首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A pathological hallmark of Alzheimer's disease is the senile plaque, composed of beta-amyloid fibrils, microglia, astrocytes, and dystrophic neurites. We reported previously that class A scavenger receptors mediate adhesion of microglia and macrophages to beta-amyloid fibrils and oxidized low-density lipoprotein (oxLDL)-coated surfaces. We also showed that CD36, a class B scavenger receptor and an oxLDL receptor, promotes H(2)O(2) secretion by macrophages adherent to oxLDL-coated surfaces. Whether CD36 is expressed on microglia, and whether it plays a role in secretion of H(2)O(2) by microglia interacting with fibrillar beta-amyloid is not known. Using fluorescence-activated cell sorting analysis and immunohistochemistry, we found that CD36 is expressed on human fetal microglia, and N9-immortalized mouse microglia. We also found that CD36 is expressed on microglia and on vascular endothelial cells in the brains of Alzheimer's disease patients. Bowes human melanoma cells, which normally do not express CD36, gained the ability to specifically bind to surfaces coated with fibrillar beta-amyloid when transfected with a cDNA encoding human CD36, suggesting that CD36 is a receptor for fibrillar beta-amyloid. Furthermore, two different monoclonal antibodies to CD36 inhibited H(2)O(2) production by N9 microglia and human macrophages adherent to fibrillar beta-amyloid by approximately 50%. Our data identify a role for CD36 in fibrillar beta-amyloid-induced H(2)O(2) production by microglia, and imply that CD36 can mediate binding to fibrillar beta-amyloid. We propose that similar to their role in the interaction of macrophages with oxLDL, class A scavenger receptors and CD36 play complimentary roles in the interactions of microglia with fibrillar beta-amyloid.  相似文献   

3.
4.
5.
Chemokines belong to an expanding family of cytokines the primary function of which is recruitment of leukocytes to inflammatory sites. Recent evidence has shown their presence in the central nervous system. Because inflammatory responses have been implicated in the pathogenesis of Alzheimer’s disease (AD), we studied the expression of CCR3, CCR5, and their ligands in normal and AD brains by immunohistochemistry. CCR3 and CCR5 are present on microglia of both control and AD brains, with increased expression on some reactive microglia in AD. Immunohistochemistry for MIP-1β, MIP-1α, RANTES, eotaxin, and MCP-3 (ligands for CCR5 and/or CCR3) revealed the presence of MIP-1β predominantly in a subpopulation of reactive astrocytes, which were more widespread in AD than control brains, and MIP-1α predominantly in neurons and weakly in some microglia in both AD and controls. Many of the CCR3+ or CCR5+ reactive microglia and MIP-1β+ reactive astrocytes were found associated with amyloid deposits. Immunoreactivity for eotaxin, RANTES, and MCP-3 were not detected. Detection of these β-chemokine receptors on microglia and some of their ligands in reactive astrocytes and neurons as well as microglia suggests a role for this system in glial-glial and glial-neuronal interactions, potentially influencing the progression of AD.  相似文献   

6.
The 18 kDa translocator protein (TSPO) is a widely used target for microglial PET imaging radioligands, but its expression in post‐mortem normal and diseased human brain is not well described. We aimed at characterizing the TSPO expression in human control (CTRL) and Alzheimer's disease (AD) brains. Specifically, we sought to: (1) define the cell type(s) expressing TSPO; (2) compare tspo mRNA and TSPO levels between AD and CTRL brains; (3) correlate TSPO levels with quantitative neuropathological measures of reactive glia and AD neuropathological changes; and (4) investigate the effects of the TSPO rs6971 SNP on tspo mRNA and TSPO levels, glial responses and AD neuropathological changes. We performed quantitative immunohistochemistry and Western blot in post‐mortem brain samples from CTRL and AD subjects, as well as analysis of publicly available mouse and human brain RNA‐Seq datasets. We found that: (1) TSPO is expressed not just in microglia, but also in astrocytes, endothelial cells and vascular smooth muscle cells; (2) there is substantial overlap of tspo mRNA and TSPO levels between AD and CTRL subjects and in TSPO levels between temporal neocortex and white matter in both groups; (3) TSPO cortical burden does not correlate with the burden of activated microglia or reactive astrocytes, Aβ plaques or neurofibrillary tangles, or the cortical thickness; (4) the TSPO rs6971 SNP does not significantly impact tspo mRNA or TSPO levels, the magnitude of glial responses, the cortical thickness, or the burden of AD neuropathological changes. These results could inform ongoing efforts toward the development of reactive glia‐specific PET radioligands.  相似文献   

7.
目的 确定脑内小胶质细胞是否表达甘露糖受体,以及在不同脑区甘露糖受体的表达是否存在差异,以进一步明确小胶质细胞的功能.方法 C57小鼠26只,分为侧脑室炎症模型组(10只)、全身炎症模型组(6只)和正常对照组(10只).通过注射细菌脂多糖(LPS)建立全脑急性炎症模型,用免疫荧光双标技术对小鼠脑组织冷冻切片进行染色,激...  相似文献   

8.

Background  

Aβ deposits in the brains of patients with Alzheimer's disease (AD) are closely associated with innate immune responses such as activated microglia and increased cytokines. Accumulating evidence supports the hypothesis that innate immune/inflammatory responses play a pivotal role in the pathogenesis of AD: either beneficial or harmful effects on the AD progression. The molecular mechanisms by which the innate immune system modulates the AD progression are not well understood. Toll-like receptors (TLRs) are first-line molecules for initiating the innate immune responses. When activated through TLR signaling, microglia respond to pathogens and damaged host cells by secreting chemokines and cytokines and express the co-stimulatory molecules needed for protective immune responses to pathogens and efficient clearance of damaged tissues. We previously demonstrated that an AD mouse model homozygous for a destructive mutation of TLR4 has increases in diffuse and fibrillar Aβ deposits as well as buffer-soluble and insoluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model. Here, we investigated the roles of TLR4 in Aβ-induced upregulation of cytokines and chemokines, Aβ-induced activation of microglia and astrocytes and Aβ-induced immigration of leukocytes.  相似文献   

9.
Glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.  相似文献   

10.
Tryptophan metabolism by the kynurenine pathway (KP) is important to the pathogenesis of inflammatory, infectious, and degenerative diseases. The 3-hydroxykynurenine (3-HK) branch of the KP is activated in macrophages and microglia, leading to the generation of 3-HK, 3-hydroxyanthranilic acid (3-HAA), and quinolinic acid, which are considered neurotoxic owing to their free radical-generating and N-methyl-d-aspartic acid receptor agonist activities. We investigated the role of 3-HAA in inflammatory and antioxidant gene expression and neurotoxicity in primary human fetal central nervous system cultures treated with cytokines (IL-1 with or without interferon-γ) or with Toll-like receptor ligands mimicking the proinflammatory central nervous system environment. Results were analyzed by microarray, Western blot, immunostain, enzyme-linked immunosorbent assay, and neurotoxicity assays. 3-HAA suppressed glial cytokine and chemokine expression and reduced cytokine-induced neuronal death. 3-HK also suppressed cytokine-induced neuronal death. Unexpectedly, 3-HAA was highly effective in inducing in astrocytes the expression of hemeoxygenase-1 (HO-1), an antioxidant enzyme with anti-inflammatory and cytoprotective properties. Optimal induction of HO-1 required 3-HAA and cytokines. In human microglia, 3-HAA weakly induced HO-1 and lipopolysaccharide suppressed microglial HO-1 expression. 3-HAA-mediated HO-1 expression was confirmed in cultured adult human astrocytes and in vivo after 3-HAA injection to mouse brains. Together, our results demonstrate the novel neuroprotective activity of the tryptophan metabolite 3-HAA and have implications for future therapeutic approaches for neuroinflammatory disorders.  相似文献   

11.
Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to the hippocampus and subventricular zone in vivo. Identification of the molecular cues that modulate NSPC fate choice is a prerequisite for their therapeutic applications. Previously, we demonstrated that primary astrocytes isolated from regions with higher neuroplasticity, such as newborn and adult hippocampus and newborn spinal cord, promoted neuronal differentiation of adult NSPCs, whereas astrocytes isolated from the nonneurogenic region of the adult spinal cord inhibited neural differentiation. To identify the factors expressed by these astrocytes that could modulate NSPC differentiation, we performed gene expression profiling analysis using Affymetrix rat genome arrays. Our results demonstrated that these astrocytes had distinct gene expression profiles. We further tested the functional effects of candidate factors that were differentially expressed in neurogenesis-promoting and -inhibiting astrocytes using in vitro NSPC differentiation assays. Our results indicated that two interleukins, IL-1beta and IL-6, and a combination of factors that included these two interleukins could promote NSPC neuronal differentiation, whereas insulin-like growth factor binding protein 6 (IGFBP6) and decorin inhibited neuronal differentiation of adult NSPCs. Our results have provided further evidence to support the ongoing hypothesis that, in adult mammalian brains, astrocytes play critical roles in modulating NSPC differentiation. The finding that cytokines and chemokines expressed by astrocytes could promote NSPC neuronal differentiation may help us to understand how injuries induce neurogenesis in adult brains.  相似文献   

12.
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to certain neuronal populations. Since persistent BDV infection of neurons is nonlytic in vitro, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brains remain unclear. Our previous studies have shown that activation of microglia by BDV in culture requires the presence of astrocytes as neither the virus nor BDV-infected neurons alone activate microglia. Here, we evaluated the mechanisms whereby astrocytes can contribute to activation of microglia in neuron-glia-microglia mixed cultures. We found that persistent infection of neuronal cells leads to activation of uninfected astrocytes as measured by elevated expression of RANTES. Activation of astrocytes then produces activation of microglia as evidenced by increased formation of round-shaped, MHCI-, MHCII- and IL-6-positive microglia cells. Our analysis of possible molecular mechanisms of activation of astrocytes and/or microglia in culture indicates that the mediators of activation may be soluble heat-resistant, low molecular weight factors. The findings indicate that astrocytes may mediate activation of microglia by BDV-infected neurons. The data are consistent with the hypothesis that microglia activation in the absence of neuronal damage may represent initial steps in the gradual neurodegeneration observed in brains of neonatally BDV-infected rats.  相似文献   

13.
Y Matsumoto  K Ohmori    M Fujiwara 《Immunology》1992,76(2):209-216
The antigen-presenting capability of various types of brain cell, such as primary mixed glial cells, astrocytes and microglia, was examined under conditions in which Ia antigen expression on the cultured cells mimicked that in the central nervous system (CNS) of rats with experimental autoimmune encephalomyelitis (EAE). In the CNS of rats with EAE, microglia but not astrocytes express Ia antigens. To produce such conditions, cultured brain cells were treated with various concentrations of interferon-gamma (IFN-gamma). It was revealed that in vivo-like conditions were produced when cultured brain cells were treated with less than 100 U/ml IFN-gamma. Under such conditions, microglia presented an antigen, myelin basic protein (MBP), to MBP-specific T-cell lines. Astrocytes, on the other hand, did not show antigen-presenting ability, but rather suppressed T-cell proliferation. Primary mixed glial cells, mainly comprising astrocytes and microglia, were also weak antigen-presenting cells (APC). These findings suggest that brain cells comprising various types of cell with regard to APC function do not up-regulate the proliferation of encephalitogenic T cells in vivo, although a particular type of brain cell, i.e. microglia, show antigen-presenting capability.  相似文献   

14.
目的 探讨阿尔茨海默病(Alzheimer’sdisease,AD)患者脑组织和高表达β淀粉样蛋白前质蛋白(APP)转基因小鼠脑组织中α7尼古丁受体亚型的改变,以及β淀粉样蛋白(Aβ)对体外培养的星形胶质细胞和神经细胞中α7尼古丁受体亚型蛋白表达的影响。方法 选取尸解后AD患者脑组织和高表达APP转基因小鼠脑组织,用免疫组织化学方法(ABC法)检测人脑组织中胶质细胞和神经细胞α7尼古丁受体的表达,用Westernblot方法测定小鼠脑组织中α7尼古丁受体蛋白含量;体外培养星形胶质细胞和神经细胞,用不同浓度的A1325-35进行处理,然后用Westernblot方法测定细胞中α7尼古丁受体蛋白水平。结果 AD患者脑组织中星形胶质细胞数量增多,并密集于老年斑周围;AD患者脑组织表达d7尼古丁受体的星形胶质细胞增多,而表达α7尼古丁受体的神经元减少;高表达APP转基因小鼠脑组织中胡尼古丁受体蛋白水平升高49%;用不同浓度的Aβ25-35处理培养细胞后,星形胶质细胞中胡尼古丁受体蛋白水平增高(达38%),而神经细胞中胡尼古丁受体蛋白水平减少可达32%。结论 神经元α7尼古丁受体减少可能与AD患者智力障碍的发生有关,而过多Aβ刺激星形胶质细胞后所引起的胶质细胞胡尼古丁受体表达增多则可能是一种神经保护性代偿方式。  相似文献   

15.
目的:探讨胶质细胞感染流感病毒后的天然免疫反应,检测流感病毒H1N1和H5N1体外感染小鼠小胶质细胞和星形胶质细胞,是否会诱导胶质细胞趋化因子转录水平的变化及其规律.方法:从新生小鼠大脑皮质分离培养神经胶质细胞,并进一步纯化小胶质细胞和星形胶质细胞,经纯度鉴定后,用感染复数为2的流感病毒H1N1和H5N1进行体外感染,8小时后用免疫荧光检测流感病毒核蛋白(NP)的表达,以确认感染细胞比例.在感染早期(6小时)和感染中期(24小时)分别提取细胞RNA,检测趋化因子转录水平的变化.结果:分离得到小鼠的小胶质细胞和星形胶质细胞,病毒感染后超过95%的细胞可以被感染,感染后的小胶质细胞与星形胶质细胞的CCI-3、CCL-5、CXCL-2、CXCL-9和CXCL-10的转录水平发生不同程度的上调,其中CXCL-10的上调幅度最为明显,禽流感病毒H5N1感染能诱导更强烈的上调反应.结论:流感病毒H1N1和H5N1感染小鼠小胶质细胞与星形胶质细胞,可诱导趋化因子转录水平上调.  相似文献   

16.
Three cDNA homologues of carbonic anhydrase with unknown biological functions have been reported: carbonic anhydrase-related proteins (CA-RP) VIII, X, and XI. In the present study, we produced monoclonal antibodies to these CA-RPs and studied their regional and cellular distributions in the human adult and fetal brains by immunohistochemical analysis. In the adult brain, CA-RP VIII was expressed in the neural cell body spreading to most parts of the brain. CA-RP X was expressed in the myelin sheath and its expression was shown in the cytoplasm of cultured tumor cells by immunocytochemical analysis. CA-RP XI was expressed in the neural cell body, neurites, and astrocytes in relatively limited regions of the brain. In the fetal brain, CA-RP VIII and XI were expressed in the neuroprogenitor cells in the subventricular zone as early as the 84th day of gestation and subsequently detected in the neural cells migrating to the cortex. CA-RP X first appeared in the neural cells in the cortex at the 141st day. In the choroid plexus, the epithelial cells gave CA-RP VIII and XI expressions in both adult and fetal brains.From the findings in the present study on the distribution and the developmental expression of CA-RP VIII, X, and XI in the human brain we suggest that these CA-RPs play roles in various biological process of the CNS.  相似文献   

17.
Neurocan is one of the major chondroitin sulfate proteoglycans expressed in nervous tissues. The expression of neurocan is developmentally regulated, and full-length neurocan is detected in juvenile brains but not in adult brains. In the present study, we demonstrated by western blot analysis that full-length neurocan transiently appeared in adult rat hippocampus when it was lesioned by kainate-induced seizures. Immunohistochemical studies showed that neurocan was detected mainly around the CA1 region although the seizure resulted in neuronal cell degeneration in both the CA1 and CA3 regions of the hippocampus. Double-labeling for neurocan mRNA and glial fibrillary acidic protein demonstrated that many reactive astrocytes expressed neurocan mRNA. The re-expression of full-length neurocan was also observed in the surgically injured adult rat brain. In contrast, the expression of other nervous tissue chondroitin sulfate proteoglycans, such as phosphacan and neuroglycan C, was not intensified but rather was either reduced in the kainate-lesioned hippocampus or in the surgically injured cerebral cortex. These observations indicate that induction of neurocan expression by reactive astrocytes is a common phenomenon in the repair process of adult brain injury, and therefore, it can be postulated that juvenile-type neurocan plays some roles in brain repair.  相似文献   

18.
BACKGROUND: Recent data indicate that matrix proteins such as matrix Gla protein (MGP) and osteonectin (ON) influence not only mineralization of vasculature but smooth muscle cell (SMC) differentiation. METHODS: We examined whether MGP and ON are expressed by human aortic SMCs in vivo using Northern blotting, in situ hybridization and immunohistochemistry. RESULTS: MGP and ON mRNAs were strongly expressed in the aorta without atherosclerosis from newborn and four young subjects up to 10 years old. In the aorta from 15 adult cases, MGP and ON mRNAs were decreased as atherosclerosis developed. We determined cell type and distribution of the MGP- and ON mRNA-expressing cells by in situ hybridization and immunohistochemistry. In the aorta obtained from newborn and young subjects, SMCs in the media and thin intima expressed MGP mRNA and, to a lesser extent, ON mRNA. In the adult aorta with fibrous thickening, MGP mRNA was expressed by intimal SMCs and subpopulation of medial SMCs. Osteonectin mRNA was expressed mainly by intimal SMCs and few medial SMCs. Double immunohistochemical staining revealed that both MGP- and ON protein-expressing cells were positive for anti-alpha-smooth muscle actin antibody, aortic SMCs. CONCLUSIONS: These results suggested that MGP and ON expression by aortic SMCs might be regulated by the degree of atherosclerosis and SMC differentiation in human aorta.  相似文献   

19.
In this study we showed that the virulent Moscow strain of Ectromelia virus (ECTV-MOS) infection leads to induction of apoptosis in the BALB/c mouse central nervous system. ECTV-MOS-infected cells and inflammation sites were found in brain parenchyma between 5 and 15 days after footpad infection with ECTV-MOS. Infected cells consisted of microglia and monocytes, astrocytes and oligodendrocytes and these type of cells underwent apoptosis within 5-15 days post infection (d.p.i.). The highest number of apoptotic cells was found at 5 and 10 d.p.i. and represented mainly microglia (61.4% and 38.6% of apoptotic cells, respectively) and astrocytes (21% and 8.9%, respectively). The number of apoptotic oligodendrocytes was 5.4% and 4.5%, respectively. Fluorometric assays demonstrated involvement of caspase-1, -3 and -8 but not caspase-9 in apoptosis in ECTV-MOS-infected mouse brains. Expression of Fas/FasL was significantly increased on ECTV-MOS-infected cells between 5 and 15 d.p.i., whereas Fas was up-regulated also on the surrounding, non-infected cells. Taking together we may conclude that ECTV-MOS infection of microglia and astrocytes leads to local inflammation resulting in Fas/FasL up-regulation and apoptosis, which limits mouse central nervous system infection with ECTV-MOS.  相似文献   

20.
Amyloid‐β (Aβ) plaques are pathological hallmarks of Alzheimer disease (AD). In addition, innate inflammatory responses, such as those mediated by microglia, are integral to the pathogenesis of AD. Interestingly, only dense‐core plaques and not diffuse plaques are associated with neuritic and inflammatory pathology in AD patients as well as in mouse AD models. However, the precise neuropathological changes that occur in the brain in response to amyloid deposition are largely unknown. To study the molecular mechanism(s) responsible for Aβ‐mediated neuropathology, we performed a gene expression analysis on laser‐microdissected brain tissue of Tg2576 and APPPS1 mice that are characterized by different types of amyloid plaques and genetic backgrounds. Data were validated by image and biochemical analyses on different ages of Tg2576, APPPS1, and Aβ42‐depositing BRI‐Aβ42 mice. Consistent with an important role of inflammatory responses in AD, we identified progranulin (mouse Grn; human GRN) as one of the top ten up‐regulated molecules in Tg2576 (≈8‐fold increased) and APPPS1 (≈2‐fold increased) mice compared to littermate controls, and among the eight significantly up‐regulated molecules common to both mouse models. In addition, Grn levels correlated significantly with amyloid load, especially the dense‐core plaque pathology (p < 0.001). We further showed that Grn is up‐regulated in microglia and neurons and neurites around dense‐core plaques, but not in astrocytes or oligodendrocytes, as has been shown in AD patients. Our data therefore support the ongoing use of these mouse models in drug trials, especially those with anti‐inflammatory compounds. Moreover, the correlation of Grn with increasing disease severity in AD mouse models prompts human studies exploring the viability of GRN as a disease biomarker. Because loss of GRN has recently been shown to cause frontotemporal dementia and serves as a risk factor for AD, the strong GRN reactivity around dense‐core plaques is consistent with an important role of this factor in AD pathogenesis. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号