首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

We recently developed prostaglandin E1 (PGE1)-encapsulated nanoparticles, prepared with a poly(lactide) homopolymer (PLA, Mw?=?17,500) and monomethoxy poly(ethyleneglycol)-PLA block copolymer (PEG-PLA) (NP-L20). In this study, we tested whether the accelerated blood clearance (ABC) phenomenon is observed with NP-L20 and other PEG-modified PLA-nanoparticles in rats.

Methods

The plasma levels of PGE1 and anti-PEG IgM antibody were determined by EIA and ELISA, respectively.

Results

Second injections of NP-L20 were cleared much more rapidly from the circulation than first injections, showing that the ABC phenomenon was induced. This ABC phenomenon, and the accompanying induction of anti-PEG IgM antibody production, was optimal at a time interval of 7 days between the first and second injections. Compared to NP-L20, NP-L33s that were prepared with PLA (Mw?=?28,100) and have a smaller particle size induced production of anti-PEG IgM antibody to a lesser extent. NP-L20 but not NP-L33s gave rise to the ABC phenomenon with a time interval of 14 days. NP-L33s showed a better sustained-release profile of PGE1 than NP-L20.

Conclusions

This study revealed that the ABC phenomenon is induced by PEG-modified PLA-nanoparticles. We consider that NP-L33s may be useful clinically for the sustained-release and targeted delivery of PGE1.  相似文献   

2.

Purpose

To assess the potential of polymeric nanoparticles (NPs) to affect the genital distribution and local and systemic pharmacokinetics (PK) of the anti-HIV microbicide drug candidate dapivirine after vaginal delivery.

Methods

Dapivirine-loaded, poly(ethylene oxide)-coated poly(epsilon-caprolactone) (PEO-PCL) NPs were prepared by a nanoprecipitation method. Genital distribution of NPs and their ability to modify the PK of dapivirine up to 24 h was assessed after vaginal instillation in a female mouse model. Also, the safety of NPs upon daily administration for 14 days was assessed by histological analysis and chemokine/cytokine content in vaginal lavages.

Results

PEO-PCL NPs (180–200 nm) were rapidly eliminated after administration but able to distribute throughout the vagina and lower uterus, and capable of tackling mucus and penetrate the epithelial lining. Nanocarriers modified the PK of dapivirine, with higher drug levels being recovered from vaginal lavages and vaginal/lower uterine tissues as compared to a drug suspension. Systemic drug exposure was reduced when NPs were used. Also, NPs were shown safe upon administration for 14 days.

Conclusions

Dapivirine-loaded PEO-PCL NPs were able to provide likely favorable genital drug levels, thus attesting the potential value of using this vaginal drug delivery nanosystem in the context of HIV prophylaxis.  相似文献   

3.

Purpose

The aim of this work is to develop a scalable continuous system suitable for the formulation of polymeric nanoparticles using membrane-assisted nanoprecipitation. One of the hurdles to overcome in the use of nanostructured materials as drug delivery vectors is their availability at industrial scale. Innovation in process technology is required to translate laboratory production into mass production while preserving their desired nanoscale characteristics.

Methods

Membrane-assisted nanoprecipitation has been used for the production of Poly[(D,L lactide-co-glycolide)-co-poly ethylene glycol] diblock) (PLGA-PEG) nanoparticles using a pulsed back-and-forward flow arrangement. Tubular Shirasu porous glass membranes (SPG) with pore diameters of 1 and 0.2 μm were used to control the mixing process during the nanoprecipitation reaction.

Results

The size of the resulting PLGA-PEG nanoparticles could be readily tuned in the range from 250 to 400 nm with high homogeneity (PDI lower than 0.2) by controlling the dispersed phase volume/continuous phase volume ratio. Dexamethasone was successfully encapsulated in a continuous process, achieving an encapsulation efficiency and drug loading efficiency of 50% and 5%, respectively. The dexamethasone was released from the nanoparticles following Fickian kinetics.

Conclusions

The method allowed to produce polymeric nanoparticles for drug delivery with a high productivity, reproducibility and easy scalability.
  相似文献   

4.

Purpose

To investigate the effects of the particle size and surface coating on the cellular uptake of the polymeric nanoparticles for drug delivery across the physiological drug barrier with emphasis on the gastrointestinal (GI) barrier for oral chemotherapy and the blood–brain barrier (BBB) for imaging and therapy of brain cancer.

Methods

Various sizes of commercial fluorescent polystyrene nanoparticles (PS NPs) (viz 20 50, 100, 200 and 500 nm) were modified with the d-α-tocopheryl polyethylene glycol 1,000 succinate (vitamin E TPGS or TPGS). The size, surface charge and surface morphology of PS NPs before and after TPGS modification were characterized. The Caco-2 and MDCK cells were employed as an in vitro model of the GI barrier for oral and the BBB for drug delivery into the central nerve system respectively. The distribution of fluorescent NPs after i.v. administration to rats was analyzed by the high performance liquid chromatography (HPLC).

Results

The in vitro investigation showed enhanced cellular uptake efficiency for PS NPs in both of Caco-2 and MDCK cells after TPGS surface coating. In vivo investigation showed that the particle size and surface coating are the two parameters which can dramatically influence the NPs biodistribution after intravenous administration. The TPGS coated NPs of smaller size (< 200 nm) can escape from recognition by the reticuloendothelial system (RES) and thus prolong the half-life of the NPs in the blood system.

Conclusions

TPGS-coated PS NPs of 100 and 200 nm sizes have potential to deliver the drug across the GI barrier and the BBB.  相似文献   

5.

Purpose

Hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs) were developed for the targeted delivery of doxorubicin (DOX), and their antitumor efficacy for melanoma was evaluated.

Methods

DOX-loaded HACE-based self-assembled NPs were prepared and their physicochemical properties were characterized. The in vitro cytotoxicity of HACE was measured using an MTS-based assay. The cellular uptake efficiency of DOX into mouse melanoma B16F10 cells was assessed by confocal laser scanning microscopy and flow cytometry. Tumor growth and body weight were monitored after the intratumoral and intravenous injection of DOX-loaded NPs into a B16F10 tumor-bearing mouse model.

Results

DOX-loaded NPs, with a mean diameter of ~110?nm, a narrow size distribution, and high drug entrapment efficiency, were prepared. A sustained DOX release pattern was shown, and drug release was enhanced at pH 5.5 compared with pH 7.4. The cytotoxicity of HACE to B16F10 cells was negligible. It was assumed that DOX was taken up into the B16F10 cells through receptor-mediated endocytosis. A significant inhibitory effect was observed on tumor growth, without any serious changes in body weight, after the injection of DOX-loaded NPs into the B16F10 tumor-bearing mouse model.

Conclusions

DOX-loaded HACE-based NPs were successfully developed and their antitumor efficacy against B16F10 tumors was demonstrated.  相似文献   

6.

Purpose

The aim of this work was to evaluate in vivo poly(lactide)-d-α-tocopheryl polyethylene glycol 1,000 succinate nanoparticles (PLA–TPGS NPs) for controlled and sustained small molecule drug chemotherapy.

Methods

The drug-loaded PLA–TPGS NPs were prepared by the dialysis method. Particle size, surface morphology and surface chemistry, in vitro drug release and cellular uptake of NPs were characterized. In vitro and in vivo therapeutic effects of the nanoparticle formulation were evaluated in comparison with Taxol®.

Results

The PLA–TPGS NP formulation exhibited significant advantages in in vivo pharmacokinetics and xenograft tumor model versus the PLGA NP formulation and the pristine drug. Compared with Taxol®, the PLA–TPGS NP formulation achieved 27.4-fold longer half-life in circulation, 1.6-fold larger area-under-the-curve (AUC) with no portion located above the maximum tolerance concentration level. For the first time in the literature, one shot for 240 h chemotherapy was achieved in comparison with only 22 h chemotherapy for Taxol® at the same 10 mg/kg paclitaxel dose. Xenograft tumor model further confirmed the advantages of the NP formulation versus Taxol®.

Conclusions

The PLA–TPGS NP formulation can realize a way of controlled and sustained drug release for more than 10 days, which relieves one of the two major concerns on cancer nanotechnology, i.e. feasibility.  相似文献   

7.

Purpose

To investigate the effect of polyelectrolytes on the formation and physicochemical properties of chitosan nanoparticles (CS-NPs) used for the delivery of an anticancer drug, doxorubicin (DOX).

Method

Three DOX-loaded CS-NPs were formulated with tripolyphosphate (CS-TP/DOX NPs), dextran sulfate (CS-DS/DOX NPs), and hyaluronic acid (CS-HA/DOX NPs) by using ionotropic gelation or complex coacervation.

Results

CS-TP/DOX NPs were the smallest, with an average size of ~100 nm and a narrow size distribution, while CS-DS/DOX and CS-HA/DOX NPs were ~200 nm in size. Transmission electron microscopy clearly showed a spherical shape for all the NPs. The strong binding affinity of DOX for the multiple sulfate groups in DS resulted in a sustained release profile from CS-DS/DOX NPs at pH 7.4, while CS-HA/DOX NPs exhibited faster DOX release. This trend was also present under acidic conditions, where release of DOX was significantly augmented because of polymer protonation. Compared to CS-TP/DOX or CS-DS/DOX NPs, CS-HA/DOX NPs showed superior cellular uptake and cytotoxicity in MCF-7 and A-549 cells, because of their ability to undergo CD44-mediated endocytosis. Pharmacokinetic studies clearly showed that all CS-NPs tested significantly improved DOX plasma circulation time and decreased its elimination rate constant. Consistent with the in vitro release data, CS-DS/DOX NPs exhibited a relatively better DOX plasma profile and enhanced blood circulation, compared to CS-HA/DOX or CS-TP/DOX NPs. Overall, these results demonstrated how NP design can influence their function.

Conclusions

Taken together, CS-based polyelectrolyte complexes could provide a versatile delivery system with enormous potential in the pharmaceutical and biomedical sectors.  相似文献   

8.

Purpose

The complementary strategy by combining targeting ligand-mediated selectivity and CPP-mediated transmembrane function could be exploit synergies for enhancing cellular uptake of nanoparticles with negative charge. A heparin-based nanoparticles with negative charge was fabricated by complementary strategy, which was expected to attain efficient uptake and simultaneously exert great anticancer activity.

Methods

We synthesized heparin-based nanoparticles with targeting ligand folate and CPP ligand Tat to deliver paclitaxel (H-F-Tat-P NPs). The NPs were characterized by 1H NMR, DLS and TEM, respectively. The effect of dual ligands on system behavior in aqueous solution was investigated. Moreover, its cellular internalization and anticancer activity were detected by flow cytometry, confocal microscopy and MTT.

Results

Folate played a key role in the formation of heparin-based NPs dependent on the balance of amphiphilic Tat and hydrophobic folate. Although H-F-Tat-P NPs primarily entered FR specific and non-specific cells by similar routes, there were no comparability due to cell-type specific variation. Unlike non-specific cells, the complementary ligands could help negative-charged NPs to enhance cellular uptake facilitating its endosome escape in specific cells thereby exhibiting great anticancer activity.

Conclusions

The complementary strategy for negative-charged NPs was presented a promising delivery system for diverse anticancer agents enable simultaneously targeting and drug delivery.  相似文献   

9.

Purpose

To create poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), where a drug-encapsulating NP core is covered with polyethylene glycol (PEG) in a normal condition but exposes a cell-interactive TAT-modified surface in an environment rich in matrix metalloproteinases (MMPs).

Methods

PLGA NPs were modified with TAT peptide (PLGA-pDA-TAT NPs) or dual-modified with TAT peptide and a conjugate of PEG and MMP-substrate peptide (peritumorally activatable NPs, PANPs) via dopamine polymerization. Cellular uptake of fluorescently labeled NPs was observed with or without a pre-treatment of MMP-2 by confocal microscopy and flow cytometry. NPs loaded with paclitaxel (PTX) were tested against SKOV-3 ovarian cancer cells to evaluate the contribution of surface modification to cellular delivery of PTX.

Results

While the size and morphology did not significantly change due to the modification, NPs modified with dopamine polymerization were recognized by their dark color. TAT-containing NPs (PLGA-pDA-TAT NPs and PANPs) showed changes in surface charge, indicative of effective conjugation of TAT peptide on the surface. PLGA-pDA-TAT NPs and MMP-2-pre-treated PANPs showed relatively good cellular uptake compared to PLGA NPs, MMP-2-non-treated PANPs, and NPs with non-cleavable PEG. After 3 h treatment with cells, PTX loaded in cell-interactive NPs showed greater toxicity than non-interactive ones as the former could enter cells during the incubation period. However, due to the initial burst drug release, the difference was not as clear as microscopic observation.

Conclusions

PEGylated polymeric NPs that could expose cell-interactive surface in response to MMP-2 were successfully created by dual modification of PLGA NPs using dopamine polymerization.  相似文献   

10.

Purpose

Design and synthesis of a tumor responsive nanoparticle-based system for imaging and treatment of various cancers.

Methods

Manganese oxide nanoparticles (Mn3O4 NPs) were synthesized and modified with LHRH targeting peptide or anti-melanoma antibodies (cancer targeting moieties) and a MMP2 cleavable peptide (a possible chemotactic factor). Nanostructured lipid carriers (NLCs) were used to entrap the BRAF inhibitor, vemurafenib, and enhance cytotoxicity of the drug. Size distribution, stability, drug entrapment, cytotoxicity and genotoxicity of synthesized nanoparticles were studied in vitro. Enhancement of MRI signal by nanoparticles and their body distribution were examined in vivo on mouse models of melanoma, ovarian and lung cancers.

Results

Uniform, stable cancer-targeted nanoparticles (PEGylated water-soluble Mn3O4 NPs and NLCs) were synthesized. No signs of cyto-,genotoxicity and DNA damage were detected for nanoparticles that do not contain an anticancer drug. Entrapment of vemurafenib into nanoparticles significantly enhanced drug toxicity in cancer cells with targeted V600E mutation. The developed nanoparticles containing LHRH and MMP2 peptides showed preferential accumulation in primary and metastatic tumors increasing the MRI signal in mice with melanoma, lung and ovarian cancers.

Conclusions

The proposed nanoparticle-based systems provide the foundation for building an integrated MRI diagnostic and therapeutic approach for various types of cancer.  相似文献   

11.

Purpose

To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(??-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine.

Methods

Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity.

Results

Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL.

Conclusions

These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.  相似文献   

12.

Purpose

The lack of effective delivery vehicles impedes in vivo applications of siRNA. The trimethyl chitosan-cysteine (TC) nanoparticles (NPs) were developed for in vivo delivery of tumor necrosis factor α (TNF-α) siRNA via oral gavage and intraperitoneal injection.

Methods

The nanoparticles formulated from TC conjugate of 100, 200, and 500 kDa were prepared through ionic gelation with sodium tripolyphosphate, termed as TC100 NPs, TC200 NPs, and TC500 NPs, respectively. They were evaluated in terms of stability, siRNA protection, cellular uptake and TNF-α knockdown in peritoneal exudates macrophage cells (PECs), and in vivo TNF-α silencing in acute hepatic injury mice.

Results

TC100 NPs exhibited poor stability in simulated physiological environment compared to TC200 NPs and TC500 NPs. Compared to TC500 NPs, TC200 NPs could significantly enhance in vitro and in vivo cellular uptake by PECs and facilitate cytoplasmic siRNA release, resulting in high in vitro and in vivo TNF-α knockdown. Superior TNF-α suppressing level was obtained with TC200 NPs via oral gavage rather than intraperitoneal injection.

Conclusions

The efficacies of in vivo TNF-α silencing were related to the molecular weight of TC conjugate and the administration route, which would assist in the rational design of siRNA vehicles.  相似文献   

13.

Purpose

The purpose of this work was the development of a multicompartimental nanocarrier for the simultaneous encapsulation of paclitaxel (PTX) and genistein (GEN), associating antiangiogenic and cytotoxic properties in order to potentiate antitumoral activity.

Method

Polymeric nanocapsules containing PTX were obtained by interfacial deposition of preformed polymer and coated with a phospholipid bilayer entrapping GEN. Physical-chemical and morphological characteristics were characterized, including size and size distribution, drug entrapment efficiency and drug release profile. In vivo studies were performed in EAT bearing Swiss mice.

Results

Entrapment efficiency for both drugs in the nanoparticles was approximately 98%. Average particle diameter was 150 nm with a monomodal distribution. In vitro assays showed distinct temporal drug release profiles for each drug. The dose of 0.2 mg/kg/day of PTX resulted in 11% tumor inhibition, however the association of 12 mg/kg/day of GEN promoted 44% tumor inhibition and a 58% decrease in VEGF levels.

Conclusions

Nanoparticles containing GEN and PTX with a temporal pattern of drug release indicated that the combined effect of cytotoxic and antiangiogenic drugs present in the formulation contributed to the overall enhanced antitumor activity of the nanomedicine.  相似文献   

14.

Purpose

P-glycoprotein (P-gp) mediated multidrug resistance (MDR) has been recognized as the main obstacle against successful cancer treatment. To address this problem, co-encapsulated doxorubicin (DOX) and metformin (Met) in a biodegradable polymer composed of poly(lactide-co-glycolide) (PLGA) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was prepared. We reported in our previous study that Met inhibits P-gp in DOX resistant breast cancer (MCF-7/DOX) cells. TPGS is a bioactive compound which has also been shown to inhibit P-gp, further to its pharmaceutical advantages.

Methods

The DOX/Met loaded PLGA-TPGS nanoparticles (NPs) were prepared by double emulsion method and characterized for their surface morphology, size and size distribution, and encapsulation efficiencies of drugs in NPs.

Results

All NPs were found to be spherical-shaped with the size distribution below 100 nm and encapsulation efficiencies were 42.26?±?2.14% for DOX and 7.04?±?0.52% for Met. Dual drug loaded NPs showed higher cytotoxicity and apoptosis in MCF-7/DOX cells in comparison to corresponding free drugs. The higher cytotoxicity of dual drug loaded NPs was attributed to the enhanced intracellular drug accumulation due to enhanced cellular uptake and reduced drug efflux which was obtained by combined effects of Met and TPGS in reducing cellular ATP content and inhibiting P-gp.

Conclusion

Simultaneous delivery of DOX and Met via PLGA-TPGS NPs would be a promising approach to overcome MDR in breast cancer chemotherapy.
  相似文献   

15.

Purpose

A versatile methodology is demonstrated for improving dissolution kinetics, gastrointestinal (GI) absorption, and bioavailability of protein kinase inhibitors (PKIs).

Methods

The approach is based on nanoparticle precipitation by sub- or supercritical CO2 together with a matrix-forming polymer, incorporating surfactants either during or after nanoparticle formation. Notably, striking synergistic effects between hybrid PKI/polymer nanoparticles and surfactant added after particle formation is investigated.

Results

The hybrid nanoparticles, consisting of amorphous PKI embedded in a polymer matrix (also after 12 months), display dramatically increased release rate of nilotinib in both simulated gastric fluid and simulated intestinal fluid, particularly when surfactants are present on the hybrid nanoparticle surface. Similar results indicated flexibility of the approach regarding polymer identity, drug load, and choice of surfactant. The translation of the increased dissolution rate found in vitro into improved GI absorption and bioavalilability in vivo was demonstrated for male beagle dogs, where a 730% increase in the AUC0–24h was observed compared to the benchmark formulation. Finally, the generality of the formulation approach taken was demonstrated for a range of PKIs.

Conclusions

Hybrid nanoparticles combined with surfactant represent a promising approach for improving PKI dissolution rate, providing increased GI absorption and bioavailability following oral administration.  相似文献   

16.

Purpose

Preparation, optimization and in vitro evaluation of core-shell nanoparticles comprising of a hydrophilic core of BSA surrounded by a hydrophobic shell of PLGA for loading water-soluble drugs.

Methods

A double emulsion method was optimized for preparation of BSA-PLGA based core-shell nanoparticles. Proof of concept for core-shell type structure was established by visual techniques like confocal microscopy and TEM. Characterization was done for particle size, encapsulation efficiency, drug loading and in vitro drug release. Cellular uptake was assessed using confocal microscopy, bio-TEM and HPLC assay, and cytotoxic activity was tested by MTT assay in MG-63 osteosarcoma cells.

Results

The optimized core-shell nanoparticles showed a particle size of 243 nm (PDI-0.13) and encapsulation efficiency of 40.5% with a drug loading of 8.5% w/w. In vitro drug release studies showed a sustained release for 12 h. Cellular uptake studies indicated a rapid and efficient uptake within 2 h. TEM studies indicated that the core-shell nanoparticles were localized in cytoplasm region of the cells. Gemcitabine loaded core-shell nanoparticles showed enhanced cytotoxicity against MG-63 cells as compared to marketed formulation of gemcitabine (GEMCITE®).

Conclusion

These results indicate that core-shell nanoparticles can be a good carrier system for delivering hydrophilic drugs like gemcitabine successfully to the cells with enhanced efficacy.
Figure
Core-Shell Nanoparticles with a hydrophilic BSA core and hydrophobic PLGA shell for carrier system of hydrophilic drugs  相似文献   

17.

Purpose

A phage-displayed peptide TGN was used as a targeting motif to help the delivery of NAP-loaded nanoparticles across the blood–brain barrier (BBB), which sets an obstacle for brain delivery of NAP in vivo.

Methods

Intracerebroventricular injection of Aβ1-40 into mice was used to construct in vivo model of Alzheimer’s disease. The water maze task was performed to evaluate the effects of the NAP formulations on learning and memory deficits in mice. The neuroprotective effect was tested by detecting acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity and conducting histological assays.

Results

Intravenous administration of NAP-loaded TGN modified nanoparticles (TGN-NP/NAP) has shown better improvement in spatial learning than NAP solution and NAP-loaded nanoparticles in Morris water maze experiment. The crossing number of the mice with memory deficits recovered after treatment with TGN-NP/NAP in a dose dependent manner. Similar results were also observed in AChE and ChAT activity. No morphological damage and no detectable Aβ plaques were found in mice hippocampus and cortex treated with TGN-NP/NAP.

Conclusions

TGN modified nanoparticles could be a promising drug delivery system for peptide and protein drug such as NAP to enter the brain and play the therapeutic role.  相似文献   

18.

Purpose

To develop a novel hyperbranched polymer-based nanocarrier for efficient drug delivery to cell mitochondria. Also to study for the first time the cytotoxic effect of doxorubicin via mitochondria-specific delivery system.

Methods

We introduced alkyltriphenylphosphonium groups (TPP) to a poly(ethylene imine) hyperbranched polymer (PEI). We harnessed the hydrophobic assembly of these alkylTPP functionalized PEI molecules into ~100 nm diameter nanoparticles (PEI-TPP) and further encapsulated the chemotherapy agent doxorubicin (DOX), to produce the mitotropic nanoparticles PEI-TPP-DOX.

Results

By administering PEI-TPP-DOX to human prostate carcinoma cells DU145, we found that: (i) PEI-TPP-DOX specifically localized at cell mitochondria as revealed by the inherent DOX fluorescence; (ii) in contrast to the slow apoptotic cell death incurred by DOX over the period of days at micromolar concentrations, PEI-TPP-DOX triggered rapid and severe cytotoxicity within few hours of incubation and at submicromolar incubation concentrations. This cytotoxicity was mainly found to be of a necrotic nature, not precluding autophagy related death pathways to a smaller extent.

Conclusions

We have elaborated a versatile mitotropic nanocarrier; furthermore, using this platform, we have developed a mitochondrial-doxorubicin formulation with exceptional cytocidal properties, even in nanomolar concentrations.
Figure
?  相似文献   

19.

Purpose

The present investigation aimed at brain targeting of sumatriptan succinate (SS) for its optimal therapeutic effect in migraine through nanoparticulate drug delivery system using poly (butyl cyanoacrylate) (PBCA) and bovine serum albumin linked with apolipoprotein E3 (BSA-ApoE).

Method

The study involved formulation optimization of PBCA nanoparticles (NPs) using central composite design for achieving minimum particle size, maximum entrapment efficiency along with sustained drug release. SS incorporated in BSA-ApoE NPs (S-AA-NP) were prepared by desolvation technique and compared with SS loaded polysorbate 80 coated optimized PBCA NPs (FPopt) in terms of their brain uptake potential, upon oral administration in male Wistar rats. The NPs were characterized by FTIR, thermal, powder XRD and TEM analysis.

Results

The in vivo studies of FPopt and S-AA-NP on male Wistar rats demonstrated a fairly high brain/plasma drug ratio of 9.45 and 12.67 respectively 2 h post oral drug administration. The behavioural studies on male Swiss albino mice affirmed the enhanced anti-migraine potential of S-AA-NP than FPopt (P?<?0.001).

Conclusion

The results of this work, therefore, indicate that BSA-ApoE NPs are significantly better than polysorbate 80 coated PBCA NPs for brain targeting of SS (P?<?0.05) and also offer an improved therapeutic strategy for migraine management.
  相似文献   

20.

Purpose

Delivery of siRNA into cells remains a critical challenge. Our lab has shown a novel polyamidoamine (PAMAM) dendrimer with modified pentaerythritol derivative core (PD dendrimer) to exhibit high plasmid DNA transfection efficiency and low cytotoxicity. Here, we evaluate PD dendrimer as a siRNA carrier.

Methods

Agarose gel electrophoresis and AFM were used to confirm formation of generation 5 (G5)-PD dendrimer/siRNA nanoparticles (NPs). G5 PD dendrimer/anti-luciferase siRNA NPs were used to transfect SK Hep-1 cells with stable luciferase expression. Effects of various endocytic pathway inhibitors on uptake of G5 PD dendrimer/siRNA NPs in SK Hep-1 cells were also investigated.

Results

Agarose gel electrophoresis indicated that G5 PD dendrimer and siRNA formed NPs at weight ratios >0.5:1. G5 PD dendrimer showed effective luciferase gene silencing when weight ratio was 3.0:1 and above. Treatment with endocytosis inhibitors showed that clathrin-mediated endocytosis was the main endocytic pathway by which G5-PD dendrimer/siRNA NPs enter the cell.

Conclusions

These results show that the novel G5 PD dendrimer has high siRNA delivery activity and is promising as a delivery agent for its therapeutic application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号