首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One major challenge of current surface modification of nanoparticles is the demand for chemical reactive polymeric layers, such modification is always complicated, inefficient, and may lead the polymer lose the ability to encapsulate drug. To overcome this limitation, we adopted a pH-sensitive platform using polydopamine (PDA) as a way of functionalizing nanoparticles (NPs) surfaces. All this method needed to be just a brief incubation in weak alkaline solution of dopamine, which was simple and applicable to a variety of polymer carriers regardless of their chemical reactivity. We successfully conjugated the doxorubicin (DOX)-PDA-poly (lactic-co-glycolic acid) (PLGA) NPs with two typical surface modifiers: folate (FA) and a peptide (Arg-Gly-Asp, RGD). The DOX-PDA-FA-NPs and DOX-PDA-RGD-NPs (targeting nanoparticles) were characterized by particle size, zeta potential, and surface morphology. They were quite stable in various physiological solutions and exhibited pH-sensitive property in drug release. Compared to DOX-NPs, the targeting nanoparticles possessed an excellent targeting ability against HeLa cells. In addition, the in vivo study demonstrated that targeting nanoparticles achieved a tumor inhibition rate over 70%, meanwhile prominently decreased the side effects of DOX and improve drug distribution in tumors. Our studies indicated that the DOX-PLGA-NPs modified with PDA and various functional ligands are promising nanocarriers for targeting tumor therapy.  相似文献   

2.
目的 利用离子交联和化学交联相结合的方法制备壳聚糖纳米粒子(NPs),并对NPs分别进行了叶酸(FA)和聚乙二醇(PEG)的修饰。方法 通过红外光谱进行结构验证;用扫描电镜和粒度分析仪对粒子的微观形态、粒径、电位等进行了表征;通过与Hela细胞摄取实验对其靶向作用进行验证。结果 离子交联和化学交联相结合的方法制备壳聚糖纳米粒子粒径在200 nm左右并且粒径分布窄,修饰后的NPs(FA-NPs、PEG-NPs及FA+PEG-NPs)粒径不受功能基团修饰的影响。激光共聚焦试验证明FA-NPs及FA+PEG-NPs能显著提高细胞对粒子的摄取,而PEG-NPs则明显降低其对粒子的摄取。结论 FA+PEG-NPs有望成为一种新型的药物载体,用于抗癌药物对癌细胞的主动靶向。  相似文献   

3.
Abstract

The incorporation of a high percentage of targeting molecules into drug delivery system is one of the important methods for improving efficacy of targeting therapeutic drugs to cancer cells. PLGA-based drug delivery carriers with folic acid (FA) as targeting molecule have a low targeting efficiency due to a low FA conjugation ratio. In this work, we fabricated a FA-conjugated PLGA system using a crosslinker 1, 3-diaminopropane and have achieved a high conjugation ratio of 46.7% (mol/mol). The as-prepared PLGA-based biomaterial was used to encapsulate therapeutic drug 5-fluorouracil (5-FU) into nanoparticles. In the in vitro experiments, an IC50 of 5.69?µg/mL has been achieved for 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles on HT-29 cancer cells and is significantly lower than that of 5-FU and 5-FU loaded PLGA nanoparticles which only have an IC50 of 22.9 and 14.17?µg/mL, respectively. The fluorescent microscopy images showed that nanoparticles with FA are largely taken up by HT-29 cancer cells and the targeting nanoparticles have more affinity to cancer cells than the pure drugs and untreated nanoparticles. Therefore, the 1, 3-diaminopropane can facilitate the conjugation of FA to PLGA to form a novel polymer and 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles can be a highly efficient system for specific delivery of drugs to cancer cells.  相似文献   

4.
The purpose of this study was to develop a novel drug delivery system for a sustained and targeted delivery of honokiol (HK) to the nasopharyngeal carcinoma (NPC) HNE-1 cell lines, since the folate receptor (FR) is over-expressed on their surface. Emulsion solvent evaporation was used to develop the active targeting nanoparticles-loaded HK (ATNH) using copolymerpoly (?-caprolactone)-poly (ethyleneglycol)-poly (?-caprolactone) (PCEC), which was modified with folate (FA) by introducing Polythylenimine (PEI). ATNH characterization, including particle size distribution, morphology, drug loading, encapsulation efficiency and drug release, was performed. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) were employed to evaluate the shape and construction, respectively. MTT assay, cell uptake study and apoptosis test were assayed to detect the antitumor properties and targeting uptake by HNE-1 cells in vitro. Cell-cycle redistribution, 18?F-FDG PET/CT and immunohistochemistry were performed in vivo. The ATNH we developed were successfully synthesized and showed a suitable size distribution, high encapsulation efficiency, gradual release, and targeting uptake by the cells in vitro. Moreover, ATNH significantly inhibited tumor growth, metabolism, proliferation, micro-vessel generation, and caused cell-cycle arrest at G1 phase. Thus, these nanoparticles we developed might represent a novel formulation for HK delivery and a promising potential therapy in the treatment of cancer.  相似文献   

5.
Abstract

To evaluate the effects of poly(ethylene glycol) (PEG) grafting density on the tumor targeting efficacy of nanoparticles (NPs) with ligand modification, various amounts of PEG were conjugated to linoleic acid and poly(β-malic acid) double grafted chitosan (LMC) NPs bearing similar substitution degree of folate (FA). Increased particle size, decreased surface charge, reduced contact angle, retarded drug release and suppressed protein adsorption of LMC NPs were detected after surface modification. Compared to LMC NPs, FA-modified LMC NPs (FA-LMC NPs) remarkably enhanced tumor specificity. For PEG-modified FA-LMC NPs, increased drug accumulation in tumor tissues and reduced cellular uptake were observed with the increase of PEG grafting density. In regard to in vivo antitumor efficacy, FA-LMC NPs with moderate PEG grafting density (8.9%) significantly outperformed FA-LMC NP. Therefore, PEG modification with moderate grafting density could be a promising approach to coordinating with the tumor targeting efficacy of ligand-modified NPs.  相似文献   

6.
纳米粒是药物递送系统研究的热点之一,但仍存在体内循环时间短,易被网状内皮系统识别和清除等缺点,限制了其临床应用。近年来,天然细胞膜成分和纳米技术的结合为解决这些问题提供了新的方案。一种由纳米粒核和细胞膜壳组成的新型仿生系统极大地改善了纳米粒的性能。用细胞膜修饰的纳米粒具有独特的功能,如延长血液循环时间,提高主动靶向和增强细胞内化等功能。本文综述了细胞膜修饰纳米粒药物递送系统的最新进展及其在癌症治疗方面的应用前景。  相似文献   

7.
壳聚糖及其衍生物具有无毒、生物可降解性和良好的生物相容性等特点,在药物递送系统中有良好的应用前景。叶酸受体在肿瘤细胞过表达,利用叶酸与其受体的特异性结合,可实现靶向肿瘤效应。该文综述叶酸修饰壳聚糖及其在肿瘤靶向制剂方面的研究。  相似文献   

8.
Purpose  Several individual approaches were combined to fabricate a novel nanoparticulate drug delivery system to achieve targeting and anticancer effects in various malignant cancer cells. Methods  Doxorubicin was conjugated to Poly(lactic-co-glycolic acid) (PLGA), which was formulated into nanoparticle via solvent-diffusion method. The surface of the nanoparticles was subsequently linked with Poly(ethylene glycol) (PEG) and Arg-Gly-Asp (RGD) peptide to realize both passive and active targeting functions. The multifunctional nanoparticles were then tested against several malignant cancer cell lines. Results  The conjugation increased loading efficiency of doxorubicin to PLGA nanoparticles (the encapsulation efficiency was over 85%) and alleviated the drug burst release effect substantially. The drug was released from the polymeric matrix in a sustained release manner over a period of 12 days. The resultant nanoparticles were spherically uniform and well-dispersed. The nanoparticle targeting ability was proven through strong affinity to various integrin-expressing cancer cells, and much less affinity to the low integrin expression cancer cells. The nanoparticles also showed high efficacy in inducing apoptosis in specific malignant cancer cell. Conclusion  The developed multifunctional nanoparticles hold potential to treat malignant integrin-expressing cancers.  相似文献   

9.
The aim of this study was to prepare spray dried inhalable powders containing isoniazid-loaded chitosan/tripolyphosphate (TPP) nanoparticles for sustained delivery of the drug to the lung. Nanoparticles were prepared by ionic gelation method. In-vitro drug release study indicated that the rate of drug release from nanoparticles was decreased by increasing the amount of chitosan. Entrapment of isoniazid into chitosan/TPP nanoparticles decreased minimum inhibitory concentrations (MIC) of the drug against mycobacterium avium intracellulare. Nanoparticles were spray dried using excipients such as lactose, mannitol and maltodextrin alone or with leucine. Results showed that the obtained powders had different aerosolization property. It was observed that by adding leucine, the particle size of microparticles deceased and the process yield and fine particle fraction (FPF) increased significantly. The in-vitro deposition data indicated that spray drying of isoniazid-loaded nanoparticles with lactose in the presence of leucine resulted in the production of inhalable powders with the highest FPF (45%).  相似文献   

10.
Nanoparticles represent useful drug delivery systems for the specific transport of drugs to tumour cells. In the present study biodegradable nanoparticles based on gelatin and human serum albumin (HSA) were developed. The surface of the nanoparticles was modified by covalent attachment of the biotin–binding protein NeutrAvidin? enabling the binding of biotinylated drug targeting ligands by avidin–biotin-complex formation. Using the HER2 receptor specific antibody trastuzumab (Herceptin®) conjugated to the surface of these nanoparticles, a specific targeting to HER2-overexpressing cells could be shown. Attachment of the antibody-conjugated nanoparticles to the surface of HER2-overexpressing cells was time and dose dependent. Confocal laser scanning microscopy demonstrated an effective internalisation of the nanoparticles by HER2-overexpressing cells via receptor-mediated endocytosis. The results indicate that nanoparticles conjugated with an antibody against a specific tumour antigen holds promise, as selective drug delivery systems for the treatment of tumours expressing a specific tumour antigen. To our knowledge, this is the first study that demonstrates the effective and specific targeting of protein-based nanoparticles as drug delivery systems.  相似文献   

11.
目的:制备柚皮素壳聚糖纳米粒,初步探讨其对人肺腺癌细胞A549的细胞毒性和细胞摄取。方法:以壳聚糖和鱼精蛋白作为载体材料,采用离子胶凝法制备柚皮素壳聚糖纳米粒,透射电镜(TEM)观察其形态,马尔文激光粒度仪测定其粒径、分散度(PDI)和Zeta电位,离心法测定其包封率和载药量,采用恒温振荡水浴法对柚皮素壳聚糖纳米粒进行体外释放度研究,最后采用人肺癌细胞系A549细胞进行了细胞毒性、细胞摄取研究。结果:柚皮素壳聚糖纳米粒为球形或类球形粒子,结构完整,大小均一、球形度好,分散均匀,PDI、粒径、Zeta电位和包封率分别为0.268,139 nm、+15.7 mV和83.34%,柚皮素壳聚糖纳米粒体外释放呈缓释,24 h累积释放量达到了80%以上,体外释药过程用Higuchi方程拟合较好。MTT试验显示不同浓度的壳聚糖纳米粒和细胞作用72 h后,细胞活力均大于95%,本文所制备的壳聚糖纳米粒无细胞毒性。细胞摄取试验表明载FITC的壳聚糖纳米粒和A549细胞作用3 h后,可明显看到大量带绿色荧光的纳米粒穿过细胞膜进入细胞。结论:离子凝胶法成功制得粒径较小的柚皮素壳聚糖纳米粒,具有缓释性好,毒性小,壳聚糖纳米粒摄取率较高,可大大提高药物的利用率,具有广泛的应用前景。  相似文献   

12.
The aim of this study was to evaluate the antitumor effect of combinatorial targeted therapy with paclitaxel and all-trans retinoic acid (ATRA) nanoparticles in vitro. Paclitaxel-incorporated pullulan acetate (PA) nanoparticles were prepared by the nanoprecipitation-solvent evaporation method. ATRA-incorporated nanoparticles were prepared by dialysis using a methoxy poly(ethylene glycol)-grafted chitosan (ChitoPEG) copolymer. Particle sizes of paclitaxel-incorporated nanoparticles and ATRA-incorporated nanoparticles were about 160 nm and 60 nm, respectively. Nanoparticles were reconstituted in various aqueous media such as deionized water, phosphate-buffered saline, and fetal bovine serum-supplemented cell culture media. The combination of paclitaxel + ATRA (10 + 10 μg/mL) delivered by nanoparticles showed a synergistic antiproliferative effect against CT26 cells that was not observed with other combinations. Furthermore, the activity of MMP-2, a key enzyme in tumor cell invasion, was significantly decreased in cells treated with the combination of paclitaxel and ATRA while other combinations and single agents did not significantly affect its activity. A matrigel assay supported these results, indicating that paclitaxel/ATRA combination nanoparticles are effective for the inhibition of the invasion of tumor cells. The results of the present study suggest that combination treatment with paclitaxel and ATRA could be an effective treatment for the inhibition of tumor cell proliferation and invasion, and that nanoparticles are promising candidates for antitumor drug delivery.  相似文献   

13.
目的 为构建高效、低毒、高肿瘤靶向性的乳腺癌给药系统,拟采用化疗与光疗相结合的治疗方法对乳腺癌进行治疗。方法 本文以盐酸吡柔比星和多西紫杉醇作为模型药物联合使用共同负载于介孔二氧化硅(MSNs)纳米粒内,利用盐酸多巴胺(PDA)碱性条件下自身氧化在介孔二氧化硅表面形成聚多巴胺薄膜,最后通过酰胺化反应将活化后的叶酸修饰于盐酸多巴胺表面,最终制得双载药叶酸修饰聚多巴胺膜包覆的介孔二氧化硅纳米粒(FA-PDA-THP-DTX-MSNs)。结果 通过单因素考察最终确定介孔二氧化硅载药条件:载药溶剂为25%乙醇水溶液、药物载体比为1∶1、载药时间为12 h;盐酸多巴胺包覆条件:盐酸多巴胺浓度为0.5 mg·mL-1、搅拌时间为3 h。对双载药叶酸修饰聚多巴胺膜包覆的介孔二氧化硅纳米粒粒径、Zeta电位、傅立叶红外光谱等进行测定并与未进行修饰前介孔二氧化硅的数据进行比较,结果显示盐酸多巴胺和叶酸(FA)均成功修饰。测定最终成型的纳米粒,透射电镜下观察其形态为球形,大小均一,粒度分析仪测定结果显示,平均粒径为(201.4±21.7)nm, PDI指数为0.264,Zeta电位为...  相似文献   

14.
Nanoparticles represent useful drug delivery systems for the specific transport of drugs to tumour cells. In the present study biodegradable nanoparticles based on gelatin and human serum albumin (HSA) were developed. The surface of the nanoparticles was modified by covalent attachment of the biotin-binding protein NeutrAvidin enabling the binding of biotinylated drug targeting ligands by avidin-biotin-complex formation. Using the HER2 receptor specific antibody trastuzumab (Herceptin) conjugated to the surface of these nanoparticles, a specific targeting to HER2-overexpressing cells could be shown. Attachment of the antibody-conjugated nanoparticles to the surface of HER2-overexpressing cells was time and dose dependent. Confocal laser scanning microscopy demonstrated an effective internalisation of the nanoparticles by HER2-overexpressing cells via receptor-mediated endocytosis. The results indicate that nanoparticles conjugated with an antibody against a specific tumour antigen holds promise, as selective drug delivery systems for the treatment of tumours expressing a specific tumour antigen. To our knowledge, this is the first study that demonstrates the effective and specific targeting of protein-based nanoparticles as drug delivery systems.  相似文献   

15.
Folic acid-conjugated albumin nanospheres (FA-AN) have been developed to provide an actively targetable drug delivery system for improved drug targeting of cancer cells with reduced side effects. The nanospheres were prepared by conjugating folic acid onto the surface of albumin nanospheres using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a catalyst. To test the efficacy of these nanospheres as a potential delivery platform, doxorubicin-loaded albumin nanospheres (DOX-AN) and doxorubicin-loaded FA-AN (FA-DOX-AN) were prepared by entrapping DOX (an anthracycline, antibiotic drug widely used in cancer chemotherapy that works by intercalating DNA) into AN and FA-AN nanoparticles. Cell uptake of the DOX was then measured. The results show that FA-AN was incorporated into HeLa cells (tumor cells) only after 2.0 h incubation, whereas HeLa cells failed to incorporate albumin nanospheres without conjugated folic acid after 4.0 h incubation. When HeLa cells were treated with the DOX-AN, FA-DOX-AN nanoparticles or free DOX, cell viability decreased with increasing culture time (i.e. cell death increases with time) over a 70 h period. Cell viability was always the lowest for free DOX followed by FA-DOX-AN4 and then DOX-AN. In a second set of experiments, HeLa cells washed to remove excess DOX after an initial incubation for 2 h were incubated for 70 h. The corresponding cell viability was slightly higher when the cells were treated with FA-DOX-AN or free DOX whilst cells treated with DOX-AN nanoparticles remained viable. The above experiments were repeated for non-cancerous, aortic smooth muscle cells (AoSMC). As expected, cell viability of the HeLa cells (with FA receptor alpha, FRα) and AoSMC cells (without FRα) decreased rapidly with time in the presence of free DOX, but treatment with FA-DOX-AN resulted in selective killing of the tumor cells. These results indicated that FA-AN may be used as a promising actively targetable drug delivery system to improve drug targeting to cancer cells.  相似文献   

16.
Objectives The aim was to prepare novel Ganoderma lucidum polysaccharide nanoparticles and to evaluate the physicochemical properties and anti‐tumour activity in in‐vitro cytotoxicity studies using HepG2, HeLa and A549 cancer cell lines, and growth promotion effects on mouse spleen cells. Methods Chitosan nanoparticles loaded with G. lucidum polysaccharide were prepared using the ion‐revulsion method. The diameter distribution of the particles and the surface charge were measured using a zetasizer analyser. The entrapment efficiency and drug loading capacity were examined by the diethylaminoethanol weak anion exchange method. The cytotoxic effects of nanoparticles on tumour cells and the growth promotion effects on mouse spleen cells were tested using the MTT assay. Key findings Nanoparticles loaded with G. lucidum polysaccharide at 6 μg/ml and chitosan/sodium tripolyphosphate (mass) ratio of 5.5 had significantly greater cytotoxic effects on tumour cells and growth promotion effects on mouse spleen cells than empty nanoparticles. Conclusions G. lucidum polysaccharide nanoparticles showed significant anti‐tumour efficacy, having both cytotoxic effects on tumour cells and growth promotion effects on spleen cells, making it a promising candidate in the clinical setting.  相似文献   

17.
Superparamagnetic iron oxide nanoparticles (SPIO-NPs) have traditionally been used as MRI contrast agent for disease imaging via passive targeting. However, there has been an increasing interest in the development of SPIO-NPs to cellular-specific targeting for imaging and drug delivery currently. The objective of our study was to develop a novel active tumor-targeting SPIO-NPs system by surface-modifying superparamagnetic iron oxide nanoparticles (SPIO-NPs) with o-carboxymethyl chitosans (OCMCS) and folic acid (FA) to improve their biocompatibility and ability to target specific tumor cells as well as to evade reticuloendothelial system (RES). The results in vitro indicated the covalent surface-modification of SPIO-NPs with OCMCS significantly reduced not only the nano-cytotoxicity but also the capture of SPIO-NPs by macrophage cells. On the other hand, the folic acid modification promoted the uptake of nanoparticles by FR-positive tumor cell lines, but had little impact on other cells without folate receptor (FR). MRI image and tumor histological analysis demonstrated the FA-OCMCS-SPIO-NPs had the ability to target tumor cells with FR in vivo. OCMCS and folic acid modification of SPIO-NPs could significantly improve both the SPIO-NPs biocompatibility and the FR target for MRI imaging, potential carrier for drug targeting and hyperthermia.  相似文献   

18.
目的 制备以西妥昔单抗(cetuximab,C225)作为靶分子的pH敏感的氧化钽纳米粒(TaOx-C225 nanoparticles, TaOx-C225 NPs),用于肺癌的靶向诊疗。方法 以C225作为靶分子连接到TaOx NPs表面,在其表面通过pH敏感的化学键连接功能性分子二氢卟吩e6、化疗药物盐酸阿霉素制得靶向表皮生长因子受体的pH敏感性纳米材料TaOx-C225 NPs,并采用透射电镜、紫外光谱、HPLC对其进行表征和药物释放测试,通过体外细胞试验以及活体成像试验测试TaOx-C225 NPs靶向肿瘤细胞的能力以及荧光成像能力,通过构建动物模型评价TaOx-C225 NPs光动力和化疗联合杀伤肿瘤细胞的能力。结果 体外成像结果表明,TaOx-C225 NPs能够被肿瘤细胞HCC827特异性摄取;在体内成像中,TaOx-C225 NPs能够特异性地汇集在表皮生长因子受体高表达的HCC827肿瘤组织中,并具有较好的肿瘤与背景的对比度。体内肿瘤治疗研究表明,TaOx-C225 NPs联合氙灯对肿瘤具有明显的抑制效果。此外,TaOx-C225 NPs对健康组织无明显毒性。结论 利用靶向分子探针技术以及荧光成像技术实现了肿瘤的精准诊断,并通过光动力治疗与化疗的结合克服肿瘤耐药性,实现肺癌的精确杀伤。TaOx-C225 NPs对未来肿瘤的诊断和局部治疗具有一定的借鉴意义。  相似文献   

19.
Conventional chemotherapeutic approaches in cancer therapy such as surgery, chemotherapy, and radiotherapy have several disadvantages due to their nontargeted distributions in the whole body. On the other hand, nanoparticles (NPs) based therapies are remarkably progressing to solve several limitations of conventional drug delivery systems (DDSs) including nonspecific biodistribution and targeting, poor water solubility, weak bioavailability and biodegradability, low pharmacokinetic properties, and so forth. The enhanced permeability and retention effect escape from P-glycoprotein trap in cancer cells as a passive targeting mechanism, and active targeting strategies are also other most important advantages of NPs in cancer diagnosis and therapy. Folic acid (FA) is one of the biologic molecules which has been targeted overexpressed-folic acid receptor (FR) on the surface of cancer cells. Therefore, conjugation of FA to NPs most easily enhances the FR-mediated targeting delivery of therapeutic agents. Here, the recent works in FA which have been decorated NPs-based DDSs are discussed and cancer therapy potency of these NPs in clinical trials are presented.  相似文献   

20.
The aim of this study was to prepare spray dried inhalable powders containing isoniazid-loaded chitosan/tripolyphosphate (TPP) nanoparticles for sustained delivery of the drug to the lung. Nanoparticles were prepared by ionic gelation method. In-vitro drug release study indicated that the rate of drug release from nanoparticles was decreased by increasing the amount of chitosan. Entrapment of isoniazid into chitosan/TPP nanoparticles decreased minimum inhibitory concentrations (MIC) of the drug against mycobacterium avium intracellulare. Nanoparticles were spray dried using excipients such as lactose, mannitol and maltodextrin alone or with leucine. Results showed that the obtained powders had different aerosolization property. It was observed that by adding leucine, the particle size of microparticles deceased and the process yield and fine particle fraction (FPF) increased significantly. The in-vitro deposition data indicated that spray drying of isoniazid-loaded nanoparticles with lactose in the presence of leucine resulted in the production of inhalable powders with the highest FPF (45%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号