首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to investigate comparatively the frequency of apoptosis in lung epithelial cells after intratracheal instillation of endotoxin [lipopolysaccharide (LPS)] in rats and the role of tumor necrosis factor alpha (TNF-alpha) on apoptosis, and the effects of erdosteine and N-acetylcysteine on the regulation of apoptosis. Female Wistar rats were given oral erdosteine (10-500 mg kg(-1)) or N-acetylcysteine (10-500 mg kg(-1)) once a day for 3 consecutive days. Then the rats were intratracheally instilled with LPS (5 mg kg(-1)) to induce acute lung injury. The rats were killed at 24 h after LPS administration. Lung tissue samples were stained with hematoxylin-eosin for histopathological assessments. The apoptosis level in the lung bronchial and bronchiolar epithelium was determined using the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick endlabelling) method. Cytoplasmic TNF-alpha was evaluated by immunohistochemistry. Pretreatment with erdosteine and pretreatment with N-acetylcysteine at a dose of 10 mg kg(-1) had no protective effect on LPS-induced lung injury. When the doses of drugs increased, the severity of the lung damage caused by LPS decreased. It was found that as the pretreatment dose of erdosteine was increased, the rate of apoptosis induced by LPS in lung epithelial cells decreased and this decrease was statistically significant in doses of 300 mg kg(-1) and 500 mg kg(-1). Pretreatment with N-acetylcysteine up to a dose of 500 mg kg(-1) did not show any significant effect on apoptosis regulation. It was noticed that both antioxidants had no significant effect on the local production level of TNF-alpha. These findings suggest that erdosteine could be a possible therapeutic agent for acute lethal lung injury and its mortality.  相似文献   

2.
Endotoxin shock was induced in male rats by an intravenous (i.v.) injection of Salmonella enteriditis lipopolysaccharide (LPS; 20 mg/kg i.v.). Survival rate, macrophage and serum tumor necrosis factor (TNF-alpha), mean arterial blood pressure (MAP) and white blood cell count were then evaluated. Furthermore the in vitro effect of cloricromene on peritoneal macrophage phagocytosis and TNF-alpha release by primed peritoneal macrophages was investigated. LPS administration caused animal death (0% survival 24 h after endotoxin challenge), hypotension, marked leukopenia and increased the levels of TNF-alpha in both serum and macrophage supernatants. Cloricromene administration (0.5, 1 and 2 mg/kg i.v. 15 min after endotoxin) protected against LPS-induced lethality (100% survival rate 24 h after endotoxin challenge), reverted LPS-induced hypotension and leukopenia, and decreased TNF-alpha in both serum and macrophage supernatants. Finally, cloricromene, added in vitro to peritoneal macrophages collected from endotoxin-treated rats increased macrophage phagocytosis and reduced TNF-alpha formation by activated mononuclear phagocytes. Our data suggest that cloricromene increases survival rate in endotoxin shock through an inhibition of TNF-alpha production.  相似文献   

3.
1. Lysophosphatidylcholine (LPC) modulates the inflammatory response and reduces mortality in animal models of sepsis. Here, we investigate the effects of LPC from synthetic (sLPC) and natural, soy bean derived LPC, (nLPC) sources on the organ injury/dysfunction caused by systemic administration of lipopolysaccharide (LPS) or peptidoglycan (PepG) and lipoteichoic acid (LTA). 2. Rats were subjected to (i) endotoxaemia (LPS 6 mg kg(-1) i.v.) and treated with sLPC (1-100 mg kg(-1)), (ii) endotoxaemia and treated with nLPC (10 mg kg(-1)) or (iii) gram-positive shock (PepG 10 mg kg(-1) and LTA 3 mg kg(-1) i.v.) and treated with sLPC (10 mg kg(-1)). 3. Endotoxaemia or gram-positive shock for 6 h resulted in increases in serum makers of renal dysfunction and liver, pancreatic and neuromuscular injury. 4. Administration of sLPC, at 1 or 2 h after LPS, dose dependently (1-10 mg kg(-1)) reduced the organ injury/dysfunction. High doses of sLPC (30 and 100 mg kg(-1)) were shown to be detrimental in endotoxaemia. sLPC also afforded protection against the organ injury/dysfunction caused by gram-positive shock. nLPC was found to be protective in endotoxaemic animals. 5. The beneficial effects of sLPC were associated with an attenuation in circulating levels of interleukin-1beta (IL-1beta). 6. In conclusion, LPC dose and time dependently reduces the organ injury and circulating IL-1beta levels caused by gram-negative or gram-positive shock in the rat. Thus, we speculate that appropriate doses of LPC may be useful in reducing the degree of organ injury and dysfunction associated with shock of various aetiologies.  相似文献   

4.
Effects of l-tetrahydroberberine-d-camphor sulfonate (THB-CS) on spontaneous EEG, arousal response and recruiting response were investigated in rabbits and rats in comparison with those of chlorpromazine. The spontaneous EEG recorded from the motor cortex and hippocampus showed a prominent resting pattern 3-5 min after intravenous administration of THB-CS in doses more than 0.01 mg/kg in rabbits and 30 min after oral administration of the drug in doses more than 1 mg/kg in rats. These effects lasted for 30-60 min after i.v. administration and 60-90 min after oral administration; however, the effects were not proportional to the doses up to 8 mg/kg (i.v.) and 12.5 mg/kg (p.o.). The abnormal characteristics of the EEG pattern such as seizure pattern and flattening were not observed. Chlorpromazine also produced the resting pattern in doses of 2 mg/kg (i.v.) in rabbits and 1 mg/kg (p.o.) in rats. THB-CS and chlorpromazine produced a slight elevation of threshold for the EEG arousal response elicited by high frequency stimulation of the midbrain reticular formation, but did not alter the recruiting response elicited by low frequency stimulation of the centromedian nucleus of the thalamus. These results suggest that the effects of THB-CS resemble those of chlorpromazine, but are different from those of barbiturates.  相似文献   

5.
AIM: To investigate the mechanism of immunological liver injury induced by bacille Calmette-Guerin (BCG) plus lipopolysaccharide (LPS). METHODS: Mice were injected via the tail vein with 125 mg/kg BCG, and 12 d later, the mice were injected intravenously with different doses of LPS (125, 250, or 375 microg/kg). Serum alanine aminotransferase (ALT) activity and liver pathological changes were examined. The expression of tumor necrosis factor (TNF)- alpha, interleukin (IL)-6, lipopolysaccharide binding protein (LBP) and CD14 mRNA, and NF-kappaB and IkappaB-alpha protein in mouse liver at different time points after BCG and LPS injection were measured using RT-PCR, immunohistochemistry and Western blotting analysis, respectively. RESULTS: The activity of serum ALT in mice treated with BCG and LPS was significantly increased. Different degrees of liver injury, such as inflammatory cell infiltration, spotty necrosis, piecemeal necrosis, even bridging necrosis, could be seen in liver sections from mice after BCG and LPS administration. Furthermore, the levels of TNF-alpha and IL-6 mRNA in mouse liver were significantly elevated after administration of BCG plus LPS (P<0.05). The levels of LBP and CD14 mRNA in mouse liver were markedly upregulated after treatment with BCG and LPS, and treatment with BCG alone led to an increase in CD14 mRNA in mouse liver. Finally, immunoreactivity for NF-kappaB p65 was predominantly detected in hepatocyte nuclei from mice treated with BCG plus LPS, compared with the normal group. Protein levels of IkappaB-alpha were strikingly decreased by LPS or BCG plus LPS treatment, compared with the normal group or BCG group. CONCLUSION: TNF-alpha and IL-6 mRNA were partially involved in early immunological liver injury induced by challenge with small doses of LPS after BCG priming. Upregulation of TNF-alpha and IL-6 mRNA might be related to increases in LBP and CD14 mRNA expression and activation of NF-kappaB. Furthermore, BCG priming in immunological liver injury may occur via upregulation of CD14 mRNA expression in mononuclear cell infiltration into the liver.  相似文献   

6.
Orthostatic hypotension was produced in urethane-anesthetized rabbit by a combination of chlorpromazine (0.1 mg/kg, i.v.) and 45 degrees head-up tilt. The effect of midodrine (1 and 3 mg/kg, i.d.) was investigated in comparison with amezinium (10 and 30 mg/kg, i.d.), etilefrine (10 and 30 mg/kg, i.d.) and droxidopa (30 and 100 mg/kg, i.d.). The higher doses of each drug significantly mitigated the chlorpromazine-induced orthostatic hypotension, while none of the lower doses caused a significant effect. The effect of midodrine developed most rapidly; a significant effect was observed 25 min after administration. The order of onset time was midodrine < etilefrine < amezinium < droxidopa. The effect of droxidopa was significant only at 130 to 160 min after administration. The amplitude of effect was in the following order; midodrine = droxidopa > or = etilefrine > amezinium. Midodrine (3 mg/kg, i.d.) mitigated orthostatic hypotension induced by prazosin (0.1 mg/kg, i.v.), but not by pentolinium (0.6 mg/kg, i.v.). It is suggested that midodrine competes with chlorpromazine at alpha1-adrenoceptors and subsequently recovers reflex vasoconstriction. Midodrine may be useful to protect patients with impaired baroreflex activity from accidental orthostatic hypotension during treatment with neuroleptics.  相似文献   

7.
Coexposure to small, noninjurious doses of the pyrrolizidine alkaloid phytotoxin monocrotaline (MCT) and bacterial lipopolysaccharide (LPS) results in synergistic hepatotoxicity. Both centrilobular and midzonal liver lesions occur and are similar to those seen from large, toxic doses of MCT and LPS, respectively. The nature of the lesions in vivo and results from studies in vitro suggest that injury is mediated indirectly rather than from a simple interaction of MCT and LPS with hepatic parenchymal cells. Accordingly, the role of inflammatory factors, such as Kupffer cells and TNF-alpha, in the development of MCT/LPS-induced liver injury was investigated. In Sprague-Dawley rats, MCT (100 mg/kg, i.p.) was administered 4 h before LPS (7.4 x 10(6) EU/kg, i.v.). Pretreatment of these animals with gadolinium chloride, an inhibitor of Kupffer cell function, attenuated liver injury 18 h after MCT administration. An increase in plasma TNF-alpha preceded the onset of hepatic parenchymal cell injury, raising the possibility that this inflammatory cytokine contributes to toxicity. Either pentoxifylline, an inhibitor of cellular TNF-alpha synthesis, or anti-TNF-alpha serum coadministered to MCT/LPS-treated animals significantly attenuated liver injury. These results suggest that Kupffer cells and TNF-alpha are important mediators in the synergistic hepatotoxicity resulting from MCT and LPS coexposure.  相似文献   

8.
Synergistic liver injury develops in Sprague-Dawley rats from administration of a small, noninjurious dose (7.4 x 10(6) EU/kg) of bacterial lipopolysaccharide (LPS) given 4 h after a nontoxic dose (100 mg/kg) of the pyrrolizidine alkaloid, monocrotaline (MCT). Previous studies demonstrated that liver injury is mediated through inflammatory factors, such as Kupffer cells and tumor necrosis factor alpha (TNF-alpha), rather than through simple interaction between MCT and LPS. In the present study, the hypothesis that neutrophils (polymorphonuclear leukocytes or PMNs) are causally involved in this injury model is tested, and the interdependence between PMNs and other inflammatory components is explored. Hepatic PMN accumulation and the appearance of cytokine-induced neutrophil chemoattractant-1 in plasma preceded the onset of liver injury, suggesting that PMNs contribute to toxicity. Hepatic PMN accumulation was partially dependent on TNF-alpha. Prior depletion of PMNs in MCT/LPS-cotreated animals resulted in attenuation of both hepatic parenchymal cell (HPC) and sinusoidal endothelial cell (SEC) injury at 18 h. PMN depletion did not, however, protect against early SEC injury that occurred before the onset of HPC injury at 6 h. This observation suggests that SEC injury is not entirely dependent on PMNs in this model. In vitro, MCT caused PMNs to degranulate in a concentration-dependent manner. These results provide evidence that PMNs are critical to the HPC injury caused by MCT/LPS cotreatment and contribute to the progression of SEC injury.  相似文献   

9.
Ginkgo biloba extract (GbE) was assessed in models of acute inflammation induced by carrageenan, formalin or capsaicin in the rat, in models of nociceptive pain, such as hot-plate (55 degrees C) latency, tail-electric stimulation assay and capsaicin-induced paw licking and in the model of acute gastric damage induced by indomethacin. The agent showed marked anti-inflammatory activity in the carrageenan model of paw oedema. When given subcutaneously (s.c.) (25 and 50 mg kg(-1)) 30 min before challenge, GbE inhibited paw oedema with a maximal effect of 43.7 and 56.9%, respectively, at 2h post-carrageenan. Significant inhibition of oedema was also observed when GbE (50 mg kg(-1), s.c.) was given 30 min after carrageenan challenge. The agent was also active p.o. in acute inflammation caused by carrageenan. The administration of GbE with indomethacin, rofecoxib, celecoxib, dexamethasone or melatonin resulted in an additive effect. GbE (50 mg kg(-1), s.c.) caused significant inhibition of formalin-induced paw oedema, but did not reduce the capsaicin-induced paw oedema. In tests of nociception, GbE (25, 50 or 100 mg kg(-1)) decreased in dose-dependent manner the capsaicin-induced hind paw licking time and was similarly effective in the hot-plate assay of nociception. In contrast, when assessed in the tail-electric stimulation test, GbE was only effective in the highest dose (100 mg kg(-1)). In pylorus-ligated rats, GbE (25 or 50 mg kg(-1)) increased gastric acid secretion, but reduced gastric mucosal damage caused by IND. Results suggest that GbE may be of clinical value as an anti-inflammatory and analgesic drug alone or in conjunction with NSAIDs.  相似文献   

10.
Adenosine 5'-triphosphate (ATP) has been shown to induce release of cytokines implicated in fever, including interleukin(IL)-1beta, IL-6, and tumour necrosis factor-alpha (TNF-alpha). The role of ATP-mediated purinergic signalling in fever and cytokine release during systemic inflammation was investigated by studying the effects of P2 receptor antagonists suramin, pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), and Brilliant Blue G (BBG) on changes in body temperature and the increases in plasma levels of IL-1beta, IL-6, and TNFalpha induced by bacterial lipopolysaccharide (LPS) in rats. LPS (Escherichia coli; 50 microg kg(-1))-induced febrile response was attenuated by suramin (25 mg kg(-1) and 100 mg kg(-1)), PPADS (25 mg kg(-1)), and a more selective P2X(7) receptor antagonist BBG (100 mg kg(-1)) injected intraperitoneally before the induction of fever. The increase in plasma concentrations of IL-1beta and IL-6, measured 1 h after LPS treatment, was reduced by PPADS (25 mg kg(-1)) and BBG (100 mg kg(-1)). LPS-induced increase in plasma TNF-alpha concentration was also markedly attenuated by BBG (100 mg kg(-1)), but not by PPADS (25 mg kg(-1)). These data indicate that purinergic signalling plays an important role in the mechanisms responsible for the LPS-induced febrile response and increases in the levels of circulating cytokines. We suggest that ATP acting via P2X(7) receptors induces release of pyrogenic cytokines to mediate fever during systemic inflammation.  相似文献   

11.
The effects of 1,8-cineole on D-galactosamine/lipopolysaccharide (GalN/LPS)-induced shock model of liver injury was investigated in mice. The co-administration of GalN (700 mg kg(-1), i.p.) and LPS (5 microg kg(-1), i.p.) greatly elevated serum concentrations of tumour necrosis factor-alpha (TNF-alpha), alanine aminotransferase and aspartate aminotransferase, and induced massive hepatic necrosis and lethality in 100% of control mice. Pretreatment with 1,8-cineole (400 mg kg(-1), p.o.) and dexamethasone (1 mg kg(-1), s.c.), 60 min before GalN/LPS, offered complete protection (100%) against the lethal shock and acute elevation in serum TNF-alpha and serum transaminases. Hepatic necrosis induced by GalN/LPS was also greatly reduced by both 1,8-cineole and dexamethasone treatment. The results indicate that 1,8-cineole protects mice against GalN/LPS-induced liver injury through the inhibition of TNF-alpha production, and suggest that 1,8-cineole may be a promising agent to combat septic-shock-associated pathologies.  相似文献   

12.
The present study was designed to investigate whether administration of CoPPIX, an HO-1 inducer, could significantly inhibit TNF-alpha and Hmgb1 expression and thus attenuate the acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. Acute lung injury was induced successfully by intratracheal administration of LPS (0.5 mg/kg) in male BALB/c mice. CoPPIX or ZnPPIX (an HO-1 inhibitor) was administered to mice 24 h prior to LPS exposure. It was found that CoPPIX (5, 10 mg/kg, i.p.) caused a significant reduction in the total cells and neutrophils in BALF, a significant reduction in the W/D ratio and EBA leakage at 24 h after LPS challenge. Furthermore, the histopathologic findings indicated that alveolitis with leukocyte infiltration in the alveolar space was less severe in the CoPPIX-treated mice than in the mice treated with LPS alone. In addition, CoPPIX was also believed to have down-regulated the expression of LPS-induced proinflammatory cytokines, including early proinflammatory cytokine TNF-a, and late proinflammatory cytokine Hmgb1. In contrast, no obvious difference was observed between the ZnPPIX group and the LPS group. These findings demonstrate the significant protection of CoPPIX against LPS-induced ALI, and the effect mechanism of CoPPIX was associated with decreasing the expression of TNF-a and Hmgb1.  相似文献   

13.
Lipopolysaccharide (LPS) has been associated with adverse developmental outcome, including embryonic resorption, intra-uterine fetal death (IUFD), intra-uterine growth retardation (IUGR), and preterm delivery. Reactive oxygen species (ROS) have been associated with LPS-induced developmental toxicity. N-acetylcysteine (NAC) is a glutathione (GSH) precursor and direct antioxidant. The present study investigated the effects of NAC on LPS-induced IUFD and IUGR. All pregnant mice except controls were injected with LPS (75 microg/kg, ip) on gestational day (GD) 15-17. NAC was administered in two different modes. In mode A, the pregnant mice were pretreated with two doses of NAC (either 50 plus 25 mg/kg or 200 plus 100 mg/kg) before LPS, one (either 50 or 200 mg/kg) at 12 h before LPS and the other (either 25 or 100 mg/kg) at 15 min before LPS. In mode B, the pregnant mice were administered with two doses of NAC (either 50 plus 25 mg/kg or 200 plus 100 mg/kg) in 24 h, one (either 50 or 200 mg/kg) injected immediately after LPS and the other (either 25 or 100 mg/kg) injected 3 h after LPS. The number of live fetuses, dead fetuses and resorption sites was counted on GD 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were measured and skeletal development was evaluated. Results showed that pretreatment with NAC significantly alleviated LPS-induced fetal mortality and reversed LPS-induced growth and skeletal development retardation. Correspondingly, pretreatment with NAC significantly attenuated LPS-induced elevation in TNF-alpha concentration in maternal serum and amniotic fluid and lipid peroxidation in maternal and fetal livers. By contrast to pretreatment, posttreatment with NAC had no effect on LPS-induced TNF-alpha production and lipid peroxidation. When administered after LPS, NAC did not protect against LPS-induced IUFD and IUGR and in fact aggravated LPS-induced preterm labor. All these results indicate that NAC had a dual effect on LPS-induced IUFD and IUGR. Pretreatment with NAC improves fetal survival and reverses LPS-induced fetal growth and skeletal development retardation, whereas posttreatment with NAC aggravates LPS-induced preterm labor.  相似文献   

14.
1. Endotoxin shock is accompanied by an increase in peripheral vascular permeability. It has been postulated that most biological activities of LPS are derived from lipid A moiety. Here we examined the effect of lipid A analogue ONO-4007 in increasing vascular permeability and the possible mediators in mouse skin by a dye leakage method. 2. Subcutaneous injection of ONO-4007 (1 - 2 mg site(-1)) induced a dose-dependent increase in vascular permeability which was evident after 120 min. 3. ONO-4007-induced dye leakage was significantly attenuated by pretreatments with anti-tumour necrosis factor-alpha (TNF-alpha) and anti-interleukin-1alpha (IL-1alpha) antibodies, but not with indomethacin (5 mg kg(-1)) or diphenhydramine (10 mg kg(-1)). ONO-4007-induced dye leakage was significantly inhibited by a pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME) (10 mg kg(-1)) but not with aminoguanidine (50 mg kg(-1)). In inducible nitric oxide synthase (iNOS)-deficient mice, ONO-4007 significantly increased the dye leakage, while ONO-4007 dilated rat thoracic aortic rings pre-contracted with phenylephrine, and the L-NAME pretreatment inhibited the dilation. 4. Thus, TNF-alpha, IL-1alpha and constitutive NOSs-derived nitric oxide but not prostaglandins or histamine play a role in ONO-4007-induced increase in vascular permeability. Although ONO-4007 mimics LPS in increasing vascular permeability, mechanisms of permeability change elicited by ONO-4007 were not identical to those of LPS.  相似文献   

15.
Exposure to small, noninjurious doses of the inflammagen, bacterial endotoxin (lipopolysaccharide, LPS) augments the toxicity of certain hepatotoxicants including aflatoxin B(1) (AFB(1)). Mediators of inflammation, in particular neutrophils (PMNs), are responsible for tissue injury in a variety of animal models. This study was conducted to examine the role of PMNs in the pathogenesis of hepatic injury after AFB(1)/LPS cotreatment. Male, Sprague-Dawley rats (250-350 g) were treated with either 1 mg AFB(1)/kg, ip or its vehicle (0.5% DMSO/saline), and 4 h later with either E. coli LPS (7. 4 x 10(6) EU/kg, iv) or its saline vehicle. Over a course of 6 to 96 h after AFB(1) administration, rats were killed and livers were stained immunohistochemically for PMNs. LPS resulted in an increase in PMN accumulation in the liver that preceded the onset of liver injury. To assess if PMNs contributed to the pathogenesis, an anti-PMN antibody was administered to reduce PMN numbers in blood and liver, and injury was evaluated. Hepatic parenchymal cell injury was evaluated as increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and from histologic examination of liver sections. Biliary tract alterations were evaluated as increased concentration of serum bile acids and activities of gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), and 5'-nucleotidase (5'-ND) in serum. Neutrophil depletion protected against hepatic parenchymal cell injury caused by AFB(1)/LPS cotreatment but not against markers of biliary tract injury. This suggests that LPS augments AFB(1) hepatotoxicity through two mechanisms: one of which is PMN-dependent, and another that is not.  相似文献   

16.
This work aimed to study the effect of Cuachalalate methanol extract (CME) on the anti-inflammatory activity and pharmacokinetics of diclofenac sodium, a frequently prescribed non-steroidal anti-inflammatory drug (NSAID). The gastroprotective effect of CME on the gastric injury induced by diclofenac was studied in rats. CME showed a gastroprotective effect of 15.7% at 1 mg kg(-1) and 72.5% at dose of 300 mg kg(-1). Omeprazole, used as anti-ulcer reference drug, showed gastroprotective effects of 50-89.7% at doses tested (1-30 mg kg(-1)). The value of the 50% effective dose for the anti-inflammatory effect of diclofenac sodium (ED50 = 1.14 +/- 0.23 mg kg(-1)) using carrageenan-induced rat paw oedema model, was not modified by the concomitant administration of 30 or 100 mg kg(-1) of CME. The effect of CME (30, 100 and 300 mg kg(-1), p.o.) on the pharmacokinetics of diclofenac sodium was studied. It was observed that the simultaneous administration of diclofenac sodium and 300 mg kg(-1) of CME decreased significantly the values of Cmax (7.08 +/- 1.42 microg mL(-1)) and AUC (12.67 +/- 2.97 microg h mL(-1)), but not the value of tmax (0.13 (0.1-0.25)h) obtained with the administration of diclofenac alone. The simultaneous administration of 30 or 100 mg kg(-1) of CME did not modify the pharmacokinetic parameters of diclofenac. The experimental findings in rats suggest that CME at doses lower than 100 mg kg(-1) protects the gastric mucosa from the damage induced by diclofenac sodium without altering either the anti-inflammatory activity or the pharmacokinetics of this NSAID.  相似文献   

17.
Girod V  Bouvier M  Grélot L 《Neuropharmacology》2000,39(12):2329-2335
The emetic response to intraperitoneal (i.p., 0.5, 2, 8 mg kg(-1)) and intravenous (i.v., 200 microg kg(-1)) administration of bacterial lipopolysaccharides (LPS) was characterized in conscious piglets observed for 4 h. The latencies and the incidence of the emetic response to LPS (i.p.) decreased and increased, respectively, in a dose-dependent manner. In 14 additional piglets, a bilateral vagotomy performed 4 h prior to LPS administration abolished the vomiting induced by i.p. LPS (2 mg kg(-1)), and decreased its incidence by 77% in the i.v. injected animals. Sham-operated animals (n=6) exhibited a similar emetic pattern to the controls injected intraperitoneally with LPS (2 mg kg(-1)). In 7 piglets, the administration of granisetron, a 5-HT(3) receptor antagonist (i.v., 2 mg kg(-1)), 30 min prior to the i.p. LPS injection (2 mg kg(-1)) failed to reduce significantly the emetic activity; whereas, in 6 animals, a combination of meloxicam (0.3 mg kg(-1)) and indomethacin (5 mg kg(-1)), two cyclooxygenase (COX) inhibitors, administered per os 1.5 h prior to the i.p. LPS (2 mg kg(-1)) abolished the emetic response to endotoxins. The present results show that the activation of the medullary "vomiting centre" in response to i.p. administration of LPS is mediated via vagal afferents and is likely to involve prostaglandins.  相似文献   

18.
Synthetic peptides, Arg-Leu-Tyr-Leu-Arg-Ile-Gly-Arg-Arg-NH2 (peptide A) and Arg-Leu-Arg-Leu-Arg-Ile-Gly-Arg-Arg-NH2 (peptide B), derived from the beetle Allomyrina dichotoma defensin, have not only antimicrobial activities but also anti-inflammatory effects by inhibiting tumour necrosis factor-alpha(TNF-alpha) production. In the present study, we evaluated the lipopolysaccharide (LPS)-binding activities and the protective effects of these peptides on LPS-induced lethal shock in d-galactosamine (GalN)-sensitized mice. These peptides were shown to bind to erythrocytes coated with LPS and the binding activity of peptide A to LPS was significantly higher than those of peptide B and polymyxin B. Mice were injected intraperitoneally with peptide A or B at doses of 25, 50, 100 and 150 mg/kg before an injection of Salmonella abortusequi LPS (5 microg/kg) and GalN (1 g/kg) (LPS+GalN). All of wild-type mice died within 24 h after challenged with LPS+GalN. All of TNF-alpha-deficient mice challenged with LPS+GalN survived. An injection of peptide A immediately after challenge with LPS+GalN resulted in significantly improved survival rates in a dose dependent manner. Peptide B showed only minor protection. The levels of TNF-alpha in the ameliorated mice by peptide A were significantly lower than those of challenge control, suggesting a suppressive effect of peptide A on TNF-alpha production. Furthermore, peptide A-treated mice showed significantly lower levels of asparate aminotransferase and alanine aminotransferase when compared to challenge control. Concordantly, hemorrhage and necrosis in the liver of peptide A-treated mice were less apparent than those of untreated control mice. These results suggest that peptide A has a protective effect on LPS-induced mortality in this mouse model.  相似文献   

19.
Eugenosedin-A has been demonstrated to possess alpha/beta-adrenoceptor and serotonergic receptor blocking activities. We have investigated by what mechanisms eugenosedin-A prevents lipopolysaccharide (LPS)-induced hypotension, vascular hyporeactivity, hyperglycaemia, oxidative injury or inflammatory cytokines formation in rats. Intravenous administration of eugenosedin-A, trazodone, yohimbine (1 mg kg(-1)), aminoguanidine or ascorbic acid (15 mg kg(-1)) normalized LPS (10 mg kg(-1))-induced hypotension. Pretreatment with eugenosedin-A or the other agents 30 min before LPS injection reduced aortic hyporeactivity. LPS-induced increases in plasma interleukin-1beta (IL-beta), IL-6, interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha) and blood glucose levels were significantly inhibited by eugenosedin-A (1 mg kg(-1), i. v.). The same dose of trazodone, a chloropiperazinylbenzene-type antidepressant, and yohimbine, an alpha(2)-adrenoceptor antagonist, reduced IL-1beta and TNF-alpha, but it could not inhibit hyperglycaemia. Aminoguanidine, an inducible nitric oxide synthase (iNOS) inhibitor, and ascorbic acid, an antioxidant, decreased IL-1beta, TNF-alpha contents and hyperglycaemia. Eugenosedin-A and the other agents inhibited Fe(2+)-ascorbic acid-induced peroxidation in rat cortex, indicating that those agents had antioxidant effects, with the exception of aminoguanidine. In free radical scavenged experiments, eugenosedin-A and ascorbic acid eliminated peroxyl radicals. All test agents inhibited the LPS-induced increase of malondialdehyde (MDA) content in rat brain homogenates. When mice were administered an intraperitoneal injection of LPS alone, mortality occurred from 4 to 16 h, after which time all were dead. However, eugenosedin-A significantly prolonged the survival time after LPS injection, suggesting that eugenosedin-A protected against LPS-induced cardiovascular dysfunction, hyperglycaemia, tissue injury and inflammatory cytokine production. This was attributable mainly to the antioxidant and peroxyl radical scavenged effects of eugenosedin-A, and which may be, at least in part, due to its blockade on alpha/beta-adrenergic and serotonergic receptors.  相似文献   

20.
The products released by Helicobacter pylori (H. pylori) in the gastric antral and duodenal mucosa may be involved in mucosal ulceration by stimulating the local formation of cytotoxic factors such as nitric oxide (NO), superoxide or peroxynitrite. The present study investigates the ability of purified H. pylori lipopolysaccharide (LPS) to induce nitric oxide synthase (iNOS) in rat duodenal epithelial cells following in vivo challenge and its interaction with superoxide in promoting cellular damage and apoptosis. H. pylori LPS (0.75-3 mg kg(-1) i.v. or 3-12 mg kg(-1) p.o.) induced a dose - dependent expression of iNOS activity after 5 h in the duodenal epithelial cells, determined by [(14)C] arginine conversion to citrulline. The epithelial cell viability, as assessed by Trypan Blue exclusion and MTT conversion, was reduced 5 h after challenge with H. pylori LPS, while the incidence of apoptosis was increased. The iNOS activity and reduction in cell viability following H. pylori LPS challenge i.v. was inhibited by the selective iNOS inhibitor, 1400 W (0.2-5 mg kg(-1) i.v.). Concurrent administration of superoxide dismutase conjugated with polyethylene glycol (250 - 500 i.u. kg(-1), i.v.), which did not modify the cellular iNOS activity, reduced the epithelial cell damage provoked by i.v. H. pylori LPS, and abolished the increased incidence of apoptosis. These results suggest that expression of iNOS following challenge with H. pylori LPS provokes duodenal epithelial cell injury and apoptosis by a process involving superoxide, implicating peroxynitrite involvement. These events may contribute to the pathogenic mechanisms of H. pylori in promoting peptic ulcer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号