首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major challenges associated with nano-sized drug delivery systems include removal from systemic circulation by phagocytic cells and controlling appropriate drug release at target sites. 2-methacryloyloxyethyl phosphorylcholine (MPC) has been copolymerised in turn with two pH responsive comonomers (2-(diethylamino)ethyl methacrylate (DEA) and 2-(diisopropylamino)ethyl methacrylate (DPA), to develop novel biocompatible drug delivery vehicles. Micelles were prepared from a series of copolymers with varying block compositions and their colloidal stability and dimensions were assessed over a range of solution pH using photon correlation spectroscopy. The drug loading capacities of these micelles were evaluated using Orange OT dye as a model compound. The cytotoxicity of the micelles was assessed using an in vitro assay. The MPC-DEA diblock copolymers formed micelles at around pH 8 and longer DEA block lengths allowed higher drug loadings. However, these micelles were not stable at physiological pH. In contrast, MPC-DPA diblock copolymers formed micelles of circa 30 nm diameter at physiological pH. In vitro assays indicated that these MPC-DPA diblock copolymers had negligible cytotoxicities. Thus novel non-toxic biocompatible micelles of appropriate size and good colloidal stability with pH-modulated drug uptake and release can be readily produced using MPC-DPA diblock copolymers.  相似文献   

2.
Diblock copolymers of poly(epsilon-caprolactone) (PCL) and monomethoxy poly(ethylene glycol) (MPEG) with various compositions were synthesized. The amphiphilic block copolymers self-assembled into nanoscopic micelles and their hydrophobic cores encapsulated doxorubicin (DOX) in aqueous solutions. The micelle diameter increased from 22.9 to 104.9 nm with the increasing PCL block length (2.5-24.7 kDa) in the copolymer composition. Hemolytic studies showed that free DOX caused 11% hemolysis at 200 microg ml(-1), while no hemolysis was detected with DOX-loaded micelles at the same drug concentration. An in vitro study at 37 degrees C demonstrated that DOX-release from micelles at pH 5.0 was much faster than that at pH 7.4. Confocal laser scanning microscopy (CLSM) demonstrated that DOX-loaded micelles accumulated mostly in cytoplasm instead of cell nuclei, in contrast to free DOX. Consistent with the in vitro release and CLSM results, a cytotoxicity study demonstrated that DOX-loaded micelles exhibited time-delayed cytotoxicity in human MCF-7 breast cancer cells.  相似文献   

3.
Polymeric micelle for tumor pH and folate-mediated targeting.   总被引:19,自引:0,他引:19  
Novel pH-sensitive polymeric mixed micelles composed of poly(L-histidine) (polyHis; M(w) 5000)/PEG (M(n) 2000) and poly(L-lactic acid) (PLLA) (M(n) 3000)/PEG (M(n) 2000) block copolymers with or without folate conjugation were prepared by diafiltration. The micelles were investigated for pH-dependent drug release, folate receptor-mediated internalization and cytotoxicity using MCF-7 cells in vitro. The polyHis/PEG micelles showed accelerated adriamycin release as the pH decreased from 8.0. When the cumulative release for 24 h was plotted as a function of pH, the gradual transition in release rate appeared in a pH range from 8.0 to 6.8. In order to tailor the triggering pH of the polymeric micelles to the more acidic extracellular pH of tumors, while improving the micelle stability at pH 7.4, the PLLA/PEG block copolymer was blended with polyHis/PEG to form mixed micelles. Blending shifted the triggering pH to a lower value. Depending on the amount of PLLA/PEG, the mixed micelles were destabilized in the pH range of 7.2-6.6 (triggering pH for adriamycin release). When the mixed micelles were conjugated with folic acid, the in vitro results demonstrated that the micelles were more effective in tumor cell kill due to accelerated drug release and folate receptor-mediated tumor uptake. In addition, after internalization polyHis was found to be effective for cytosolic ADR delivery by virtue of fusogenic activity. This approach is expected to be useful for treatment of solid tumors in vivo.  相似文献   

4.
The effects of copolymer composition, drug structure and initial drug feed on drug loading of polymeric micelles based on amphiphilic polyphosphazenes were investigated. It was found that the drug loading capacity of micelles based on this type of amphiphilic copolymers was mainly determined by copolymer composition and the chemical structure of drug. In addition to the compatibility between drug and micellar core, hydrogen bonding interaction between drug and hydrophilic corona may significantly influence drug loading as well. In vitro drug release in 0.1 M PBS (pH 7.4) suggested that indomethacin (IND) in the micelles was released through Fickian diffusion, and no significant difference in release rate was observed for micelles based on copolymers with various EtTrp content. Compared with in vitro IND release profile, in vivo pharmacokinetic study after subcutaneous administration provides a more sustained release behavior. Additionally, in comparison with free drug solution at the same dose, IND concentration in rat plasma showed a prolonged retention when the drug was delivered through polymeric micelles. In vivo pharmacodynamic study based on both carrageenan-induced acute and complete Freund's adjuvant-induced adjuvant arthritis model indicated that sustained therapeutic efficacy could be achieved through intraarticular injection of IND-loaded micelles. Most importantly, local delivery of IND can avoid the severe gastrointestinal stimulation, which was frequently associated with oral administration.  相似文献   

5.
Block copolymer micelles are generally formed by the self-assembly of either amphiphilic or oppositely charged copolymers in aqueous medium. The hydrophilic and hydrophobic blocks form the corona and the core of the micelles, respectively. The presence of a nonionic water-soluble shell as well as the scale (10-100 nm) of polymeric micelles are expected to restrict their uptake by the mononuclear phagocyte system and allow for passive targeting of cancerous or inflamed tissues through the enhanced permeation and retention effect. Research in the field has been increasingly focused on achieving enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the drug for optimal targeting. With that in mind, our group has developed a range of block copolymers for various applications, including amphiphilic micelles for passive targeting of chemotherapeutic agents and environment-sensitive micelles for the oral delivery of poorly bioavailable compounds. Here, we propose to review the innovations in block copolymer synthesis, polymeric micelle preparation and characterization, as well as the relevance of these developments to the field of biomedical research.  相似文献   

6.
Polymeric micelles, as drug delivery vehicles, must achieve specific targeting and high stability in the body for efficient drug delivery. We recently reported the preparation of polyanion-coated biodegradable polymeric micelles by coating positively charged polymeric micelles consisting of poly(l-lysine)-block-poly(l-lactide) (PLys-b-PLLA) AB diblock copolymers with anionic hyaluronic acid (HA) by polyion complex (PIC) formation. The obtained HA-coated micelles showed significantly higher stability in aqueous solution. In this study, to evaluate the HA-coated polymeric micelles as a drug carrier, model drug release from the micelles and cytotoxicity of the micelles were investigated. The HA-coated micelles showed sustained release of model drugs and low cytotoxicity. It is known that there are receptors for HA on liver sinusoidal endothelial cells (LSEC). Specific interactions of HA-coated micelles with LSECs and Kupffer cells were investigated and compared with polymeric micelles coated with other polyanionic polysaccharides, i.e., heparin (Hep) and carboxymethyl-dextran (CMDex). Although Hep-coated micelles and CMDex-coated micelles were incorporated into both Kupffer cells and LSECs, HA-coated micelles were taken up only into LSECs. These results suggest HA-coated micelles have potential utility as drug delivery vehicles exhibiting specific accumulation into LSECs.  相似文献   

7.
Doxorubicin was chemically conjugated to the terminal end of a di-block copolymer composed of poly(L-lactic acid) (PLLA) and methoxy-poly(ethylene glycol) (mPEG) via two acid-cleavable linkages. A hydrazone bond and a cis-acotinyl bond were formed between doxorubicin and the terminal group of PLLA segment in the block copolymer. Doxorubicin-conjugated PLLA-mPEG di-block copolymers self-assembled to form micelles in aqueous solution. The doxorubicin-conjugated micelles were about 89.1 nm in diameter and their critical micelle concentration was 1.3 microg/ml. These values were comparable with those of unconjugated micelles. In an acidic condition, the conjugated doxorubicin in the hydrazone linkage was readily cleaved, releasing doxorubicin in an intact structure. Doxorubicin-conjugated PLLA-mPEG micelles were more potent in cell cytotoxicity than free doxorubicin, suggesting that they were more easily taken up within cells with concomitant rapid release of cleaved doxorubicin into the cytoplasm from acidic endosomes.  相似文献   

8.
Amphiphilic block copolymers composed of methoxy poly(ethylene glycol) (MPEG) and poly(epsilon-caprolactone) (PCL) were synthesized and then conjugated with folic acid to produce a folate-receptor-targeted drug carrier for tumor-specific drug delivery. Folate-conjugated MPEG/PCL micelles containing the anticancer drug paclitaxel were prepared by micelle formation in aqueous medium. The size of the folate-conjugated MPEG/PCL micelles formed was about 50-130 nm, depending on the molecular weight of block copolymers, and was maintained at less than 150 nm even after loading with paclitaxel. The in vitro release profile of the paclitaxel from the MPEG/PCL micelles exhibited no initial burst release and showed sustained release. Paclitaxel-loaded folate-conjugated MPEG/PCL micelles (PFOL50) exhibited much higher cytotoxicity for cancer cells, such as MCF-7 and HeLa cells, than MPEG/PCL micelles without the folate group (PMEP50). Confocal image analysis revealed that fluorescent paclitaxel-loaded PFOL50 micelles were endocytosed into MCF-7 cells through the interaction with overexpressed folate receptors on the surface of the cancer cells.  相似文献   

9.
A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC50 values of the Dox-loaded micelles were approximately ten-times (by 24 h) and three-times (by 48 h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results establish the PEG-b-PEYM block copolymer with acid-labile ortho ester side-chains as a novel and effective pH-responsive nano-carrier for enhancing the delivery of drugs to cancer cells.  相似文献   

10.
Block copolymer micelles formed from copolymers of poly(caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) were investigated as a drug delivery vehicle for dihydrotestosterone (DHT). The physical parameters of the PCL-b-PEO micelle-incorporated DHT were measured, including the loading capacity of the micelles for DHT, the apparent partition coefficient of DHT between the micelles and the external medium and the kinetics of the release of DHT from the micelle solution. The MTT survival assay was used to assess the in vitro biocompatibility of PCL-b-PEO micelles in HeLa cell cultures. The biological activity of the micelle-incorporated DHT was evaluated in HeLa cells which had been co-transfected with the expression vectors for the androgen receptor and the MMTV-LUC reporter gene. The PCL-b-PEO micelles were found to have a high loading capacity for DHT and the release profile of the drug from the micelle solution was found to be a slow steady release which continued over a 1-month period. The biological activity of the micelle-incorporated DHT was found to be fully retained.  相似文献   

11.
Cellular specific micellar systems from functional amphiphilic block copolymers are attractive for targeted intracellular drug delivery. In this study, we developed reactive micelles based on diblock copolymer of poly(ethyl ethylene phosphate) and poly(-caprolactone). The micelles were further surface conjugated with galactosamine to target asialoglycoprotein receptor (ASGP-R) of HepG2 cells. The size of micellar nanoparticles was about 70nm in diameter, and nanoparticles were negatively charged in aqueous solution. Through recognition between galactose ligands with ASGP-R of HepG2 cells, cell surface binding and internalization of galactosamine-conjugated micelles were significantly promoted, which were demonstrated by flow cytometric analyses using rhodamine 123 fluorescent dye. Paclitaxel-loaded micelles with galactose ligands exhibited comparable activity to free paclitaxel in inhibiting HepG2 cell proliferation, in contrast to the poor inhibition activity of micelles without galactose ligands particularly at lower paclitaxel doses. In addition, population of HepG2 cells arrested in G2/M phase was in positive response to paclitaxel dose when cells were incubated with paclitaxel-loaded micelles with galactosamine conjugation, which was against the performance of micelles without galactose ligand, owing to the ligand–receptor interaction. The surface functionalized micellar system is promising for specific anticancer drug transportation and intracellular drug release.  相似文献   

12.
Polymeric micellar pH-sensitive drug delivery system for doxorubicin.   总被引:6,自引:0,他引:6  
A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.  相似文献   

13.
Aqueous self-assembly of amphiphilic block copolymers is studied extensively for biomedical applications like drug delivery and nanoreactors. The commonly used hydrophilic block poly(ethylene oxide) (PEO), however, suffers from several drawbacks. As a potent alternative, poly(glycidol) (PG) has gained increasing interest, benefiting from its easy synthesis, high biocompatibility and flexibility as well as enhanced functionality compared to PEO. In this study, we present a quick and well-controlled synthesis of poly(butylene oxide)-block-poly(glycidol) (PBO-b-PG) amphiphilic diblock copolymers together with a straight-forward self-assembly protocol. Depending on the hydrophilic mass fraction of the copolymer, nanoscopic micelles, worms and polymersomes were formed as well as microscopic giant unilamellar vesicles. The particles were analysed regarding their size and shape, using dynamic and static light scattering, TEM and Cryo-TEM imaging as well as confocal laser scanning microscopy. We have discovered a strong dependence of the formed morphology on the self-assembly method and show that only solvent exchange leads to the formation of homogenous phases. Thus, a variety of different structures can be obtained from a highly flexible copolymer, justifying a potential use in biomedical applications.

Improved synthesis and well controlled self-assembly of PBO-b-PG amphiphilic diblock copolymers led to homogenous phases of micelles, worms and vesicles.  相似文献   

14.
Polymeric micelles based on amphiphilic block copolymers of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(epsilon -caprolactone) (PCL) were prepared in an aqueous phase. The loading of paclitaxel into PEtOz-PCL micelles was confirmed by 1H-NMR spectra. Paclitaxel was efficiently loaded into PEtOz-PCL micelles using dialysis method, and the loading content of paclitaxel in micelles was in the range 0.5-7.6 wt.% depending on the block composition of block copolymers, organic solvent used in the dialysis, and feed weight ratio of paclitaxel to block copolymer. The higher the content of hydrophobic block in the block copolymers, the higher the loading efficiency of micelles for paclitaxel. When acetonitrile was used as solvent, a higher drug loading efficiency was obtained than with THF. The loading efficiency decreased with increasing feed weight ratio of paclitaxel to block copolymer from 0.1:1 to 0.2:1. The hydrodynamic diameters of paclitaxel-loaded micelles were in the range 18.3-23.4 nm with narrow size distribution. The hemolysis test of PEtOz-PCL performed in vitro indicated that the toxicity of PEtOz-PCLs to lipid membrane was not significant compared with Tween 80, and was comparable to that observed with Cremophore EL. The proliferation inhibition activity of paclitaxel-loaded micelles for KB human epidermoid carcinoma cells was also evaluated in vitro. Paclitaxel-entrapped polymeric micelles exhibited comparable activity to that observed with Cremophore EL-based paclitaxel formulations in inhibiting the growth of KB cells.  相似文献   

15.
We designed thermo-responsive and biodegradable polymeric micelles for an ideal drug delivery system whose target sites are where external stimuli selectively release drugs from the polymeric micelles. The thermo-responsive micelles formed from block copolymers that were composed both of a hydrophobic block and a thermo-responsive block. Poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) showing a lower critical solution temperature (LCST) around 40 degrees C was synthesized for the thermo-responsive block, while biodegradable poly(D,L-lactide), poly(epsilon-caprolactone), or poly(D,L-lactide-co-epsilon-caprolactone) was used for the hydrophobic block. By changing both the block lengths of the poly(D,L-lactide)-containing block copolymers, physical parameters such as micelle diameter and critical micelle concentration were varied. On the other hand, the choice of the hydrophobic block was revealed to be critical in relation to both on the thermo-responsive release of the incorporated anti-cancer drug, doxorubicin, and the temperature-dependent change of the hydrophobicity of the micelles' inner core. One polymeric micelle composition successfully exhibited rapid and thermo-responsive drug release while possessing a biodegradable character.  相似文献   

16.
Some biodegradable amphiphilic copolymers were synthesized by conjugating poly(DL-lactic acid) (PLA) onto ethylenediamino or diethylenetriamino bridged bis(beta-cyclodextrin)s (bis-CDs). Double emulsion (DE) and nanoprecipitation (NP) methods were used to fabricate the nanoparticles of these copolymers entrapping bovine serum albumin (BSA) as a model protein. Effects of the experimental parameters, such as copolymer composition, BSA concentration, copolymer concentration and poly(vinyl alcohol) concentration, on particular size and encapsulation efficiency (EE) were investigated. Their EE to BSA could reach 83.5% at an optimized condition owing to the cooperative binding effect of the CD moiety with BSA. The core-corona structure of copolymer micelles fabricated from the nanoprecipitation was studied on the basis of 1H NMR and other measurements at various temperatures. The results showed that the core-corona structure kept stable below 50 degrees C (lower than Tg). And increase of the micelle association number occurred above the Tg because the size of the NPs became larger and proton signals of the liquid-like PLA cores could be observed in 1H NMR in D2O at 60 degrees C. The release profiles of NPs showed a burst effect followed by a continuous release. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, circular dichroic and fluorescence spectra were further used to identify the stability of BSA released from the NPs. The nanoparticles from the conjugates have a promising potential in nasal delivery system.  相似文献   

17.
背景:高分子纳米胶束是近几年正在发展的一类新型药物载体,其载药范围广、结构稳定、具有优良的组织渗透性,体内滞留时间长,能使药物有效地到达靶点.而使其带有智能靶向性以及减弱其初期爆发释放行为成为了最近研究的热点.目的:得到一种低临界溶液浓度在40℃左右的智能靶向药物载体,可以通过对温度的改变而改变其药物释放行为,并进一步通过核交联改善胶束的稳定性以及其药物释放行为.方法:通过N-异丙基丙烯酰胺(NIPAAm)和N,N-二甲基丙烯酰胺(DMAAm)的自由基共聚,合成端羟基聚(N-异丙基丙烯酰胺-co-N,N-二甲基丙烯酰胺)(P(NIPAAm-co-DMAAm)).通过调节巯基乙醇和单体的比例,以及NIPAA m和DMAAm的比例,调节P(NIPAAm-co-DMAAm)的相对分子质量和低临界溶液温度.然后在异辛酸亚锡的催化下,利用P(NIPAAm-co-DMAAm)端羟基引发己内酯开环聚合,得到端羟基P(NIPAAm-co-DMAA m)-b-PCL两亲性嵌段共聚物.该嵌段共聚物再与丙烯酰氯反应得到末端带有不饱和双键的两亲性嵌段共聚物.用透析法制备具有不同核交联程度的纳米载药胶束,并对其释放行为进行研究.结果与结论:得到了温敏段相对分子质量为3 600、PCL段相对分子质量为1600的两亲性嵌段共聚物,其低临界溶液浓度为42℃.采用不同比例端羟基和端羧基P(NIPAAm-co-DMAAm)-b-PCL混合,制备得到具有不同核交联程度的温敏性纳米载药胶束.胶束的药物释放速度在43℃快于37℃,随着核交联程度的增高,紫杉醇的释放速度变慢.结果提示以低临界溶液浓度在40℃左右的温敏性P(NIPAAm-co-DMAAm)-b-PCL所制备的胶束,具有一定的温敏控制释放行为,药物释放速度可进一步通过核交联程度来控制.  相似文献   

18.
Polymeric micelles of varying size in the range of 20 to 100 nm entrapping an antitumor drug, cis-dichlorodiammineplatinum(II) (cisplatin, CDDP), were prepared through the polymer-metal complex formation of CDDP with a mixture of poly(ethylene glycol)-poly(alpha,beta-aspartic acid) block copolymer (PEG-P(Asp)) and poly(alpha,beta-aspartic acid) homopolymer (P(Asp)) with the different feed ratio in distilled water. An increased ratio of P(Asp) to PEG-P(Asp) led to an increase in the micellar size in a controllable manner as well as prolongation in the induction period of the micellar decay accompanied by a sustained release of CDDP in physiological saline at 37 degrees C. All of the CDDP-loaded micelles with a different incorporation ratio of P(Asp) exhibited appreciable in vitro cytotoxicity due to CDDP release from the micelles by prolonged incubation. These CDDP-loaded micelles are expected to have potential utility in tumor-directed delivery system of CDDP through the modulated in vivo biodisposition based on the EPR effect.  相似文献   

19.
Polymeric micelles have great potential in drug delivery systems because of their multifunctional adjustability, excellent stability, and biocompatibility. To further increase the drug loading efficiency and controlled release ability, a pH-responsive hyperbranched copolymer methoxy poly(ethylene glycol)-b-polyethyleneimine-poly(Nε-Cbz-l-lysine) (MPEG-PEI-PBLL) was synthesized successfully. MPEG-PEI-NH2 was synthesized to initiate the ring-opening polymerization of benzyloxycarbonyl substituted lysine N-carboxyanhydride (Z-lys NCA). The introduction of Schiff bases in the polymer make it possible to respond to the variation of pH values, which cleaved at pH 5.0 while stable at pH 7.4. As the polymer was amphiphilic, MPEG-PEI-PBLL could self-assemble into micelles. Owing to the introduction of PEI, which make the copolymer hyperbranched, the pH-responsive micelles could efficiently encapsulate theranostic agents, such as doxorubicin (DOX) for chemotherapy and NIRF dye DiD for in vivo near-infrared (NIR) imaging. The drug delivery system prolonged the drug circulation time in blood and allowed the drug accumulate effectively at the tumor site. Following the guidance, the DOX was applied in chemotherapy to achieve cancer therapeutic efficiency. All the results demonstrate that the polymer micelles have great potential for cancer theranostics.

Polymeric micelles have great potential in drug delivery systems because of their multifunctional adjustability, excellent stability, and biocompatibility.  相似文献   

20.
Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w%) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号