首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
目的 探讨脊髓和马尾神经损伤后慢性神经源性疼痛的神经外科治疗策略.方法 脊髓和马尾神经损伤后慢性神经源性疼痛20例,年龄28~81岁,病程8个月~50年.共行镇痛手术23次,其中,脊髓背根入髓区显微外科切开术19次,脊髓电刺激术3次,鞘内靶控输注系统植入术1次.采用视觉模拟评分(VAS)来评估手术疗效,以术后疼痛缓解大于75%为疗效优秀,疼痛缓解50%~75%为良好,疼痛缓解小于50%为差.结果 随访6个月~4年,10例疼痛消失,停用镇痛剂,生活质量改善;7例疼痛明显减轻,VAS 2~4分,其中,5例停用镇痛剂,2例镇痛剂使用量明显下降,生活质量改善;3例疼痛无明显改善.结论 脊髓背根入髓区显微外科切开术和脊髓电刺激术对脊髓和马尾神经损伤后慢性神经源性疼痛患者疗效满意,但其适应证有差别,应根据患者的损伤节段、损伤程度和疼痛部位等具体情况选择手术方式.  相似文献   

2.
3.
The mechanisms underlying central pain following spinal cord injury (SCI) are unsettled. The purpose of the present study was to examine differences in spinothalamic tract function below injury level and evoked pain in incomplete SCI patients with neuropathic pain below injury level (central pain) versus those without such pain. A clinical examination, quantitative sensory testing and magnetic resonance imaging (MRI) were performed in 10 SCI patients with below-level pain and in 11 SCI patients without neuropathic pain. Patients with and without pain had similar reductions of mechanical and thermal detection thresholds below injury level. SCI patients with central pain had sensory hypersensitivity in dermatomes corresponding to the lesion level more frequently than SCI patients without pain, but this may in part be explained by the exclusion of at-level spontaneous pain in the pain-free group. The rostral-caudal extent of the lesion measured by MRI did not differ between the two patient groups, and there were no statistically significant differences in any of the predefined areas of interest on the axial plane images. This study suggests that neuronal hyperexcitability plays a key role in central SCI pain and furthermore - in contrast to previous findings - that loss of spinothalamic functions does not appear to be a predictor for central neuropathic pain in spinal cord injury.  相似文献   

4.
In this study, we examined whether topical treatment of glutamate receptor antagonists attenuate hyperexcitability of lumbar spinal dorsal horn neurons following low thoracic hemisection spinal cord injury in rats. Four weeks after spinal hemisection, neuronal activity in response to mechanical stimuli applied on the peripheral receptive field was significantly increased in three different phenotypes of lumbar spinal dorsal horn neurons: wide dynamic range (WDR), low threshold (LT) and high threshold (HT). Topical application of MK-801 (NMDA receptor antagonist, 50 µg) significantly attenuated the activity of WDR, but not LT and HT neurons; whereas, NBQX (AMPA receptor antagonist, 0.5 and 1 µg) significantly attenuated neuronal activity in all three phenotypes of neurons (*p < 0.05). However, MCPG (group I/II metabotropic glutamate receptor antagonist, 100 µg) had no effect. The present study, in the context of previous work, suggests that ionotropic glutamate receptor activation play critical roles in the maintenance of neuronal hyperexcitability and neuropathic “below-level” pain behavior following spinal hemisection injury.  相似文献   

5.
6.
Neuropathic pain following spinal cord injury involves plastic changes along the whole neuroaxis. Current neuroimaging studies have identified grey matter volume (GMV) and resting‐state functional connectivity changes of pain processing regions related to neuropathic pain intensity in spinal cord injury subjects. However, the relationship between the underlying neural processes and pain extent, a complementary characteristic of neuropathic pain, is unknown. We therefore aimed to reveal the neural markers of widespread neuropathic pain in spinal cord injury subjects and hypothesized that those with greater pain extent will show higher GMV and stronger connectivity within pain related regions. Thus, 29 chronic paraplegic subjects and 25 healthy controls underwent clinical and electrophysiological examinations combined with neuroimaging. Paraplegics were demarcated based on neuropathic pain and were thoroughly matched demographically. Our findings indicate that (a) spinal cord injury subjects with neuropathic pain display stronger connectivity between prefrontal cortices and regions involved with sensory integration and multimodal processing, (b) greater neuropathic pain extent, is associated with stronger connectivity between the posterior insular cortex and thalamic sub‐regions which partake in the lateral pain system and (c) greater intensity of neuropathic pain is related to stronger connectivity of regions involved with multimodal integration and the affective‐motivational component of pain. Overall, this study provides neuroimaging evidence that the pain phenotype of spinal cord injury subjects is related to the underlying function of their resting brain.  相似文献   

7.
Of the glutamate receptor types, the metabotropic glutamate receptors (mGluRs) are G proteins coupled and can initiate a number of intracellular pathways leading to hyperexcitability of spinal neurons. In this study, we tested the expression of mGluRs to determine which cell types might contribute to sustained neuronal hyperexcitability in the lumbar enlargement with postoperative day (POD) 7 (early), 14 (late), and 30 (chronic phase) following spinal cord injury (SCI) by unilateral hemisection at T13 in Sprague-Dawley rats. Expression was determined by confocal analyses of immunocytochemical reaction product of neurons (NeuN positive) and astrocytes (GFAP positive) in the dorsal horn on both sides of the L4 segment. Neurons were divided into two sizes: small (<20 microm) and large (>35 microm), for physiological reasons. We report a significant increase of mGluR(1) expression in large and small neurons of the dorsal horn on both sides of the cord in late and chronic phases when compared to control sham groups. Expression of mGluR(2/3) significantly increased in large neurons on the ipsilateral (hemisected) side in the late phase. Expression of mGluR(5) significantly increased in large neurons in early, late, and chronic phases. In addition, mGluR(1) and mGluR(5) expression after hemisection was significantly increased in astrocytes in early, late, and chronic phases; whereas mGluR(2/3) did not display any significant changes. In conclusion, our data demonstrate long-term changes in expression levels of Group I mGluRs (mGluR(1) and mGluR(5)) in both neurons and astrocytes in segments below a unilateral SCI. Thus, permanent alterations in dorsal horn receptor expression may play important roles in transmission of nociceptive responses in the spinal cord following SCI.  相似文献   

8.
Recent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Previously, we have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury. Using a combination of behavioral, immunocytochemical, and electrophysiological measures we demonstrate that increased activation of p38 MAPK occurs in the spinal cord just rostral to the site of injury in rats that develop at-level mechanical allodynia after moderate SCI. Immunocytochemical analyses indicate that the increases in p38 MAPK activation occurred in astrocytes, microglia, and dorsal horn neurons in the spinal cord rostral to the site of injury. Inhibiting the enzymatic activity of p38 MAPK dose dependently reverses the behavioral expression of at-level mechanical allodynia and also decreases the hyperexcitability seen in thoracic dorsal horn neurons after moderate SCI. Taken together, these novel data are the first to demonstrate causality that increased activation of p38 MAPK in multiple cell types play an important role in the maintenance of at-level CNP following spinal cord injury.  相似文献   

9.
Abstract

The understanding of the mode of action of spinal cord stimulation (SCS) as treatment of neuropathic pain is still fragmentary. SCS evolved from the gate-control theory postulating a spinal modulation of noxious inflow, but there is little evidence that SCS influences nociceptive pain; pain relief in peripheral vascular disease and angina pectoris is presumably secondary to other SCS effects. In man, SCS may effectively abolish both continuous and evoked pain (tactile/thermal allodynia) whereas induced, acute nociceptive pain is unaffected. Recent SCS studies performed on rat models of mononeuropathy have demonstrated a preferential effect on AB fiber mediated functions, and the hyperexcitability of wide-dynamic-range dorsal horn neurons was attenuated. These effects were coupled to increased release of CABA and reduced glutamate and aspartate release in the dorsal horn. Intrathecal administration of GABA, baclofen and adenosine enhanced the SCS effect on tactile allodynia even in previously non-responsive rats. Preliminary results indicate that gabapentin may have a similar effect. GABAergic and adenosine-related mechanisms conceivably represent only examples of a number of putative receptor systems involved in SCS. Clinical trials have been initiated exploring the possibility to improve the efficacy of SCS by concomitant pharmacotherapy. [Neurol Res 2000; 22: 28S-292]  相似文献   

10.
Spinal cord injury (SCI) elicits chronic pain in 65% of individuals. In addition, SCI afflicts an increasing number of aged individuals, and those with SCI are predisposed to shorter lifespan. Our group previously identified that deletion of the microRNA miR-155 reduced neuroinflammation and locomotor deficits after SCI. Here, we hypothesized that aged mice would be more susceptible to pain symptoms and death soon after SCI, and that miR-155 deletion would reduce pain symptoms in adult and aged mice and improve survival. Adult (2 month-old) and aged (20 month-old) female wildtype (WT) and miR-155 knockout (KO) mice received T9 contusion SCI. Aged WT mice displayed reduced survival and increased autotomy – a symptom of spontaneous pain. In contrast, aged miR-155 KO mice after SCI were less susceptible to death or spontaneous pain. Evoked pain symptoms were tested using heat (Hargreaves test) and mechanical (von Frey) stimuli. At baseline, aged mice showed heightened heat sensitivity. After SCI, adult and aged WT and miR-155 KO mice all exhibited heat and mechanical hypersensitivity at all timepoints. miR-155 deletion in adult (but not aged) mice reduced mechanical hypersensitivity at 7 and 14 d post-SCI. Therefore, aging predisposes mice to SCI-elicited spontaneous pain and expedited mortality. miR-155 deletion in adult mice reduces evoked pain symptoms, and miR-155 deletion in aged mice reduces spontaneous pain and expedited mortality post-SCI. This study highlights the importance of studying geriatric models of SCI, and that inflammatory mediators such as miR-155 are promising targets after SCI for improving pain relief and longevity.  相似文献   

11.
Central neuropathic pain is a debilitating and frequent complication to spinal cord injury (SCI). Excitatory input from hyperexcitable cells around the injured grey matter zone is suggested to play a role for central neuropathic pain felt below the level of a spinal cord injury. Direct evidence for this hypothesis is difficult to obtain. Capsaicin, activating TRPV1 receptors on small sensory afferents, induces enhanced cellular activity in dorsal horn neurons and produces a central mediated area of secondary hyperalgesia. We hypothesized that sensory stimuli and capsaicin applied at and just above the level of a spinal cord injury which already is hyperexcitable, would cause enhanced responses in patients with central pain at the level of injury compared to patients without neuropathic pain and healthy controls. Touch, punctuate stimuli, cold stimuli and topical capsaicin was applied above, at, and below injury level in 10 SCI patients with central pain below a thoracic injury, in 10 SCI patients with a thoracic injury but without neuropathic pain, and in corresponding areas in 10 healthy control subjects. The study found increased responses to touch at injury level compared to controls (p = 0.033) and repetitive punctuate stimuli above and at injury level compared to controls and pain-free SCI patients (p < 0.04) but not an increased response to capsaicin in patients with central pain. These results suggest that SCI patients with below-level pain have increased responses to some but not all sensory input at the level of injury.  相似文献   

12.
In recent decades, an area of active research has supported the notion that progesterone promotes a wide range of remarkable protective actions in experimental models of nervous system trauma or disease, and has also provided a strong basis for considering this steroid as a promising molecule for modulating the complex maladaptive changes that lead to neuropathic pain, especially after spinal cord injury. In this review, we intend to give the readers a brief appraisal of the main mechanisms underlying the increased excitability of the spinal circuit in the pain pathway after trauma, with particular emphasis on those mediated by the activation of resident glial cells, the subsequent release of proinflammatory cytokines and their impact on N-methyl-D-aspartate receptor function. We then summarize the available preclinical data pointing to progesterone as a valuable repurposing molecule for blocking critical cellular and molecular events that occur in the dorsal horn of the injured spinal cord and are related to the development of chronic pain. Since the treatment and management of neuropathic pain after spinal injury remains challenging, the potential therapeutic value of progesterone opens new traslational perspectives to prevent central pain.  相似文献   

13.
N. Attal 《Revue neurologique》2021,177(5):606-612
Spinal cord injury pain encompasses musculoskeletal and neuropathic pain. Its management is often multidisciplinary and involves specific drugs such as antidepressants and antiepileptics, and nonpharmacological treatment including psychotherapy, physical therapy and neuromodulation techniques. Recent progress in the diagnosis, assessment, and understanding of its mechanisms offers the perspective of a more rational therapeutic management, which should result in better therapeutic outcome.  相似文献   

14.
A large percentage of spinal cord-injured subjects suffer from neuropathic pain below the level of the lesion (bNP). The neural mechanisms underlying this condition are not clear. The aim of this study was to elucidate the general effects of spinal deafferentiation and of bNP on electroencephalographic (EEG) activity. In addition, the relationship between the presence of bNP and impaired function of the spinothalamic tract was studied. Measurements were performed in complete and incomplete spinal cord-injured subjects with and without bNP as well as in a healthy control group. Spinothalamic tract function, assessed by contact heat evoked potentials, did not differ between subjects with and without bNP; nevertheless, it was impaired in 94% of subjects suffering from bNP. In the EEG recordings, the degree of deafferentiation was reflected in a slowing of EEG peak frequency in the 6–12-Hz band. Taking into account this unspecific effect, spinal cord-injured subjects with bNP showed significantly slower EEG activity than subjects without bNP. A discrimination analysis in the subjects with spinothalamic tract dysfunction correctly classified 84% of subjects as belonging to either the group with bNP or the group without bNP, according to their EEG peak frequency. These findings could be helpful for both the development of an objective diagnosis of bNP and for testing the effectiveness of new therapeutic agents.  相似文献   

15.
脊髓背根入髓区毁损术治疗脊髓和马尾神经损伤后疼痛   总被引:1,自引:0,他引:1  
目的 探讨脊髓和马尾神经损伤后疼痛的神经外科治疗方法、效果和安全性.方法 脊髓和马尾神经损伤后疼痛患者14例,年龄28~72岁,病程8个月-28年;疼痛位于下肢感觉减退和缺失区,为烧灼、压榨或痉挛样疼痛,视觉模拟疼痛评分(Visual analogy scale,VAS)8~10分;均伴有不同程度的下肢肌力下降.14例患者共行脊髓背根入髓区(dorsal root entry zone,DREZ)毁损术15次.结果 随访3个月-3年.6例疼痛消失,5例疼痛明显减轻,停用或少量使用镇痛剂,VAS 2~4分;3例疼痛无明显改善.所有病例无严重手术并发症.结论 DREZ毁损术对脊髓和马尾神经损伤后慢性神经病理性疼痛安全有效.  相似文献   

16.
The most common type of chronic pain following spinal cord injury (SCI) is central neuropathic pain and SCI patients typically experience mechanical allodynia and thermal hyperalgesia. The present study was designed to examine the potential role of astrocyte gap junction connectivity in the induction and maintenance of “below-level” neuropathic pain in SCI rats. We examined the effect of intrathecal treatment with carbenoxolone (CARB), a gap junction decoupler, on SCI-induced bilateral thermal hyperalgesia and mechanical allodynia during the induction phase (postoperative days 0 to 5) and the maintenance phase (days 15 to 20) following T13 spinal cord hemisection. Immunohistochemistry was performed to determine potential SCI-induced changes in spinal astrocyte activation and phosphorylation of the NMDA receptor NR1 subunit (pNR1). CARB administered during the induction period dose-dependently attenuated the development of bilateral thermal hyperalgesia and mechanical allodynia. Intrathecal CARB also significantly reduced the bilateral SCI-induced increase in GFAP-immunoreactive (ir) staining and the number of pNR1-ir cell profiles in the spinal cord dorsal horn compared to vehicle-treated rats. In contrast, CARB treatment during the maintenance phase had no effect on the established thermal hyperalgesia and mechanical allodynia nor on spinal GFAP expression or the number of pNR1-ir cell profiles. These results indicate that gap junctions play a critical role in the activation of astrocytes distant from the site of SCI and in the subsequent phosphorylation of NMDA receptors in the lumbar spinal cord. Both of these processes appear to contribute to the induction of bilateral below-level pain in SCI rats.  相似文献   

17.
目的研究促甲状腺释放激素(TRH)类似物,YM-14673大鼠脊髓损伤后水肿的影响。方法用改良Allen氏法建立大鼠脊髓损伤模型,分设正常组、对照组和治疗组,治疗组在损伤后15分钟注射YM-14673,用称重法测量脊髓的水含量,公式:(湿重-干重)÷湿重×100%。结果对照组示伤后24小时脊髓水肿,治疗组显示在24小时脊髓水肿减轻。结论早期应用TRH类似物,YM-14673可减轻脊髓损伤后的脊随水肿。  相似文献   

18.
Sensory perception in complete spinal cord injury   总被引:2,自引:0,他引:2  
OBJECTIVES: To describe sensations evoked by painful or repetitive stimulation below injury level in patients with a clinically complete (American Spinal Injury Association, ASIA Grade A) spinal cord injury (SCI). MATERIAL AND METHODS: Twenty-four patients (11 with central neuropathic pain and 13 without pain) with a traumatic SCI above the tenth thoracic vertebra were examined using quantitative sensory testing, MR imaging, and somatosensory evoked potentials (SEP). RESULTS: Painful (pressure, pinch, heat or cold) or repetitive (pinprick) stimuli elicited vague localized sensations in 12 patients (50%). Pain, spasticity, and spasms were equally seen in SCI patients with or without localized sensations. SEP and MRI did not differentiate between these two groups. CONCLUSION: The present study suggests retained sensory communication across the injury in complete SCI, i.e. 'sensory discomplete' SCI.  相似文献   

19.
In spinal cord injury (SCI), pain is a major cause of disability. A review of experimental and human studies, which provide insight into the mechanisms and treatment of SCI neuropathic pain are presented. Each of a series of pathophysiologic changes after SCI may be relevant for the development of SCI neuropathic pain. These changes are discussed in relation to neuropathic pain at and below the level of SCI. SCI neuropathic pain is difficult to treat. Experimental and human randomized, double-blind, placebo-controlled, clinical trials on pharmacologic treatment of SCI pain are summarized.  相似文献   

20.
AimsPotassium (K+) channels have been demonstrated to play a prominent involvement in nociceptive processing. Kir7.1, the newest members of the Kir channel family, has not been extensively studied in the CNS, and its function remains largely unknown. The present study investigated the role of spinal Kir7.1 in the development of pathological pain.Methods and ResultsNeuropathic pain was induced by spared nerve injury (SNI). The mechanical sensitivity was assessed by von Frey test. Immunofluorescence staining assay revealed that Kir7.1 was predominantly expressed in spinal neurons but not astrocytes or microglia in normal rats. Western blot results showed that SNI markedly decreased the total and membrane expression of Kir7.1 in the spinal dorsal horn accompanied by mechanical hypersensitivity. Blocking Kir7.1 with the specific antagonist ML418 or knockdown kir7.1 by siRNA led to mechanical allodynia. Co‐IP results showed that the spinal kir7.1 channels were decorated by SUMO‐1 but not SUMO‐2/3, and Kir7.1 SUMOylation was upregulated following SNI. Moreover, inhibited SUMOylation by GA (E1 inhibitor) or 2‐D08 (UBC9 inhibitor) can increase the spinal surface Kir7.1 expression.ConclusionSUMOylation of the Kir7.1 in the spinal cord might contribute to the development of SNI‐induced mechanical allodynia by decreasing the Kir7.1 surface expression in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号