首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
AP4 encodes a c-MYC-inducible repressor of p21   总被引:1,自引:0,他引:1  
In the majority of human tumors, expression of the c-MYC oncogene becomes constitutive. Here, we report that c-MYC directly regulates the expression of AP4 via CACGTG motifs in the first intron of the AP4 gene. Induction of AP4 was required for c-MYC-mediated cell cycle reentry of anti-estrogen arrested breast cancer cells and mitogen-mediated repression of the CDK inhibitor p21. AP4 directly repressed p21 by occupying four CAGCTG motifs in the p21 promoter via its basic region. AP4 levels declined after DNA damage, and ectopic AP4 interfered with p53-mediated cell cycle arrest and sensitized cells to apoptosis induced by DNA damaging agents. AP4 expression blocked induction of p21 by TGF-β in human keratinocytes and interfered with up-regulation of p21 and cell cycle arrest during monoblast differentiation. Notably, AP4 is specifically expressed in colonic progenitor and colorectal carcinoma cells. In conclusion, our results indicate that c-MYC employs AP4 to maintain cells in a proliferative, progenitor-like state.  相似文献   

2.

Background

We have recently demonstrated that polysaccharides from fruiting body extract (FBE) or mycelia extract (ME) of the edible mushroom Pleurotus pulmonarius exert antiproliferative effects in intestinal cells and an anti-inflammatory effect in a dextran sulfate sodium (DSS) mouse model of acute colitis. The aim of this study was to assess the role of fungal FBE and ME in colon carcinogenesis.

Methods

In vitro, human colorectal cancer cells were treated with FBE and ME and analyzed for inflammation response, for markers of apoptosis, and for cell-cycle progression. In vivo, FBE and ME were tested in a mouse model of colitis-associated colorectal carcinogenesis induced by cyclic treatments with DSS and azoxymethane. Treated mice were fed a daily diet containing 2 or 20?mg FBE or ME per mouse for 80?days.

Results

In vitro, FBE and ME induced apoptosis in a dose-responsive manner and modulated the expression of Bcl-2, Bax, and cytochrome c, and blocked tumor necrosis factor (TNF)-α-induced inhibitor of nuclear factor (NF) (Iκ)-Bα degradation and NF-κB nuclear translocation. In vivo, dietary administration of FBE and ME significantly reduced the formation of aberrant crypt foci, which precedes colorectal cancer, and of microadenomas. The treatments significantly lowered the expression of proliferating cell nuclear antigen and increased the number of cells undergoing apoptosis in the colon. Additionally, FBE and ME inhibited the expression of the proinflammatory cytokine TNF-α in colonic tissue.

Conclusions

We conclude that P. pulmonarius FBE and ME inhibit colitis-associated colon carcinogenesis induced in mice through the modulation of cell proliferation, induction of apoptosis, and inhibition of inflammation.  相似文献   

3.
In this study, we examined the role of c-kit receptor (KIT) signal transduction on the proliferation and invasion of colorectal cancer cells. We found that c-kit was expressed in 2 colorectal cancer cell lines as determined by RT-PCR, Western blot, and flow cytometry. In KIT-positive lines, KIT was activated by stem cell factor (SCF). SCF enhanced cellular proliferation of positive lines as demonstrated by the WST-1 proliferation assay. Furthermore, SCF enhanced the invasive ability of KIT-positive cell lines. SCF stimulation upregulated p44/42 mitogen-activated protein kinase (MAPK) and Akt as shown by Western blot. We examined the roles played by p44/42 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt pathways in proliferation and invasion. PI3K/Akt activity strongly correlated with proliferation and invasion and p44/42 MAPK was correlated with only invasion. In conclusion, the SCF-enhanced proliferation and invasion of KIT-positive colorectal cancer cells is achieved mainly through the PI3K/Akt pathway.  相似文献   

4.
《Gut microbes》2013,4(1):84-88
Pathogenic autoinflammatory responses triggered by dysregulated microbial interactions may lead to intestinal disorders and malignancies. Previously, we demonstrated that a lipoteichoic acid (LTA)-deficient Lactobacillus acidophilus strain, NCK2025, ameliorated inflammation-induced colitis, significantly reduced the number of polyps in a colonic polyposis cancer model and restored physiological homeostasis in both cases. Nonetheless, the regulatory signals delivered by NCK2025 to reprogram the gastrointestinal microenvironment, and thus resist colonic cancer progression, remain unknown. Accumulating evidence suggest that epigenetic changes, in the presence and absence of pathogenic inflammation, can result in colorectal cancer (CRC). To test possible epigenetic modifications induced by NCK2025, the expression of epigenetically regulated, CRC-associated genes was measured with and without bacterial treatment. In vivo and in vitro, NCK2025 enhanced the expression of tumor suppressor genes that may regulate CRC development. Therefore, differential epigenetic regulation of CRC-related genes by NCK2025 represents a potential therapy against colitis-associated and sporadic CRC.  相似文献   

5.
Ataxia-telangiectasia mutated (ATM) is a cellular damage sensor that coordinates the cell cycle with damage-response checkpoints and DNA repair to preserve genomic integrity. However, ATM also has been implicated in metabolic regulation, and ATM deficiency is associated with elevated reactive oxygen species (ROS). ROS has a central role in many physiological and pathophysiological processes including inflammation and chronic diseases such as atherosclerosis and cancer, underscoring the importance of cellular pathways involved in redox homeostasis. We have identified a cytoplasmic function for ATM that participates in the cellular damage response to ROS. We show that in response to elevated ROS, ATM activates the TSC2 tumor suppressor via the LKB1/AMPK metabolic pathway in the cytoplasm to repress mTORC1 and induce autophagy. Importantly, elevated ROS and dysregulation of mTORC1 in ATM-deficient cells is inhibited by rapamycin, which also rescues lymphomagenesis in Atm-deficient mice. Our results identify a cytoplasmic pathway for ROS-induced ATM activation of TSC2 to regulate mTORC1 signaling and autophagy, identifying an integration node for the cellular damage response with key pathways involved in metabolism, protein synthesis, and cell survival.  相似文献   

6.
Chronic inflammation is a known risk factor for tumorigenesis, yet the precise mechanism of this association is currently unknown. The inflammasome, a multiprotein complex formed by NOD-like receptor (NLR) family members, has recently been shown to orchestrate multiple innate and adaptive immune responses, yet its potential role in inflammation-induced cancer has been little studied. Using the azoxymethane and dextran sodium sulfate colitis-associated colorectal cancer model, we show that caspase-1-deficient (Casp1(-/-)) mice have enhanced tumor formation. Surprisingly, the role of caspase-1 in tumorigenesis was not through regulation of colonic inflammation, but rather through regulation of colonic epithelial cell proliferation and apoptosis. Consequently, caspase-1-deficient mice demonstrate increased colonic epithelial cell proliferation in early stages of injury-induced tumor formation and reduced apoptosis in advanced tumors. We suggest a model in which the NLRC4 inflammasome is central to colonic inflammation-induced tumor formation through regulation of epithelial cell response to injury.  相似文献   

7.
The MYC genes are the most frequently activated oncogenes in human tumors and are hence attractive therapeutic targets. MYCN amplification leads to poor clinical outcome in childhood neuroblastoma, yet strategies to modulate the function of MYCN do not exist. Here we show that 10058-F4, a characterized c-MYC/Max inhibitor, also targets the MYCN/Max interaction, leading to cell cycle arrest, apoptosis, and neuronal differentiation in MYCN-amplified neuroblastoma cells and to increased survival of MYCN transgenic mice. We also report the discovery that inhibition of MYC is accompanied by accumulation of intracellular lipid droplets in tumor cells as a direct consequence of mitochondrial dysfunction. This study expands on the current knowledge of how MYC proteins control the metabolic reprogramming of cancer cells, especially highlighting lipid metabolism and the respiratory chain as important pathways involved in neuroblastoma pathogenesis. Together our data support direct MYC inhibition as a promising strategy for the treatment of MYC-driven tumors.  相似文献   

8.
9.
Regulatory T cells (Tregs) are key elements in immunological self-tolerance. The number of Tregs may alter in both peripheral blood and in colonic mucosa during pathological circumstances. The local cellular, microbiological and cytokine milieu affect immunophenotype and function of Tregs. Forkhead box P3+ Tregs function shows altered properties in inflammatory bowel diseases (IBDs). This alteration of Tregs function can furthermore be observed between Crohn’s disease and ulcerative colitis, which may have both clinical and therapeutical consequences. Chronic mucosal inflammation may also influence Tregs function, which together with the intestinal bacterial flora seem to have a supporting role in colitis-associated colorectal carcinogenesis. Tregs have a crucial role in the immunoevasion of cancer cells in sporadic colorectal cancer. Furthermore, their number and phenotype correlate closely with the clinical outcome of the disease, even if their contribution to carcinogenesis has previously been controversial. Despite knowledge of the clinical relationship between IBD and colitis-associated colon cancer, and the growing number of immunological aspects encompassing sporadic colorectal carcinogenesis, the molecular and cellular links amongst Tregs, regulation of the inflammation, and cancer development are still not well understood. In this paper, we aimed to review the current data surrounding the role of Tregs in the pathogenesis of IBD, colitis-associated colon cancer and sporadic colorectal cancer.  相似文献   

10.
11.

Purpose

This study investigated the expression pattern of PTEN and its effect on carcinogenesis of ulcerative colitis-associated colorectal cancer, leading to insights into the underlying molecular mechanism.

Methods

We established a mouse model of ulcerative colitis-associated colorectal cancer by treating the animals with azoxymethane (AOM) and dextran sulphate sodium (DSS), and investigated the inflammation–dysplasia–carcinoma sequence. Expression patterns of PTEN, p-Akt and Ki-67 were shown by immunohistochemistry; western blotting techniques were used to detect protein expression of PTEN, p-Akt and caspase 3; TUNEL assay was used to measure apoptosis in colon epithelial cells; and colorimetric analysis was able to determine MPO activity in colon tissues.

Results

During the inflammation–dysplasia–carcinoma sequence, PTEN expression gradually decreased, while p-Akt expression increased; PTEN and p-Akt levels were negatively correlated. Compared to the AOM-DSS and Ad-0 groups, Ad-PTEN mice had longer colons, fewer tumours (P?<?0.01) and smaller tumour sizes (P?<?0.05). After injecting Ad-PTEN, expression of p-Akt, Ki-67 and MPO activity decreased dramatically, whereas PTEN increased. The TUNEL assay showed increased apoptotic cells and caspase 3 expression in the Ad-PTEN group.

Conclusion

PTEN plays an important role in the inflammation–dysplasia–carcinoma sequence and may be a new molecular target in preventing and treating ulcerative colitis-associated colorectal cancer.  相似文献   

12.
The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.  相似文献   

13.
14.
Abnormal expression of certain cellular oncogenes in peripheral blood mononuclear cells (PBMC) is associated with several autoimmune disorders and is thought to reflect a pathologically activated state in various lymphocytic subpopulations. Using the Northern blot hybridization technique, we studied the expression of cellular (c-)fos, c-myc and N-ras genes in PBMC isolated from patients with primary biliary cirrhosis (PBC) and normal control subjects. The expression of c-fos gene was reduced significantly in patients with PBC, while there was no significant difference between the two groups in the expression of c-myc and N-ras genes. Stimulation of PBMC with mitogens in vitro increased c-fos gene expression markedly to a similar extent in both normal subjects and in patients with PBC. Furthermore, the reduced expression of c-fos gene recovered significantly in all the patients examined after treatment with ursodeoxycholic acid (UDCA). These results suggest that the reduced expression of c-fos gene in PBMC is a reversible functional manifestation of PBC and that UDCA therapy for PBC may improve abnormal lymphocyte function.  相似文献   

15.
16.
17.
18.

Background

Cyclooxygenase-2 (COX-2, PTGS2) is an enzyme involved in the synthesis of prostaglandins and thromboxanes, which are regulators of biologic processes such as inflammation, cell proliferation and angiogenesis. COX-2 over-expression was reported in many (pre) malignant tissues, but data strongly vary and seem to depend on the methodology used.

Methods

Normal colorectal mucosa and paired cancerous tissue from 60 patients with colorectal cancer was investigated for the levels of COX-2 mRNA by real-time quantitative Polymerase Chain Reaction (qPCR). COX-2 levels were expressed relative to either: tissue weight or levels of the housekeeping genes beta-2 microglobulin (B2M) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Results

COX-2 mRNA levels, normalized with respect to tissue weight or mRNA levels of the housekeeping genes B2M or GAPDH, were over-expressed in 80%, 70% and 40% of the colorectal tumor tissues, as compared to the paired adjacent normal colorectal mucosa samples, respectively. Highest mRNA COX-2 ratios tumor/normal were measured when expressed per mg tissue (mean ratio 21.6). When normalized with respect to the housekeeping genes B2M or GAPDH, mean tumor/normal ratios were 16.1 and 7.5, respectively.

Conclusion

Expression of COX-2 mRNA levels per mg tissue is most simple in comparison to normalization with respect to the housekeeping genes B2M or GAPDH. Levels of COX-2 mRNA are found over-expressed in almost 80% of the colorectal tumors, compared to paired adjacent normal colorectal mucosa, suggesting a role of COX-2 as a potential biomarker for cancer risk, whereas inhibitors of COX-2 could be of value in chemoprevention of colon cancer.  相似文献   

19.
The risk for colitis-associated neoplasias and colorectal cancer is significantly increased in patients with ulcerative colitis. Studies in recent years have highlighted that mucosal inflammation is the key trigger of tumor development and growth. However, neoplasias demonstrate genetic and molecular differences as compared to sporadic neoplasias. In particular, colitis-associated neoplasias grow flat and are frequently multifocal. Endoscopic techniques such as chromoendoscopy markedly improve the detection of such flat neoplasias. An effective anti-inflammatory therapy of ulcerative colitis is likely to reduce the risk for development of colitis-associated neoplasias.  相似文献   

20.
The cellular gene expression was compared in four Shope carcinoma cell lines, which were derived from a single tumor and possess various potentials for differentiation and tumorigenicity. The E6 and E7 transforming genes of cottontail rabbit papillomavirus were expressed in all these cell lines, highest level of expression being in the most tumorigenic and undifferentiated cell line, where the major histocompatibility complex (MHC) class I expression was the lowest. The MHC class II antigen, which is not expressed on normal epithelial cells, was detected in all the cell lines, but hardly, if at all, on the surface of these cells. The surface expression of the MHC class II antigen could not be induced by the culture supernatant of phytohaemagglutinin-stimulated splenocytes, which increased the surface expression level of the MHC class I antigen of the same cells. These findings suggest that the aberrant expression of the MHC class II antigen in these cells could not be implicated in the immune response against tumors. The c-fos, c-myc and c-H-ras oncogenes were variably expressed in these cell lines, but there was no correlation with tumorigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号