首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA). While native studies predicted pharmacologically distinct GABAB receptor subtypes, molecular studies failed to identify the expected receptor varieties. Mouse genetic experiments therefore addressed whether the cloned receptors can account for the classical electrophysiological, biochemical and behavioral GABAB responses or whether additional receptors exist. Among G-protein coupled receptors, GABAB receptors are unique in that they require 2 distinct subunits for functioning. This atypical receptor structure triggered a large body of work that investigated the regulation of receptor assembly and trafficking. With the availability of molecular tools, substantial progress was also made in the analysis of the receptor protein distribution in neuronal compartments. Here, we review recent studies that shed light on the molecular diversity, the subcellular distribution and the cell surface dynamics of GABAB receptors.  相似文献   

2.
GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA). While native studies predicted pharmacologically distinct GABAB receptor subtypes, molecular studies failed to identify the expected receptor varieties. Mouse genetic experiments therefore addressed whether the cloned receptors can account for the classical electrophysiological, biochemical and behavioral GABAB responses or whether additional receptors exist. Among G-protein coupled receptors, GABAB receptors are unique in that they require 2 distinct subunits for functioning. This atypical receptor structure triggered a large body of work that investigated the regulation of receptor assembly and trafficking. With the availability of molecular tools, substantial progress was also made in the analysis of the receptor protein distribution in neuronal compartments. Here, we review recent studies that shed light on the molecular diversity, the subcellular distribution and the cell surface dynamics of GABAB receptors.  相似文献   

3.
The superfamily of G-protein-coupled receptors (GPCRs) could be subclassified into 7 families (A, B, large N-terminal family B-7 transmembrane helix, C, Frizzled/Smoothened, taste 2, and vomeronasal 1 receptors) among mammalian species. Cloning and functional studies of GPCRs have revealed that the superfamily of GPCRs comprises receptors for chemically diverse native ligands including (1) endogenous compounds like amines, peptides, and Wnt proteins (i.e., secreted proteins activating Frizzled receptors); (2) endogenous cell surface adhesion molecules; and (3) photons and exogenous compounds like odorants. The combined use of site-directed mutagenesis and molecular modeling approaches have provided detailed insight into molecular mechanisms of ligand binding, receptor folding, receptor activation, G-protein coupling, and regulation of GPCRs. The vast majority of family A, B, C, vomeronasal 1, and taste 2 receptors are able to transduce signals into cells through G-protein coupling. However, G-protein-independent signaling mechanisms have also been reported for many GPCRs. Specific interaction motifs in the intracellular parts of these receptors allow them to interact with scaffold proteins. Protein engineering techniques have provided information on molecular mechanisms of GPCR-accessory protein, GPCR-GPCR, and GPCR-scaffold protein interactions. Site-directed mutagenesis and molecular dynamics simulations have revealed that the inactive state conformations are stabilized by specific interhelical and intrahelical salt bridge interactions and hydrophobic-type interactions. Constitutively activating mutations or agonist binding disrupts such constraining interactions leading to receptor conformations that associates with and activate G-proteins.  相似文献   

4.
For decades, it has been generally proposed that a given receptor always interacts with a particular GTP-binding protein (G-protein) or with multiple G-proteins within one family. However, for several G-protein-coupled receptors (GPCR), it now becomes generally accepted that simultaneous functional coupling with distinct unrelated G-proteins can be observed, leading to the activation of multiple intracellular effectors with distinct efficacies and/or potencies. Multiplicity in G-protein coupling is frequently observed in artificial expression systems where high densities of receptors are obtained, raising the question of whether such complex signalling reveals artefactual promiscuous coupling or is a genuine property of GPCRs. Multiple biochemical and pharmacological evidence in favour of an intrinsic property of GPCRs were obtained in recent studies. Thus, there are now many examples showing that the coupling to multiple signalling pathways is dependent on the agonist used (agonist trafficking of receptor signals). In addition, the different couplings were demonstrated to involve distinct molecular determinants of the receptor and to show distinct desensitisation kinetics. Such multiplicity of signalling at the level of G-protein coupling leads to a further complexity in the functional response to agonist stimulation of one of the most elaborate cellular transmission systems. Indeed, the physiological relevance of such versatility in signalling associated with a single receptor requires the existence of critical mechanisms of dynamic regulation of the expression, the compartmentalisation, and the activity of the signalling partners. This review aims at summarising the different studies that support the concept of multiplicity of G-protein coupling. The physiological and pharmacological relevance of this coupling promiscuity will be discussed.  相似文献   

5.
6.
GPCR modulation by RAMPs   总被引:9,自引:0,他引:9  
Our conceptual understanding of the molecular architecture of G-protein coupled receptors (GPCRs) has transformed over the last decade. Once considered as largely independent functional units (aside from their interaction with the G-protein itself), it is now clear that a single GPCR is but part of a multifaceted signaling complex, each component providing an additional layer of sophistication. Receptor activity-modifying proteins (RAMPs) provide a notable example of proteins that interact with GPCRs to modify their function. They act as pharmacological switches, modifying GPCR pharmacology for a particular subset of receptors. However, there is accumulating evidence that these ubiquitous proteins have a broader role, regulating signaling and receptor trafficking. This article aims to provide the reader with a comprehensive appraisal of RAMP literature and perhaps some insight into the impact that their discovery has had on those who study GPCRs.  相似文献   

7.
Angiotensin II (AII), the effector octapeptide of the renin-angiotensin system, exerts a multitude of actions, including vascular contraction, aldosterone secretion, catecholamine release, glycogenolysis, and decreased renal filtration. These diverse actions are mediated through AII receptor subtypes present in a variety of target tissues. Molecular cloning studies have identified two major types of mammalian AII receptors, designated AT1 and AT2, which are classified as a typical family of seven transmembrane guanyl nucleotide-binding protein (G-protein) coupled receptors from hydropathy analyses. Mainly, if not all, of the actions of AII are mediated by AT1 that has been well characterized. Recently, AT2 is found to exert growth inhibitory and proapoptotic effects, but its physiological role is still unclear. The molecular mechanism and the physiological importance of signaling pathways via these receptors remain to be elucidated.  相似文献   

8.
The G protein-coupled receptors: pharmacogenetics and disease   总被引:3,自引:0,他引:3  
Genetic variation in G-protein coupled receptors (GPCRs) is associated with a wide spectrum of disease phenotypes and predispositions that are of special significance because they are the targets of therapeutic agents. Each variant provides an opportunity to understand receptor function that complements a plethora of available in vitro data elucidating the pharmacology of the GPCRs. For example, discrete portions of the proximal tail of the dopamine D1 receptor have been discovered, in vitro, that may be involved in desensitization, recycling and trafficking. Similar in vitro strategies have been used to elucidate naturally occurring GPCR mutations. Inactive, over-active or constitutively active receptors have been identified by changes in ligand binding, G-protein coupling, receptor desensitization and receptor recycling. Selected examples reviewed include those disorders resulting from mutations in rhodopsin, thyrotropin, luteinizing hormone, vasopressin and angiotensin receptors. By comparison, the recurrent pharmacogenetic variants are more likely to result in an altered predisposition to complex disease in the population. These common variants may affect receptor sequence without intrinsic phenotype change or spontaneous induction of disease and yet result in significant alteration in drug efficacy. These pharmacogenetic phenomena will be reviewed with respect to a limited sampling of GPCR systems including the orexin/hypocretin system, the beta2 adrenergic receptors, the cysteinyl leukotriene receptors and the calcium-sensing receptor. These developments will be discussed with respect to strategies for drug discovery that take into account the potential for the development of drugs targeted at mutated and wild-type proteins.  相似文献   

9.
It is unclear how opioid selectivity and activation are regulated within the receptor core. In previous studies, the OFQ receptor was converted into a functional opioid receptor by mutating five amino acids at three sites to the corresponding residues conserved across the mu-, kappa-, and delta-opioid receptors, suggesting that these sites comprise an opioid binding pocket. To examine this hypothesis, the present study examines whether these conserved residues represent an opioid binding pocket in the context of the opioid receptors, i.e., does their removal from opioid receptors destroy opioid ligand binding? The reciprocal mutations K227A (transmembrane [TM]5), IHI290-292VQV (TM6), and I316T (TM7) were evaluated in the kappa-opioid receptor. In terms of alkaloid binding, there were no changes in affinity for mutants K227A and IHI290-292VQV. At mutant I316T, antagonist binding was unaltered, but there was a trend toward slightly decreased agonist affinity. In contrast, the binding of peptides had a more complex pattern. Again, K227A and IHI290-292VQV did not decrease the binding affinity of dynorphin-related peptides. Mutant I316T had 10- to 20-fold decreased affinity for dynorphin-related peptides, suggesting that I316 is part of a critical dynorphin recognition site. In response to alkaloid stimulation, I316T activated more G-protein(s) than wild type, and similar levels were observed in response to dynorphin stimulation. Overall, these results suggest that ligands are capable of achieving high-affinity binding through interaction with multiple sites/conformations of the receptor. These different modes of interaction have different down-stream results in terms of receptor activation and signal transduction.  相似文献   

10.
We measured the intrinsic relative activity (RA(i)) of muscarinic agonists to detect possible selectivity for receptor subtypes and signaling pathways. RA(i) is a relative measure of the microscopic affinity constant of an agonist for the active state of a GPCR expressed relative to that of a standard agonist. First, we estimated RA(i) values for a panel of agonists acting at the M(4) muscarinic receptor coupled to three distinct G-protein pathways: G(i) inhibition of cAMP accumulation, G(s) stimulation of cAMP accumulation, and G alpha(15) stimulation of phosphoinositide hydrolysis. Our results show similar RA(i) values for each agonist, suggesting that the same active state of the M(4) receptor triggers the activation of the three G proteins. We also estimated RA(i) values for agonists across M(1) to M(4) muscarinic subtypes stably transfected in Chinese hamster ovary cells. Our results show selectivity of McN-A-343 [4-I-[3-chlorophenyl]carbamoyloxy)-2-butynyltrimethylammnonium chloride] for the M(1) and M(4) subtypes and selectivity of pilocarpine for the M(1) and M(3) subtypes. The other agonists tested lacked marked selectivity among M(1) to M(4) receptors. Finally, we estimated RA(i) values from published literature on M(1), M(2), and M(3) muscarinic responses and obtained results consistent with our own studies. Our results show that the RA(i) estimate is a useful receptor-dependent measure of agonist activity.  相似文献   

11.
Agouti-related protein (AGRP) is an endogenous antagonist of the melanocortin-3 and -4 (MC3R and MC4) G-protein coupled receptors. The 87-132 amino acid C-terminal domain of hAGRP possesses five disulfide bridges and a well-defined three-dimensional structure that displays full biological activity as compared to the full-length protein. Based on the NMR structure of the C-terminal AGRP(87-132), a novel mini-protein, referred to as "Mini-AGRP" was designed that exhibited receptor binding affinity and antagonism similar to that of the parent hAGRP(87-132) protein. It was demonstrated that this new-engineered protein autonomously folds to the inhibitor cystine knot (ICK) motif. As this AGRP is a novel mammalian protein involved in energy homeostasis and possibly other physiological functions remaining to be identified, structure-function studies are starting to emerge toward the understanding of how this unique protein putatively interacts with the melanocortin receptors with the objective of designing potential therapeutic agents for in vivo physiological studies. This article summarizes the progress to date of AGRP-based structure-activity relationships and putative ligand-receptor interactions.  相似文献   

12.
G-protein coupled receptors (GPCRs) are the largest family of cell surface receptors; they activate heterotrimeric G-proteins in response to ligand stimulation. Although many GPCRs have been shown to form homo- and/or heterodimers on the cell membrane, the purpose of this dimerization is not known. Recent research has shown that receptor dimerization may have a role in organization of receptors on the cell surface. In addition, microdomains on the cell membrane termed lipid rafts have been shown to play a role in GPCR localization. Using a combination of stochastic (Monte Carlo) and deterministic modeling, we propose a novel mechanism for lipid raft partitioning of GPCRs based on reversible dimerization of receptors and then demonstrate that such localization can affect GPCR signaling. Modeling results are consistent with a variety of experimental data indicating that lipid rafts have a role in amplification or attenuation of G-protein signaling. Thus our work suggests a new mechanism by which dimerization-inducing or inhibiting characteristics of ligands can influence GPCR signaling by controlling receptor organization on the cell membrane.  相似文献   

13.
To perform functional cell-based screening assays on seven-transmembrane (7TM) receptors, also known as G-protein coupled receptors, at least three distinct assays are currently needed to screen for G(alphas), G(alphai/0) or G(alphaq/11) signaling receptors. Therefore, there has long been a desire for a universal screening assay that could be used to screen all 7TM receptors independent of their signaling pathway. The receptor/beta-arrestin interaction is common to virtually all 7TM receptors. Therefore, an assay based on this interaction should achieve just that. Bioluminescence resonance energy transfer technology can be used to measure the receptor/beta-arrestin interaction in living cells but due to various technical and biological reasons, the use of the technology for compound screening has been limited. The recent development of beta-arrestin mutants that significantly improve the assay signal, in combination with new improved instrumentation, has transformed bioluminescence resonance energy transfer technology from being a highly specialized research tool in molecular pharmacology to a more drug screening-friendly technique that is useful in an industrial setting.  相似文献   

14.
15.
Many antidepressant drugs, when administered chronically to rats, have been shown to produce decreases in the density of beta adrenergic receptors in the central nervous system. The centrally active beta adrenergic receptor agonist clenbuterol is currently being evaluated clinically as an antidepressant. The chronic administration of this drug to rats resulted in a large decrease in the density of beta adrenergic receptors in some areas of the rat brain but not in others. Thus, autoradiographic studies revealed that the total density of beta adrenergic receptors in the molecular layer of the cerebellum, but not in layers 1 to 3 or layer 4 of the cerebral cortex, was decreased. To examine whether this regional selectivity occurred because of differences in plasticity of cerebellum and cortex or because cerebellum contains mainly beta-2 adrenergic receptors and cortex contains mainly beta-1 adrenergic receptors, separate analyses of the subtypes of beta adrenergic receptors were performed in each area. These experiments indicated that the decrease in receptor density was entirely specific for beta-2 adrenergic receptors, whereas the density of beta-1 receptors was unchanged. Thus, even in layers 1 to 3 and layer 4 of the cerebral cortex, beta-2 receptor density was decreased, with no change in beta-1 receptor density. Using the autoradiographic assay for ligand binding, it was shown that clenbuterol has equal affinity for beta-1 and beta-2 adrenergic receptors, indicating that the selective effect of this drug was not due to a selective affinity for beta-2 receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The existence of heterodimeric opioid receptors has introduced greater complexity to the in vivo characterization of pharmacological selectivity of agonists by antagonists. Because of the possibility of cooperativity between receptors organized as heterodimers, it is conceivable that selective antagonists may antagonize an agonist bound to a neighboring, allosterically coupled receptor. As a consequence, the in vivo selectivity of an opioid antagonist may depend on the organizational state of receptors that mediate analgesia. In this regard, phenotypic delta- and kappa-opioid receptors have been proposed to arise from different organizational states that include oligomeric delta-kappa heterodimers and homomeric delta and kappa receptors. In view of the evidence for analgesia mediated by delta-kappa heterodimers in the spinal cord, but not the brain, we have investigated the selectivity of pharmacologically selective delta and kappa antagonists in mice by both i.t. and i.c.v. routes of administration to evaluate changes in selectivity. Using pharmacologically selective delta (benzylidenenaltrexone, naltrindole, and naltriben) and kappa (norbinaltorphimine) antagonists versus delta ([D-Pen(2),D-Pen(5)]-enkephalin and deltorphin II) and kappa [3,4-dichloro-N-methyl-N-[(1R,2R)-2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide (U50488) and bremazocine] agonists, the delta-1/delta-2 selectivity ratios were found to be dependent on the route of administration (i.t. versus i.c.v.). The data from different routes of administration suggest that differences in molecular recognition between spinal delta-kappa heterodimers and supraspinal homomeric delta and kappa receptors may contribute to the divergent selectivity ratios of selective antagonists. In view of the observed tissue-dependent selectivity, we suggest that multiple opioid antagonists be employed routinely in establishing agonist selectivity in vivo.  相似文献   

17.
Muscarinic acetylcholine receptors belong to a superfamily of G-protein coupled receptors and contain within their structure several conserved aspartate residues. These residues have been implicated to play important roles in the interaction of agonists and their competitive antagonists with the receptor. In the present work, we investigated whether the same residues might also serve as important contact points for allosteric antagonists of muscarinic receptors, because the majority of these compounds are cationic in nature, or if such residues are involved in modification of receptor conformation by these antagonists. Gallamine was used as a prototype for these antagonists. Site-directed mutagenesis of the m1 muscarinic receptor subtype was utilized to define some of the molecular determinants involved in cooperative allosteric interactions. We report that substitution of the aspartate residue at position 71, but not at positions 99 and 122 with asparagine, affected the affinity of gallamine for the unliganded m1 receptor. A similar substitution at positions 71 and 99 decreased the magnitude of its cooperative effects on the binding of [3H]N-methylscopolamine. Our data suggest that these residues are implicated in cooperative interactions. At present, however, we cannot discount a more pivotal role of other residues on the receptor sequence in allosteric interactions. The data also support the notion that different molecular entities are required for the binding of allosteric antagonists as compared to the interaction of agonists and competitive antagonists at the receptor.  相似文献   

18.
Watanabe Heritable Hyperlipidemic (WHHL) rabbits, like humans with familial hypercholesterolemia, have a genetic defect in the low density lipoprotein (LDL) receptor. WHHL fibroblasts produce a low molecular weight precursor form of the receptor that is not glycosylated normally and is not transported to the cell surface at a normal rate. In the current studies, we have used a monoclonal antibody that reacts with the rabbit LDL receptor to extend these findings to intact rabbits. We have made the following observations: (a) In normal rabbits the liver and adrenal glands synthesize high molecular weight mature LDL receptors like those in fibroblasts. (b) In WHHL rabbits the adrenals express only the low molecular weight receptor precursor, and the liver expresses no detectable receptors. (c) When injected intravenously, the radioiodinated anti-LDL receptor monoclonal antibody is cleared from plasma 6-10-fold faster in normal than in WHHL rabbits, with specific uptake demonstrable in livers and adrenals of normal but not WHHL rabbits. The latter finding raises the general possibility that the total number of cell surface receptors expressed by an animal or human in vivo can be estimated by measuring the rate of clearance of an intravenously injected monoclonal antibody directed against the receptor of interest.  相似文献   

19.
A human receptor that is selective for the CXC chemokines IP10 and Mig was cloned and characterized. The receptor cDNA has an open reading frame of 1104-bp encoding a protein of 368 amino acids with a molecular mass of 40,659 dalton. The sequence includes seven putative transmembrane segments characteristic of G-protein coupled receptors. It shares 40.9 and 40.3% identical amino acids with the two IL-8 receptors, and 34.2-36.9% identity with the five known CC chemokine receptors. The IP10/Mig receptor is highly expressed in IL-2-activated T lymphocytes, but is not detectable in resting T lymphocytes. B lymphocytes, monocytes and granulocytes. It mediates Ca2+ mobilization and chemotaxis in response to IP10 and Mig, but does not recognize the CXC-chemokines IL-8, GRO alpha, NAP-2, GCP-2. ENA78, PF4, the CC- chemokines MCP-1, MCP-2, MCP-3, MCP-4, MIP-1 alpha, MIP-1 beta. RANTES, 1309, eotaxin, nor lymphotactin. The exclusive expression in activated T-lymphocytes is of high interest since the receptors for chemokines which have been shown so far to attract lymphocytes, e.g., MCP-1, MCP- 2, MCP-3, MIP-1 alpha, MIP-1 beta, and RANTES, are also found in monocytes and granulocytes. The present observations suggest that the IP10/Mig receptor is involved in the selective recruitment of effector T cells.  相似文献   

20.
The 5-hydroxytryptamine (5-HT) 1E receptor is highly expressed in the human frontal cortex and hippocampus, and this distribution suggests the function of 5-HT(1E) receptors might be linked to memory. To test this hypothesis, behavioral experiments are needed. Because rats and mice lack a 5-HT(1E) receptor gene, knockout strategies cannot be used to elucidate this receptor's functions. Thus, selective pharmacological tools must be developed. The tryptamine-related agonist BRL54443 [5-hydroxy-3-(1-methylpiperidin-4-yl)-1H-indole] is one of the few agents that binds 5-HT(1E) receptors with high affinity and some selectively; unfortunately, it binds equally well to 5-HT(1F) receptors (K(i) ≈ 1 nM). The differences between tryptamine binding requirements of these two receptor populations have never been extensively explored; this must be done to guide the design of analogs with greater selectivity for 5-HT(1E) receptors versus 5-HT(1F) receptors. Previously, we determined the receptor binding affinities of a large series of tryptamine analogs at the 5-HT(1E) receptor; we now examine the affinities of this same series of compounds at 5-HT(1F) receptors. The affinities of these compounds at 5-HT(1E) and 5-HT(1F) receptors were found to be highly correlated (r = 0.81). All high-affinity compounds were full agonists at both receptor populations. We identified 5-N-butyryloxy-N,N-dimethyltryptamine as a novel 5-HT(1F) receptor agonist with >60-fold selectivity versus 5-HT(1E) receptors. There is significant overlap between 5-HT(1E) and 5-HT(1F) receptor orthosteric binding properties; thus, identification of 5-HT(1E)-selective orthosteric ligands will be difficult. The insights generated from this study will inform future drug development and molecular modeling studies for both 5-HT(1E) and 5-HT(1F) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号