturation and uptake studies. Brain concentration of DTX was elevated significantly with C-SLN than marketed formulation.

Conclusions: It is evident from the cytotoxicity, uptake that SLN has potential to deliver drug to brain than marketed formulation but conjugating Lf on SLN surface (C-SLN) further increased the targeting potential for brain tumour. Moreover, brain distribution studies corroborated the use of C-SLN as a viable vehicle to target drug to brain. Hence, C-SLN was demonstrated to be a promising DTX delivery system to brain as it possessed remarkable biocompatibility, stability and efficacy than other reported delivery systems.  相似文献   

11.
One major challenge of current surface modification of nanoparticles is the demand for chemical reactive polymeric layers, such modification is always complicated, inefficient, and may lead the polymer lose the ability to encapsulate drug. To overcome this limitation, we adopted a pH-sensitive platform using polydopamine (PDA) as a way of functionalizing nanoparticles (NPs) surfaces. All this method needed to be just a brief incubation in weak alkaline solution of dopamine, which was simple and applicable to a variety of polymer carriers regardless of their chemical reactivity. We successfully conjugated the doxorubicin (DOX)-PDA-poly (lactic-co-glycolic acid) (PLGA) NPs with two typical surface modifiers: folate (FA) and a peptide (Arg-Gly-Asp, RGD). The DOX-PDA-FA-NPs and DOX-PDA-RGD-NPs (targeting nanoparticles) were characterized by particle size, zeta potential, and surface morphology. They were quite stable in various physiological solutions and exhibited pH-sensitive property in drug release. Compared to DOX-NPs, the targeting nanoparticles possessed an excellent targeting ability against HeLa cells. In addition, the in vivo study demonstrated that targeting nanoparticles achieved a tumor inhibition rate over 70%, meanwhile prominently decreased the side effects of DOX and improve drug distribution in tumors. Our studies indicated that the DOX-PLGA-NPs modified with PDA and various functional ligands are promising nanocarriers for targeting tumor therapy.  相似文献   

12.
Introduction: Nanoparticles are anticipated to overcome persistent challenges in efficient drug delivery, but the limitations associated with conventional methods of preparation are resulting in slow translation from research to clinical applications. Due to their enormous potential, microfluidic technologies have emerged as an advanced approach for the development of drug delivery systems with well-defined physicochemical characteristics and in a reproducible manner.

Areas covered: This review provides an overview of microfluidic devices and materials used for their manufacturing, together with the flow patterns and regimes commonly used for nanoparticle preparation. Additionally, the different geometries used in droplet microfluidics are reviewed, with particular attention to the co-flow geometry used for the production of nanoparticles. Finally, this review summarizes the main and most recent nanoparticulate systems prepared using microfluidics, including drug nanosuspensions, polymeric, lipid, structured, and theranostic nanoparticles.

Expert opinion: The production of nanoparticles at industrial scale is still a challenge, but the microfluidic technologies bring exciting opportunities to develop drug delivery systems that can be engineered in an easy, cost-effective and reproducible manner. As a highly interdisciplinary research field, more efforts and general acceptance are needed to allow for the translation of nanoparticulate drug delivery systems from academic research to the clinical practice.  相似文献   


13.
《Drug delivery》2013,20(1):48-57
The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (1H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.  相似文献   

14.
Integrins αvβ3 and αvβ5 are overexpressed in angiogenic tumor endothelial cells and malignant tumor cells, making them attractive targets for cancer therapy. In this study, an integrin αvβ3 and αvβ5 binding tripeptide, RGD (Arg-Gly-Asp), was conjugated with the surface of poly(ethylene glycol)–block–poly(d,l-lactide) (PEG–PLA) micelles. A lipophilic fluorescent probe, DiI, was loaded into both the nontargeted methoxy PEG–PLA (mPEG–PLA) micelles and the targeted RGD-modified PEG–PLA micelles. The DiI-loaded targeted micelles had a size of 24.2?nm. The targeted micelles were stable in phosphate buffered saline and exhibited a negligible leakage in culture medium. Transmission electron microscopy analysis showed that targeted micelles were spherical in shape. Cell uptake of DiI-labeled targeted micelles by human umbilical vein endothelial cells and melanoma B16 cells was investigated by spectrophotofluorometry and confocal microscopy techniques. Results revealed that RGD-modified micelles significantly facilitated the intracellular delivery of the encapsulated agents via integrin-mediated endocytosis. This study suggests that RGD-modified PEG–PLA micelles are promising drug carriers for targeted delivery to both angiogenic tumor endothelial cells and tumor cells and that the targeted micelles may be attractive carriers for combination cancer therapy against both targets.  相似文献   

15.
The aim of this study was to prepare a liposome system targeting to both tumor angiogenesis and tumor cells, and to achieve the proof-of-principle. ATN-161 (N-acetyl-proline-histidine-serine-cysteine-asparagine-amide, PHSCN) is a ligand of integrin α5β1 which is the receptor overexpressed on tumor neovasculature and some tumor cells. In this study, doxorubicin (DOX) was used as the model drug, and a derivative of PHSCN, N-acetyl-proline-histidine-serine-cysteine-asparagine-lysine (amide)-COOH (PHSCNK), was firstly coupled to the surface of PEGylated DOX liposomes (PL-DOX) by a novel approach to obtain the PHSCNK-modified and DOX-loaded PEGylated liposomes (PHSCNK-PL-DOX). These two vehicles were less than 100?nm in average, negatively charged and rather stable at 4°C or 25°C, while they exhibited similar release kinetics in vitro. Cell-specific uptake and cytotoxicity were investigated on human umbilical vein endothelial cells and breast cancer cells by confocal microscopy and sulforhodamine B (SRB) assay. It was found that PHSCNK-PL-DOX significantly enhanced the cell uptake and cytotoxicity of DOX on both cell lines, due to the integrin-mediated endocytosis. It was concluded that, PHSCNK-PL-DOX, which can actively delivery the drug into both tumor neovasculature and tumor cells, may be a promising targeted delivery system for anticancer drug.  相似文献   

16.
Gestational trophoblastic neoplasia (GTN) can result from the over-proliferation of trophoblasts. Treatment of choriocarcinoma, the most aggressive GTN, currently requires high doses of systemic chemotherapeutic agents, which result in indiscriminate drug distribution and severe toxicity. To overcome these disadvantages and enhance the chemotherapeutic efficacy, chondroitin sulfate A (CSA)-binding nanoparticles were developed for the targeted delivery of doxorubicin (DOX) to choriocarcinoma cells using a synthetic CSA-binding peptide (CSA-BP), derived from malarial protein, which specifically binds to the CSA exclusively expressed in the placental trophoblast. CSA-BP-conjugated nanoparticles rapidly bonded to choriocarcinoma (JEG3) cells and were efficiently internalized into the lysosomes. Moreover, CSA-BP modification significantly increased the anti-cancer activity of the DOX-loaded nanoparticles in vitro. Intravenous injections of CSA-BP-conjugated nanoparticles loaded with indocyanine green (CSA-INPs) were rapidly localized to the tumor. The CSA-targeted nanoparticles loaded with DOX (CSA-DNPs) strongly inhibited primary tumor growth and, more importantly, significantly suppressed metastasis in vivo. Collectively, our results highlight the potential of the CSA-BP-decorated nanoparticles as an alternative targeted delivery system of chemotherapeutic agents for treating choriocarcinoma and for developing new GTN therapies based on drug targeting.  相似文献   

17.
Fulfilling the purpose of developing a NP with theragnostic capabilities, the current study describes the synthesis of an aptamer-functionalized PEG-coated SPION/mesoporous silica core-shell nanoparticle for concurrent cancer targeted therapy and magnetic resonance imaging. SPIONs were synthesized according to a thermal decomposition method and served as cores for SPION/mesoporous silica core/shell nanoparticles (MMSNs). Doxorubicin was then successfully loaded in MMSNs which were then coated with di-carboxylic acid functionalized polyethylene glycol (PEG-MMSNs). AS1411 aptamers were at the end covalently attached to NPs (APT-PEG-MMSNs). The mean diameter of synthesized NPs was about 89?nm and doxorubicin encapsulation efficacy was ≈67.47%. Results of MTT based cell cytotoxicity assay demonstrated a significantly higher toxicity profile for APT-PEG-MMSNs against MCF7 cells compared to non-decorated MMSNs, while no significant differences were spotted against NIH-3T3 cells. Meanwhile, formation of protein corona around APT-PEG-MMSNs in biological medium significantly attenuated observed cytotoxicity against MCF7 cell line. Examining NPs uptake by MCF7 cells using confocal laser scanning microscopy also confirmed superiority of APT-PEG-MMSNs over PEG-MMSNs. Finally, APT decorated NPs induced highest signal intensity reduction in T2-weighted images during in vitro MRI assay. In conclusion, developed NPs may serve as promising multifunctional vehicles for simultaneous cancer targeted therapy and MRI imaging.  相似文献   

18.

Background

Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues.

Methods

PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells.

Results

Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg).

Conclusion

In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may represent a promising drug delivery system in cancer therapy.  相似文献   

19.
The primary aim of this study was to investigate intranasal (i.n.) administration as a potential route to enhance systemic and brain delivery of didanosine (ddI). A further aim was to investigate the potential use of chitosan nanoparticles as a delivery system to enhance the systemic and brain targeting efficiency of ddI following i.n. administration. Didanosine-loaded chitosan nanoparticles, were prepared through ionotropic gelation of chitosan with tripolyphosphonate anions, and characterized in terms of their size, drug loading, and in vitro release. The nanoparticles were administered i.n. to rats, compared to i.n. and intravenous (i.v.) administration of ddI in solution. The concentrations of ddI in blood, CSF, and brain tissues were analyzed by ultra performance liquid chromatography mass spectroscopy (UPLC/MS). The brain/plasma, olfactory bulb/plasma and CSF/plasma concentration ratios were significantly higher (P?<?0.05) after i.n. administration of ddI nanoparticles or solution than those after i.v. administration of didanosine aqueous solution. The ratio of ddI concentration values of the nanoparticles to the solution at 180?min post-i.n. dosing was 2.1 and 1.9 in CSF and brain, respectively. Thus, both the i.n. route of administration and formulation of ddI in chitosan nanoparticles increased delivery of ddI to CSF and brain.  相似文献   

20.
《Drug delivery》2013,20(3):132-142
Purpose: Neuroendocrine tumors often present a diagnostic and therapeutic challenge. We have aimed to synthesize and develop biodegradable nanoparticles of somatostatin analogue, octreotide for targeted therapy of human neuroendocrine pancreatic tumor.

Methods: Direct solid phase peptide synthesis of octreotide was done. Octreotide loaded PCL/PEG nanoparticles were prepared by solvent evaporation method and characterized for transmission electron microscopy, differential scanning calorimetery (DSC), Zeta potential measurement studies. The nanoparticles were evaluated in vitro for release studies and peptide content. For biological evaluations, receptor binding & cytotoxicity studies were done on BON-1 neuroendocrine tumor cell line. Biodistribution of radiolabeled peptide and nanoparticles, tumor regression studies were performed on tumor-bearing mouse models.

Results: We have synthesized and purified octreotide with the purity of 99.96% in our laboratory. PEG/PCL nanoparticles with an average diameter of 130–195 nm having peptide loading efficiency of 66–84% with a negative surface charge were obtained with the formulation procedure. Octreotide nanoparticles have a negative action on the proliferation of BON-1 cells. In vivo biodistribution studies exhibited major accumulation of octreotide nanoparticles in tumor as compared to plain octreotide. Octreotide nanoparticles inhibited tumor growth more efficiently than free octreotide.

Conclusions: Thus, it was concluded that the PCL/PEG nanoformulation of octreotide showed high tumor uptake due to the enhanced permeation and retention (EPR) effect and then peptide ligand imparts targetability to the sst2 receptor and there by showing increase tumor growth inhibition. Selective entry of nanoparticles to the tumor also give the reduce side effects both in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号