首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies have shown that drugs that are normally unable to cross the blood-brain barrier (BBB) following intravenous injection can be transported across this barrier by binding to poly(butyl cyanoacrylate) nanoparticles and coating with polysorbate 80. However, the mechanism of this transport so far was not known. In the present paper, the possible involvement of apolipoproteins in the transport of nanoparticle-bound drugs into the brain is investigated. Poly(butyl cyanoacrylate) nanoparticles loaded with the hexapeptide dalargin were coated with the apolipoproteins AII, B, CII, E, or J without or after precoating with polysorbate 80. In addition, loperamide-loaded nanoparticles were coated with apolipoprotein E alone or again after precoating with polysorbate 80. After intravenous injection to ICR mice the antinociceptive threshold was measured by the tail flick test. Furthermore, the antinociceptive threshold of polysorbate 80-coated dalargin-loaded nanoparticles was determined in ApoEtm1Unc and C57BL/6J mice. The results show that only dalargin or loperamide-loaded nanoparticles coated with polysorbate 80 and/or with apolipoprotein B or E were able to achieve an antinociceptive effect. This effect was significantly higher after polysorbate-precoating and apolipoprotein B or E-overcoating. With the apolipoprotein E-deficient ApoEtm1Unc mice the antinociceptive effect was considerably reduced in comparison to the C57BL/6J mice. These results suggest that apolipoproteins B and E are involved in the mediation of the transport of drugs bound to poly(butyl cyanoacrylate) nanoparticles across the BBB. Polysorbate 80-coated nanoparticles adsorb these apolipoproteins from the blood after injection and thus seem to mimic lipoprotein particles that could be taken up by the brain capillary endothelial cells via receptor-mediated endocytosis. Bound drugs then may be further transported into the brain by diffusion following release within the endothelial cells or, alternatively, by transcytosis.  相似文献   

2.
Recent studies have shown that drugs that are normally unable to cross the blood-brain barrier (BBB) following intravenous injection can be transported across this barrier by binding to poly(butyl cyanoacrylate) nanoparticles and coating with polysorbate 80. However, the mechanism of this transport so far was not known. In the present paper, the possible involvement of apolipoproteins in the transport of nanoparticle-bound drugs into the brain is investigated. Poly(butyl cyanoacrylate) nanoparticles loaded with the hexapeptide dalargin were coated with the apolipoproteins AII, B, CII, E, or J without or after precoating with polysorbate 80. In addition, loperamide-loaded nanoparticles were coated with apolipoprotein E alone or again after precoating with polysorbate 80. After intravenous injection to ICR mice the antinociceptive threshold was measured by the tail flick test. Furthermore, the antinociceptive threshold of polysorbate 80-coated dalargin-loaded nanoparticles was determined in ApoEtm1Unc and C57BL/6J mice. The results show that only dalargin or loperamide-loaded nanoparticles coated with polysorbate 80 and/or with apolipoprotein B or E were able to achieve an antinociceptive effect. This effect was significantly higher after polysorbate-precoating and apolipoprotein B or E-overcoating. With the apolipoprotein E-deficient ApoEtm1Unc mice the antinociceptive effect was considerably reduced in comparison to the C57BL/6J mice. These results suggest that apolipoproteins B and E are involved in the mediation of the transport of drugs bound to poly(butyl cyanoacrylate) nanoparticles across the BBB. Polysorbate 80-coated nanoparticles adsorb these apolipoproteins from the blood after injection and thus seem to mimic lipoprotein particles that could be taken up by the brain capillary endothelial cells via receptor-mediated endocytosis. Bound drugs then may be further transported into the brain by diffusion following release within the endothelial cells or, alternatively, by transcytosis.  相似文献   

3.
Our newly developed drug delivery carrier, cationic bovine serum albumin (CBSA) conjugated with poly(ethyleneglycol)-poly(lactide) (PEG-PLA) nanoparticle (CBSA-NP), was designed for brain drug delivery. CBSA, as a brain specific targetor, was covalently conjugated with the maleimide function group at the distal of poly(ethyleneglycol) (PEG) surrounding the nanoparticles. To evaluate its blood-brain barrier (BBB) transcytosis and toxicity against the BBB endothelial tight junction, we have explored a method of coculture with brain capillary endothelial cells (BCECs) on the top of micro-porous membrane of cell culture insert and astrocytes on the bottom side. The permeability of 14C-labeled sucrose was determined. For the CBSA-NP transcytosis study, a lipophilic fluorescent probe, 6-coumarin, was incorporated into nanoparticles. The BBB permeability of CBSA-NP in vitro was calculated and compared with native bovine serum albumin (BSA) conjugated pegylated nanoparticles (BSA-NP). As the coculture model, the transendothelial electrical resistance reached up to 313+/-23 ohms cm2. The tight junction between BCECs in the coculture could be visualized by scanning electron microscopy and transmission electron microscopy. The unchanged permeability of 14C-labeled sucrose comparing to that in the appearance of 200 microg/ml of CBSA-NP proved that CBSA-NP did not impact the integrity of BBB endothelial tight junctions. CBSA-NP also showed little toxicity against BCECs. The permeability of CBSA-NP was about 7.76 times higher than that of BSA-NP, while the transcytosis was inhibited in the excess of free CBSA. It was concluded that CBSA-NP preferentially transported across BBB with little toxicity, which offered the possibility to deliver therapeutic agents to CNS.  相似文献   

4.
陆伟  谭玉珍  蒋新国 《药学学报》2006,41(4):296-304
目的建立大鼠脑毛细血管内皮细胞(BCECs)和星形胶质细胞共培养模型,评价纳米粒的跨血脑屏障(BBB)转运和对内皮细胞紧密连接的毒性。方法采用复乳/溶媒蒸发法制备载荧光探针6-香豆素的聚乙二醇-聚乳酸纳米粒。首先,分别从新生鼠大脑分离培养BCECs和星形胶质细胞并进行免疫组化鉴定。然后,将BCECs接种于细胞培养池微孔膜的上面,将星形胶质细胞接种于膜下面建立共培养模型。分别测定14C-蔗糖和纳米粒的渗透系数。结果载6-香豆素纳米粒的平均重均粒径为(102.4±6.8) nm,zeta电位为(-16.81±1.05) mV。BCECs的VIII因子表达呈阳性;星形胶质细胞的胶质原纤维酸性蛋白表达呈阳性。模型的跨内皮细胞电阻值为(313±23) Ω·cm2。扫描电镜和透射电镜观察发现,共培养模型中的BCECs形成紧密连接。纳米粒的质量浓度低于200 μg·mL-1时,不影响14C-蔗糖渗透系数的改变,表明其不会影响BBB内皮细胞的紧密连接。10 μg·mL-1载6-香豆素纳米粒的渗透系数为0.29×10-3 cm·min-1。结论该大鼠BBB模型与体内情况接近,适合用于评价纳米粒的脑内转运和毒性。  相似文献   

5.
Human serum albumin (HSA) nanoparticles were manufactured by desolvation. Transferrin or transferrin receptor monoclonal antibodies (OX26 or R17217) were covalently coupled to the HSA nanoparticles using the NHS-PEG-MAL-5000 crosslinker. Loperamide was used as a model drug since it normally does not cross the blood-brain barrier (BBB) and was bound to the nanoparticles by adsorption. Loperamide-loaded HSA nanoparticles with covalently bound transferrin or the OX26 or R17217antibodies induced significant anti-nociceptive effects in the tail-flick test in ICR (CD-1) mice after intravenous injection, demonstrating that transferrin or these antibodies covalently coupled to HSA nanoparticles are able to transport loperamide and possibly other drugs across the BBB. Control loperamide-loaded HSA nanoparticles with IgG2a antibodies yielded only marginal effects.  相似文献   

6.
Purpose. The aim of this study was to evaluate the ability of long-circulating PEGylated cyanoacrylate nanoparticles to diffuse into the brain tissue. Methods. Biodistribution profiles and brain concentrations of [14C]-radiolabeled PEG-PHDCA, polysorbate 80 or poloxamine 908-coated PHDCA nanoparticles, and uncoated PHDCA nanoparticles were determined by radioactivity counting after intravenous administration in mice and rats. In addition, the integrity of the blood-brain barrier (BBB) after nanoparticles administration was evaluated by in vivo quantification of the diffusion of [14C]-sucrose into the brain. The location of fluorescent nanoparticles in the brain was also investigated by epi-fluorescent microscopy. Results. Based on their long-circulating characteristics, PEGylated PHDCA nanoparticles penetrated into the brain to a larger extent than all the other tested formulations. Particles were localized in the ependymal cells of the choroid plexuses, in the epithelial cells of pia mater and ventricles, and to a lower extent in the capillary endothelial cells of BBB. These phenomena occurred without any modification of BBB permeability whereas polysorbate 80-coated nanoparticles owed, in part, their efficacy to BBB permeabilization induced by the surfactant. Poloxamine 908-coated nanoparticles failed to increase brain concentration probably because of their inability to interact with cells. Conclusions. This study proposes PEGylated poly (cyanoacrylate) nanoparticles as a new brain delivery system and highlights two requirements to design adequate delivery systems for such a purpose: a) long-circulating properties of the carrier, and b) appropriate surface characteristics to allow interactions with BBB endothelial cells.  相似文献   

7.
The blood–brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide Kyotorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood–brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.  相似文献   

8.
Nanoparticulate systems for brain delivery of drugs   总被引:65,自引:0,他引:65  
The blood--brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide kytorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood-brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.  相似文献   

9.
The existence of blood–brain barrier (BBB) greatly hindered the penetration and accumulation of chemotherapeutics into glioblastoma (GBM), accompany with poor therapeutic effects. The growth of GBM supervene the impairment of tight junctions (TJs); however, the pathogenesis of BBB breakdown in GBM is essentially poorly understood. This study found that vascular endothelial growth factor (VEGF) secreted by GBM cells plays an important role in increasing the permeability of BBB by disrupting endothelial tight junction proteins claudin-5 and thus gave doxorubicin (DOX)-loaded glycolipid-like nanoparticles (Ap-CSSA/DOX), an effective entrance to brain tumor region for GBM-targeting therapy. In addition, VEGF downregulates the expression of claudin-5 with a dose-dependent mode, and interfering with the VEGF/VEGFR pathway using its inhibitor axitinib could reduce the permeability of BBB and enhance the integrity of the barrier. Ap-CSSA/DOX nanoparticles showed high affinity to expressed low-density lipoprotein receptor-related proteins 1 (LRP1) in both BBB and GBM. And BBB pathological fenestration in GBM further exposed more LRP1 binding sites for Ap-CSSA/DOX nanoparticles targeting to brain tumor, resulting in a higher transmembrane transport ratio in vitro and a stronger brain tumor biodistribution in vivo, and finally realizing a considerable antitumor effect. Overall, taking advantage of BBB pathological features to design an appropriate nanodrug delivery system (NDDS) might provide new insights into other central nervous system (CNS) diseases treatment.  相似文献   

10.
Drugs can be delivered to brain with the aid of poly(butylcyanoacrylate) (PBCA) nanoparticles coated with polysorbate 80. These carriers can penetrate BBB and deliver drugs of various structures, including peptides, hydrophilic compounds, and lipophilic compounds eliminated from brain with P-glycoprotein. When a suspension of polysorbate-coated PBCA nanoparticles is introduced into blood, apolipoproteins of the blood plasma adsorb on the particle surface and then interact with receptors of low-density lipoproteins situated in endothelial cells of cerebral vessels, thus stimulating endocytosis.  相似文献   

11.
The standard treatment of poisoning by organophosphorous compounds such as paraoxon includes the administration of oximes. Due to their inability to rapidly cross the blood–brain barrier (BBB) in therapeutically relevant concentrations, these drugs possess insufficient activity in the central nervous system. Since human serum albumin (HSA) nanoparticles enable the delivery of a variety of drugs across the BBB into the brain, in the present study the antidote obidoxime was bound to these particles by adsorption. The resulting sorption isotherms showed a best fit to Langmuir isotherms indicating that obidoxime adsorbs to HSA nanoparticles forming a monolayer. A maximum drug loading of 93.5 µg obidoxime/mg of nanoparticles at pH 8.3 was calculated. At higher concentrations the particle diameter increased significantly with obidoxime concentration leading to instable particle systems. The in vitro release of obidoxime from HSA nanoparticles showed a rapid release of the drug from the nanoparticles within 3 h.  相似文献   

12.
The blood-brain barrier (BBB) impedes the influx of intravascular compounds from the blood to the brain. Few blood-borne macromolecules are transferred into the brain because vesicular transcytosis in the endothelial cells is considerably limited and the tight junction is located between the endothelial cells. At the first line of the BBB, the endothelial glycocalyx which is a negatively charged, surface coat of proteoglycans, and adsorbed plasma proteins, contributes to the vasculoprotective effects of the vessels wall and are involved in maintaining vascular permeability. In the endothelial cytoplasm of cerebral capillaries, there is an asymmetrical array of metabolic enzymes such as alkaline phosphatase, acid phosphatase, 5’-nucleotidase, adenosine triphosphatase, and nucleoside diphosphatase and these enzymes contribute to inactivation of substrates. In addition, there are several types of influx or efflux transporters at the BBB, such as P-glycoprotein (P-gp), multidrug resistance associated protein, breast cancer resistance protein, organic anion transporters, organic cation transporters, organic cation transporter novel type transporters, and monocarboxylic acid transporters. P-gp, energy-dependent efflux transporter protein, is instrumental to the barrier function. Several findings recently reported indicate that endothelial P-gp contributes to efflux of undesirable substances such as β-amyloid protein from the brain or periarterial interstitial fluid, while P-gp likely plays a crucial role in the genesis of multiple vascular abnormalities that accompany hypertension. In this review, influx and efflux mechanisms of drugs at the BBB are also reviewed and how medicines pass the BBB to reach the brain parenchyma is discussed.Key Words: Blood-brain barrier, P-glycoprotein, tight junction.  相似文献   

13.
The standard treatment of intoxication with organophosphorus (OP) compounds includes the administration of oximes acting as acetylcholinesterase (AChE) reactivating antidotes. However, the blood-brain barrier (BBB) restricts the rapid transport of these drugs from the blood into the brain in therapeutically relevant concentrations. Since human serum albumin (HSA) nanoparticles enable the delivery of a variety of drugs across the BBB into the brain, HI 6 dimethanesulfonate and HI 6 dichloride monohydrate were bound to these nanoparticles in the present study. The resulting sorption isotherms showed a better fit to Freundlich's empirical adsorption isotherm than to Langmuir's adsorption isotherm. At the pH of 8.3 maximum drug binding capacities of 344.8 μg and 322.6 μg per mg of nanoparticles were calculated for HI 6 dimethanesulfonate and HI 6 dichloride monohydrate, respectively. These calculated values are higher than the adsorption capacity of 93.5 μg/mg for obidoxime onto HSA nanoparticles determined in a previous study. In vitro testing of the nanoparticulate oxime formulations in primary porcine brain capillary endothelial cells (pBCEC) demonstrated an up to two times higher reactivation of OP-inhibited AChE than the free oximes. These findings show that nanoparticles made of HSA may enable a sufficient antidote OP-poisoning therapy with HI 6 derivatives even within the central nervous system (CNS).  相似文献   

14.
The blood–brain barrier (BBB) is the major problem for the treatment of central nervous system diseases. A previous study from our group showed that the brain-targeted chitosan nanoparticles-loaded with large peptide moieties can rapidly cross the barrier and provide neuroprotection. The present study aims to determine the efficacy of the brain-targeted chitosan nanoparticles’ uptake by the human BBB cerebral microvessel endothelial cells (hCMECs) and to investigate the underlying mechanisms for enhanced cellular entry. Fluorescently labelled nanoparticles either conjugated with antibodies recognising human transferrin receptor (anti-TfR mAb) or not were prepared, characterised and their interaction with cerebral endothelial cells was evaluated. The antibody decoration of chitosan nanoparticles significantly increased their entry into hCMEC/D3 cell line. Inhibition of cellular uptake by chlorpromazine indicated that the anti-TfR mAb-conjugated nanoparticles were preferentially cell internalised through receptor-mediated endocytosis pathway. Alternatively, as primarily observed with control chitosan nanoparticles, aggregation of nanoparticles may also have induced macropinocytosis.  相似文献   

15.
Poly(butylcyanoacrylate) nanoparticles were produced by emulsion polymerisation and used either uncoated or overcoated with polysorbate 80 (Tween® 80). [3H]-dalargin bound to nanoparticles overcoated with polysorbate 80 or in the form of saline solution was injected into mice and the brain concentrations of radioactivity determined. Statistically significant, three-fold higher brain concentrations with the nanoparticle preparations were obtained after 45 minutes, the time of greatest pharmacological response assessed as analgesia in previous experiments. In addition the brain inulin spaces in rats and the uptake of fluoresceine isothiocyanate labelled nanoparticles in immortalised rat cerebral endothelial cells, (RBE4) were measured. The inulin spaces after i.v. injection of polysorbate 80-coated nanoparticles were significantly increased by 1% compared to controls. This is interpreted as indicating that there is no large scale opening of the tight junctions of the brain endothelium by the polysorbate 80-coated nanoparticles. In in vitro experiments endocytic uptake of fluorescent nanoparticles by RBE4 cells was only observed after polysorbate 80-overcoating, not with uncoated particles. These results further support the hypothesis that the mechanism of blood-brain barrier transport of drugs by polysorbate 80-coated nanoparticles is one of endocytosis followed by possible transcytosis. The experiments were conducted in several laboratories as part of an EEC/INTAS collaborative program. For various procedural and regulatory reasons this necessitated the use of both rats and mice as experimental animals. The brain endothelial cell line used for the in vitro studies is the rat RBE4.  相似文献   

16.

Background and Purpose

The blood-brain barrier (BBB) restricts drug penetration to the brain preventing effective treatment of patients suffering from brain tumours. Intra-arterial injection of short-chain alkylglycerols (AGs) opens the BBB and increases delivery of molecules to rodent brain parenchyma in vivo. The mechanism underlying AG-mediated modification of BBB permeability is still unknown. Here, we have tested the effects of AGs on barrier properties of cultured brain microvascular endothelial cells.

Experimental Approach

The effects of two AGs, 1-O-pentylglycerol and 2-O-hexyldiglycerol were examined using an in vitro BBB model consisting of primary cultures of rat brain endothelial cells, co-cultured with rat cerebral glial cells. Integrity of the paracellular, tight junction-based, permeation route was analysed by functional assays, immunostaining for junctional proteins, freeze-fracture electron microscopy, and analysis of claudin-claudin trans-interactions.

Key Results

AG treatment (5 min) reversibly reduced transendothelial electrical resistance and increased BBB permeability for fluorescein accompanied by changes in cell morphology and immunostaining for claudin-5 and β-catenin. These short-term changes were not accompanied by alterations of inter-endothelial tight junction strand complexity or the trans-interaction of claudin-5.

Conclusion and Implications

AG-mediated increase in brain endothelial paracellular permeability was short, reversible and did not affect tight junction strand complexity. Redistribution of junctional proteins and alterations in the cell shape indicate the involvement of the cytoskeleton in the action of AGs. These data confirm the results from in vivo studies in rodents characterizing AGs as adjuvants that transiently open the BBB.  相似文献   

17.
The in vivo organ distribution of particulate drug carriers is decisively influenced by the interaction with plasma proteins after i.v. administration. Serum protein adsorption on lipid drug conjugate nanoparticles, a new carrier system for i.v. application, was investigated by 2-dimensional electrophoresis (2-DE). The particles were surface-modified to target them to the brain. To assess the protein adsorption pattern after i.v. injection in mice prior to in vivo studies, the particles were incubated in mouse serum. Incubation in human serum was carried out in parallel to investigate similarities or differences in the protein patterns obtained from men and mice. Distinct differences were found. Particles incubated in human serum showed preferential adsorption of apolipoproteins A-I, A-IV and E. Previously, preferential adsorption of ApoE was reported as one important factor for targeting of Tween(R)80 modified polybutylcyanoacrylate nanoparticles to the brain. Preferential adsorption of ApoA-I and A-IV took place after incubation in mouse serum, adsorption of ApoE could not be clearly confirmed. In vivo localization of the LDC nanoparticles at the blood-brain barrier and diffusion of the marker Nile Red into the brain could be shown by confocal laser-scanning microscopy. Differences of the obtained adsorption patterns are discussed with regard to their relevance for correlations of in vitro and in vivo data obtained from different species.  相似文献   

18.
Many studies showed that transferrin increases brain delivery of nanoparticles (NPs) in vivo, however the mechanisms implied in their brain uptake are not yet clearly elucidated. In this study we evaluated the endocytosis of PLGA NPs coated with transferrin on an in vitro model of the blood–brain barrier (BBB) made of a co-culture of brain endothelial cells and astrocytes. PLGA NPs were prepared using DiI as a fluorescent marker and coated with Tween® 20, BSA and transferrin (Tf). Blank and BSA-NPs served as controls. The cellular toxicity on BBB of the different samples was evaluated following tight junction aperture and due to high toxicity NPs prepared with Tween® 20 were discarded. The size of the NPs prepared by the solvent diffusion method, varied from 63 to 90 nm depending on DiI incorporation and surface coating. Proteins adsorption on the surface of the NPs was found to be stable for at least 12 days at 37 °C. Contrary to Blank or BSA-NPs, Tf-NPs were found to be highly adsorbed by the cells and endocytosed using an energy-dependent process. Studies in presence of inhibitors suggest that Tf-NPs interact with the cells in a specific manner and enter the cells via the caveolae pathway.  相似文献   

19.
1. The blood-brain barrier (BBB) represents the major impediment to successful delivery of therapeutic agents to target tissue within the central nervous system. Intracarotid alkylglycerols have been shown to increase the transfer of chemotherapeutics across the BBB. 2. We investigated the spatial distribution of intracarotid fluorescein sodium and intravenous lissamine-rhodamine B200 (RB 200)-albumin in the brain of normal and C6 glioma-bearing rats after intracarotid co-administration of 1-O-pentylglycerol (200 mm). To elucidate the mechanisms involved in the alkylglycerol-mediated BBB opening, intraluminal accumulation of fluorescein isothiocyanate (FITC)-dextran 40,000 was studied in freshly isolated rat brain capillaries using confocal microscopy during incubation with different alkylglycerols. Furthermore, 1-O-pentylglycerol-induced increase in delivery of methotrexate (MTX) to the brain was evaluated in nude mice. 3. Microscopic evaluation showed a marked 1-O-pentylglycerol-induced extravasation of fluorescein and RB 200-albumin in the ipsilateral normal brain. In glioma-bearing rats, increased tissue fluorescence was found in both tumor tissue and brain surrounding tumor. Confocal microscopy revealed a time- and concentration-dependent accumulation of FITC-dextran 40,000 within the lumina of isolated rat brain capillaries during incubation with 1-O-pentylglycerol and 2-O-hexyldiglycerol, indicating enhanced paracellular transfer via tight junctions. Intracarotid co-administration of MTX and 1-O-pentylglycerol (200 mm) in nude mice resulted in a significant increase in MTX concentrations in the ipsilateral brain as compared to controls without 1-O-pentylglycerol (P<0.005). 4. In conclusion, 1-O-pentylglycerol increases delivery of small and large compounds to normal brain and brain tumors and this effect is mediated at least in part by enhanced permeability of tight junctions.  相似文献   

20.
The blood-brain barrier (BBB) is the main interface controlling the exchange of nutrients and drugs between the blood and brain. Its specificity is given by some specific properties of the endothelium of the brain capillaries. They include the presence of tight junctions sealing adjacent endothelial cells and the absence of fenestrations preventing paracellular transport pathway across the BBB. The BBB is also a metabolic and pharmacological barrier because of the activity of many cytosolic enzymes and transporters expressed both or either at the luminal or abluminal faces of the brain microvessel endothelial cells. Macromolecules like insulin, leptin and transferrin may cross the BBB via receptor mediated transcytosis. More recently the discovery of P-glycoprotein, an ABC protein, at the luminal membrane of the brain endothelial cells has shown that several lipophilic antimitotic and psychotropic drugs are pumped out of the brain by this transporter. All these properties illustrate how complex the exchanges of nutrients and drugs across the BBB are.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号