首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose: To prepare and characterize polyethylenglycol-co-poly-D,L-lactide (PEG-D,L-PLA) multiblock copolymer microspheres containing ovalbumin. Microsphere batches made of Poly-D,L-lactide (PLA) homopolymers were prepared in order to evaluate how the presence of PEG segments into PEG-D,L-PLA copolymer could affect the behaviour of microspheres as carrier of protein drugs.

Methods: The PEG-D,L-PLA and PLA microspheres, loaded with the model protein ovalbumin, were prepared using double emulsion solvent evaporation method. The effect of PEG segments in the microparticles matrix, on the morphology, size distribution, encapsulation efficiency and release behaviour was studied.

Results: According to the results, PEG-D,L-PLA microspheres were more hydrophilic than PLA microparticles and with lower glass transition temperature. The surface of PEG-D,L-PLA microspheres was not as smooth as that of PLA microparticles, the mean diameter of PEG-D,L-PLA microparticles was bigger than that of PLA microspheres. Protein release from the microspheres was affected by the morphological structure of PEG-D,L-PLA microspheres and properties of PEG-D,L-PLA copolymer. This study suggests that PEG-D,L-PLA multiblock copolymer may be used as carrier in protein delivery systems for different purposes.  相似文献   

2.
Abstract

Context: Size, encapsulation efficiency and stability affect the sustained release from nanoparticles containing protein-type drugs.

Objectives: Insulin was used to evaluate effects of formulation parameters on minimizing diameter, maximizing encapsulation efficiency and preserving blood glucose control following intraperitoneal (IP) administration.

Methods: Homogenization or sonication was used to incorporate insulin into poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with increasing poly(ethylene glycol) (PEG) content. Effects of polymer type, insulin/polymer loading ratio and stabilizer in the internal aqueous phase on physicochemical characteristics of NP, in vitro release and stability of encapsulated insulin were investigated. Entrapment efficiency and release were assessed by radioimmunoassay and bicinconnic acid protein assay, and stability was evaluated using SDS-PAGE. Bioactivity of insulin was assessed in streptozotocin-induced, insulin-deficient Type I diabetic mice.

Results: Increasing polymeric PEG increased encapsulation efficiency, while the absence of internal stabilizer improved encapsulation and minimized burst release kinetics. Homogenization was shown to be superior to sonication, with NP fabricated from 10% PEG–PLGA having higher insulin encapsulation, lower burst release and better stability. Insulin-loaded NP maintained normoglycaemia for 24?h in diabetic mice following a single bolus, with no evidence of hypoglycemia.

Conclusions: Insulin-loaded NP prepared from 10% PEG–PLGA possessed therapeutically useful encapsulation and release kinetics when delivered by the IP route.  相似文献   

3.
Polymeric micelles have been successfully used to deliver a variety of therapeutic agents. Nonetheless, several limitations and considerations must be clarified and well-studied to achieve the highest therapeutic effect. In this study, a series of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) and methoxy poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PLA) with varying molecular weight (MW) of hydrophobic core segment were synthesized. These block copolymers can form micelle with PCL or PLA as core-forming blocks and PEG as a coronal material. The effect of MW on micelle size and critical micelle concentration (CMC) was studied. DOX (DOX) was encapsulated inside the micelle core. Drug-loading content and size of micelles were studied. Drug release studies inside cells were evaluated by confocal laser scanning microscopy. In summary, the PLA core which is less hydrophobic than PCL showed higher CMC, smaller micelle size and faster DOX release inside nucleus.  相似文献   

4.
Objective: Controlled release venlafaxine for once daily administration.

Methods: Drug resin complexation followed by polymer encapsulation. A 41.21 factorial design was used to study the effect of polymer type and core: coat ratio on the release profile and kinetics. Polymer combinations were tried for optimisation adapting the desIMNCility function. The optimised formula was tested in rabbits against commercial extended release capsules.

Results: Poly-epsilon-caprolactone, poly(d, l-lactide-co-glycolide) ester and poly(d, l-lactide) ester polymers were more efficient in lowering the release rate and the initial burst release than Eudragit®RS100. Encapsulation at 1:1 ratio ensured complete coats and drug release sustainment. Formula prepared using 50:50 PLA/Eudragit at 1:1 ratio sustained the drug release up to 24?h with low burst release. This formula had higher venlafaxine absorption in rabbits compared to the commercial capsules.

Conclusions: The optimised formula is superior to the available once-daily trials regarding enhanced bioavailability, dosage form versatility and ease of scaling up.  相似文献   

5.
The aim of the present work was to develop ellagic acid (EA) loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for oral administration. PLGA nanoparticles were prepared by a method based on the concept of emulsion–diffusion–evaporation by using polyethylene glycol (PEG) 400 as a cosolvent for solubilizing the drug. While developing this method, didodecyldimethylammomium bromide (DMAB) and polyvinyl alcohol (PVA), alone and in combination with chitosan (CS) were employed. DMAB stabilized particles were the smallest of all the formulations with a particle size of 148.5 nm. PVA alone gave particles of 269.7 nm but a blend with CS (80:20) resulted in an increase in particle size (359.6 ± 23.6 nm). Initial release of EA from nanoparticles in pH 7.4 phosphate buffer was rapid, followed by a slower sustained release. Release rates followed the order PVA > PVA–CS > DMAB. Release rate from the PLGA–DMAB particles was slowest, which is attributed to higher hydrophobicity of DMAB as compared to PVA, preventing diffusion of drug out of polymeric matrix. Insolubility of CS at alkaline pH could have retarded the release in case of PVA–CS system. In situ intestinal permeability study of pure drug and the drug encapsulated in nanoparticles prepared using PVA, PVA–CS blend and DMAB as stabilizer in rats showed 66, 75, 73 and 87% permeation, respectively. EA showed good free radical scavenging effect in a yeast cell culture model as well as in a cell free system.  相似文献   

6.
The intrinsic advantages of microcapsules with regard to nanocapsules as intravenous drug carrier systems are still not fully exploited. Especially, in clinical situations where a long-term drug release within the vascular system is desired, if large amounts of drug have to be administered or if capillary leakage occurs, long-circulating microparticles may display a superior alternative to nanoparticles. Here, microcapsules were synthesised and parameters such as in vitro tendency of agglomeration, protein adsorption and in vivo performance were investigated. Biocompatible poly(ethylene glycol) (PEG)-coated poly(DL-lactide-co-glycolide) (PLGA) as wall material, solid and perfluorodecalin (PFD)-filled PEG–PLGA microcapsules (1.5?µm diameter) were manufactured by using a modified solvent evaporation method with either 1% poly(vinyl alcohol) (PVA) or 1.5% cholate as emulsifying agents. Compared to microcapsules manufactured with cholate, the protein adsorption (albumin and IgG) was clearly decreased and agglomeration of capsules was prevented, when PVA was used. The intravenous administration of these microcapsules, both solid and PFD-filled, in rats was successful and exhibited a circulatory half-life of about 1?h. Our data clearly demonstrate that PEG–PLGA microcapsules, manufactured by using PVA, are suitable biocompatible, long-circulating drug carriers, applicable for intravenous administration.  相似文献   

7.
Purpose: The aim of this study was to investigate the ability of PEGylated poly(d,l-lactide-co-glycolide) nanoparticles (NPs) to deliver Docetaxel (DTX) (an anticancer agent) to solid tumors.

Methods: PLGA–mPEG diblock copolymers were synthesized by ring opening polymerization reaction and characterized by 1H NMR, FT-IR and gel permeation chromatography. NPs, with a smooth spherical shape and near 100 nm size were prepared using the emulsion solvent evaporation technique and characterized. The drug release rate was investigated in acidic and physiological media (phosphate buffer saline, pH 5.0 and 7.4). The therapeutic efficacy and biocompatibility of NP formulations were evaluated for in vitro cytotoxicity by MTT assay using MCF-7 and C26 cell lines. The pharmacokinetic and biodistribution studies were performed on C26 tumor bearing mice. The antitumor efficacy of DTX NP formulations on C26 tumor bearing mice was investigated.

Results: DTX-loaded PEGylated NPs increased the drug's biological half-life while providing substantial accumulation at the solid tumors. PEGylated NPs appear to be a promising alternate carrier for DTX having greater efficacy in inhibiting tumor growth.  相似文献   

8.
Purpose: The aim of this study was to prepare poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing sodium fusidate (SF) using a double emulsion solvent evaporation method with varying polymer:drug ratios (1:1, 2.5:1, 5:1) and to evaluate its efficiency for the local treatment of chronic osteomyelitis.

Methods: The particle size and distribution, morphological characteristics, thermal behaviour, drug content, encapsulation efficiency and in vitro release assessments of the formulations had been carried out. Sterilized SF-PLGA microspheres were implanted in the proximal tibia of rats with methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis. After 3 weeks of treatment, bone samples were analysed with a microbiological assay.

Results: PLGA microspheres between the size ranges of 2.16–4.12?µm were obtained. Production yield of all formulations was found to be higher than 79% and encapsulation efficiencies of 19.8–34.3% were obtained. DSC thermogram showed that the SF was in an amorphous state in the microspheres and the glass transition temperature (Tg) of PLGA was not influenced by the preparation procedure. In vitro drug release studies had indicated that these microspheres had significant burst release and their drug release rates were decreased upon increasing the polymer:drug ratio (p?<?0.05). Based on the in vivo data, rats implanted with SF-PLGA microspheres and empty microspheres showed 1987?±?1196 and 55526?±?49086 colony forming unit of MRSA in 1?g bone samples (CFU/g), respectively (p?<?0.01).

Conclusion: The in vitro and in vivo studies had shown that the implanted SF loaded microspheres were found to be effective for the treatment of chronic osteomyelitis in an animal experimental model. Hence, these microspheres may be potentially useful in the clinical setting.  相似文献   

9.
Introduction: The major drawbacks associated with most of the anti-cancer drugs are their potential adverse effects. Distribution of these drugs throughout the body causes untoward adverse effects and less accumulation of drug at the site of tumors also causes decrease in therapeutic efficacy. Targeted nanomedicines are the emerging systems to improve the targetability of drug to the tumor site and to reduce the toxicity with maximum efficacy. Copolymers of poly-lactic acid (PLA) and d-α-tocopheryl polyethylene glycol 1000 succinate (Vitamin-E TPGS or TPGS) are innovative materials being actively investigated for the fabrication of non-targeted and targeted nanomedicines for diagnosis and therapy of cancer.

Areas covered: In this review, different nanomedicines of copolymers such as poly-lactic acid – polyoxyethylene sorbitan monooleate (PLA – Tween® 80), poly-lactic acid – poly-ethyleneglycol (PLA-PEG), poly-lactic acid-d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS) and TPGS-based nanomedicines (i.e., TPGS emulsified polymeric nanoparticles, TPGS prodrugs, TPGS liposomes, and TPGS micelles) for the diagnosis and therapy of cancer have been discussed.

Expert opinion: PLA, PLA-Tween® 80, PLA-PEG, PLA-TPGS, and TPGS are the promising polymeric biomaterials well studied as cancer nanomedicines. These biomaterials have proved that they could be applied in the fabrication of multifunctional nanomedicines for the future needs in simultaneous diagnosis of cancer as well as targeted chemotherapy.  相似文献   

10.
The paper is devoted to the investigation of the effect of polyester hydrophobicity and ability for crystallisation on lipophilic drug loading and release from microparticles fabricated on the base of these polymers. Poly(l-lactic acid), poly(d, l-lactic acid) and poly (lactic acid-co-glycolic acid) were synthesised by ring-opening polymerisation using stannous octoate as catalyst, while poly(caprolactone) (PCL) and poly(ω-pentadecalactone) (PPDL) formation was catalysed by lipase. The particles were formed via single emulsion evaporation/diffusion method. The particles obtained were studied using SEM, XRD and DSC methods. The degradation of particles based on different polyesters, entrapment and release of a model hydrophobic drug (risperidone®) were thoroughly studied. The effect of particles hydrophobicity and crystallinity on these parameters was of most interest. The drug entrapment is greater for the hydrophobic polymers. Drug release was more rapid from crystalline particles (PLLA, PCL, PPDL), than from amorphous PDLLA and PLGA ones.  相似文献   

11.
Purpose: The objective of this study is to investigate cellular uptake of prodrug-loaded nanoparticle (NP). Another objective is to study bioconversion of stereoisomeric dipeptide prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV) and d-Val-l-Val-GCV (DLGCV) in human corneal epithelial cell (HCEC) model.

Methods: Poly(D,L-lactic-co-glycolic acid) (PLGA) NP encapsulating prodrugs of GCV were formulated under a double emulsion method. Fluorescein isothiocyanate isomer–PLGA conjugates were synthesized to fabricate biocompatible fluorescent PLGA NP. Intracellular uptake of FITC-labeled NP was visualized by a fluorescent microscope in HCEC cells.

Results: Fluorescent PLGA NP and non-fluorescent NP display similar hydrodynamic diameter in the range of 115–145?nm with a narrow particle size distribution and zeta potentials around ?13 mV. Both NP types showed identical intracellular accumulation in HCEC cells. Maximum uptake (around 60%) was noted at 3?h for NP. Cellular uptake and intracellular accumulation of prodrugs are significantly different among three stereoisomeric dipeptide prodrugs. The microscopic images show that NPs are avidly internalized by HCEC cells and distributed throughout the cytoplasm instead of being localized on the cell surface. Following cellular uptake, prodrugs released from NP gradually bioreversed into parent drug GCV. LLGCV showed the highest degradation rate, followed by LDGCV and DLGCV.

Conclusion: LLGCV, LDGCV and DLGCV released from NP exhibited superior uptake and bioreversion in corneal cells.  相似文献   

12.
Abstract

Objectives: To prepare and characterize in vitro a novel brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles (NPs) for the treatment of brain cancer.

Methods: Doxorubicin-loaded NPs were prepared by the nanoprecipitation method using PLGA-COOH (dl-lactide-co-glycolide). The NPs were coated with a glutathione-PEG conjugate (PEG-GSH) in order to target delivery to the brain. The NPs were characterized via in vitro studies to determine particle size, drug release, cellular uptake, immunofluorescence study, cytotoxic assay, and in vitro blood–brain barrier (BBB) assay.

Results: The NPs showed a particle size suitable for BBB permeation (particle size around 200?nm). The in vitro release profile of the NPs exhibited no initial burst release and showed sustained drug release for up to 96?h. The immunofluorescence study showed the glutathione coating does not interfere with the drug release. Furthermore, in vitro BBB Transwell? study showed significantly higher permeation of the doxorubicin-loaded NPs compared with the free doxorubicin solution through the coculture of rat brain endothelial (RBE4) and C6 astrocytoma cells (p?<?0.05).

Conclusions: We conclude that the initial in vitro characterization of the NPs demonstrates potential in delivering doxorubicin to cancer cells with possible future application in targeting brain cancers in vivo.  相似文献   

13.
Abstract

A novel accelerated method of good correlations with “real-time” release to evaluate in vitro thymopentin release from poly (d, l-lactide-co-glycolide) (PLGA) microsphere was developed. Thymopentin-loaded microspheres were made from three types of PLGA, and peptide release was studied in various conditions. Incomplete release of peptide (<60%) from microspheres was found in accelerated testing with two typical release media. This problem was circumvented by adding organic solvents to the release media and varying the temperature in the media heating process. Release media containing three kinds of organic solvents at 50?°C were tested, respectively, and hydro-alcoholic solution was selected for further study. After the surfactant concentration (0.06%, W/V) and ethanol concentration (20%, V/V) were fixed, a gradient heating program, consisting of three stages and each stage with a different temperature, was introduced to enhance the correlations between the short- and long-term release. After adjusting the heating time of each stage, a good correlation (R2?=?9896, formulation 8?K; R2?=?0.9898, formulation 13?K; R2?=?0.9886, formulation 28?K) between accelerated and “real-time” release was obtained. By optimizing the conditions as ethanol concentration and temperature gradients, this accelerated method may be appropriate for similar peptide formulations that not well correlate with “real-time” release.  相似文献   

14.
To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19?±?1.17 to 59.15?±?0.67μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established.  相似文献   

15.
Context: Tuberculosis (TB) is one of the leading causes of morbidity and mortality with a global mortality rate of two million deaths per year; one-third of the world’s population is infected with Mycobacterium tuberculosis.

Objective: The aim of this study was to determine the antimycobacterial activity of six diketopiperazines (DKPs) purified from a Bacillus sp. N strain associated with entomopathogenic nematode Rhabditis (Oscheius) sp.

Materials and methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of DKPs were determined using the broth dilution method on Middlebrook 7H11 against M. tuberculosis H37Rv. Time-kill assay was used to determine the rate of killing of M. tuberculosis H37Rv by DKPs. The cytotoxicity of the DKPs was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay against the VERO cell line.

Results: Out of six DKP-tested cyclo-(d-Pro-l-Leu), cyclo-(l-Pro-l-Met) and cyclo-(d-Pro-l-Phe) recorded antimycobacterial activity, the cyclo-(l-Pro-l-Met) showed the highest activity and MIC values of 4?μg/ml for M. tuberculosis H37Rv. The MIC value for rifampicin was 0.06?μg/ml. Growth curve study by the MIC concentration of cyclic dipeptides recorded significant inhibition when compared with control. Time-kill curve showed maximum reduction of colony count was between 3 and 5 weeks. The DKPs are nontoxic to the VERO cell line up to 200?µg/ml. The antimycobacterial activity of cyclo-(d-Pro-l-Leu), cyclo-(l-Pro-l-Met) and cyclo-(d-Pro-l-Phe) is reported in this study for the first time.

Discussion and conclusion: In conclusion, the potency, low cytotoxicity and selectivity of these compounds make them valid lead compounds for treatment against TB.  相似文献   

16.
The modification of surface properties of biodegradable poly(lactide-co-glycolide) (PLGA) and model polystyrene nanospheres by poly(lactide)-poly(ethlene glycol) (PLA:PEG) copolymers has been assessed using a range of in vitro characterization methods followed by in vivo studies of the nanospheres biodistribution after intravenous injection into rats. Coating polymers with PLA:PEG ratio of 2:5 and 3:4 (PEG chains of 5000 and 2000 Da, respectively) were studied. The results reveal the formation of a PLA: PEG coating layer on the particle surface resulting in an increase in the surface hydrophilicity and decrease in the surface charge of the nanospheres. The effects of addition of electrolyte and changes in pH on stability of the nanosphere dispersions confirm that uncoated particles are electrostatically stabilized, while in the presence of the copolymers, steric repulsions are responsible for the stability. The PLA:PEG coating also prevented albumin adsorption onto the colloid surface. The evidence that this effect was observed for the PLA:PEG 3:4 coated nanospheres may indicate that a poly(ethylene glycol) chain of 2000 Da can provide an effective repulsive barrier to albumin adsorption. The in vivo results reveal that coating of PLGA nanospheres with PLA:PEG copolymers can alter the biodistribution in comparison to uncoated PLGA nanospheres. Coating of the model polystyrene nanospheres with PLA:PEG copolymers resulted in an initial high circulation level, but after 3 hours the organ deposition data showed values similar to uncoated polystyrene spheres. The difference in the biological behaviour of coated PLGA and polystyrene nanospheres may suggest a different stability of the adsorbed layers on these two systems. A similar biodistribution pattern of PLA:PEG 3:4 to PEG 2:5 coated particles may indicate that poly(ethylene glycol) chains in the range of 2000 to 5000 can produce a comparable effect on in vivo behaviour.  相似文献   

17.
Purpose. Nanospheres can be utilised for the targeting of drugs and diagnostic agents to the regional lymph nodes. The surface modification of model polystyrene, (PS), and poly(lactide-co-glycolide),(PLGA), nanospheres by poly(lactide)-poly(ethylene glycol), (PLA:PEG), copolymers has been assessed by in vitro characterisation and in vivobiodistribution studies following subcutaneous administration of the nanospheres to the rat. Methods. Three PLA: PEG copolymers were investigated, with PEG chain lengths of 750, 2000 and 5000 Da. The PLA:PEG copolymers were either coated onto the surface of PS and PLGA nanospheres or used as a co-precipitate in the formation of PLGA-PLA:PEG nanospheres. Coating of the nanospheres was confirmed by an increase in their particle size and a corresponding decrease in the surface potential. The kinetics of injection site drainage and lymph node retention was determined over a 24 hour time course for naked, coated and co-precipitated nanosphere systems. Results. Dependent on the surface characteristics, the distribution of the nanospheres can be significantly modified and the lymph node localisation dramatically enhanced by coating their surfaces with PLA:PEG copolymers or by producing co-precipitate nanospheres of PLGA and PLA:PEG. Conclusions. A fully biodegradable nanosphere system has been developed with excellent lymph node targeting characteristics.  相似文献   

18.
The purpose of this study was to prepare microspheres loaded with hydrophilic drug, bupivacaine HCl using poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). Microspheres were prepared with varying the PLGA/PLLA ratio with two different levels of bupivacaine HCl (5 and 10%) using a supercritical anti-solvent (SAS) technique. Microspheres ranging from 4–10?µm in geometric mean diameter could be prepared, with high loading efficiency. Powder X-ray diffraction (PXRD) revealed that bupivacaine HCl retained its crystalline state within the polymer and was present as a dispersion within the polymer phase after SAS processing. The release of bupivacaine HCl from biodegradable polymer microspheres was rapid up to 4?h, thereafter bupivacaine HCl was continuously and slowly released for at least 7 days according to the PLGA/PLLA ratio and the molecular weight of PLLA.  相似文献   

19.
In this study, poly (d,l-lactide-co-glycolide) (PLGA) microspheres encapsulating Olea europaea pollen extracts were prepared by using the double emulsion (w/o/w) based on a solvent evaporation/extraction method. The resulting microspheres were 1.93 μm in size. The total allergen loading and surface-associated allergen were 8 and 0.64%, respectively. The release of the allergen from the microspheres showed a biphasic profile with an initial burst release followed by a sustained release phase. Finally, the polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the encapsulation process does not affect the stability of the protein. We describe here some preliminary observations concerning the use of these microspheres as parenteral antigen delivery systems for immunization with O. europaea pollen extracts, in a small animal model, the mouse.  相似文献   

20.
The purpose of this research was to investigate the potential of surface modified Poly (l-lactic acid) (PLA) microspheres as a carrier for site-specific delivery of anti-inflammatory drug, ketoprofen, for the treatment of rheumatoid arthritis. Microspheres were prepared by solvent evaporation method using 20% w/w PLA in methylene chloride and 100 mL of a 2.5% poly vinyl alcohol (PVA) solution. Formulations were optimized for several processing parameters like drug to polymer ratio, stirring rate and volume of preparation medium etc. The surface of PLA microspheres was modified with gelatin to impart fibronectin recognition. The microspheres were characterized by surface morphology, size distribution, encapsulation efficiency, and by in vitro drug release studies. The prepared microspheres were light yellow, discrete, and spherical. Formulation with optimum drug to polymer ratio exhibited smallest vesicle size (43.02), high drug encapsulation efficiency (81.11) and better process yield (83.45). The release of drug was extended up to 24 h with Higuchi pattern of drug release. The in vivo results showed that the gelatin modified formulation reduced paw edema at greater extent than pure drug and PLA microspheres and it could be a promising carrier system for controlled and site-specific delivery of ketoprofen with possible clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号