首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifty-six strains of Borrelia burgdorferi sensu lato, isolated from ticks and vertebrate animals in Missouri, South Carolina, Georgia, Florida, and Texas, were identified and characterized by PCR-restriction fragment length polymorphism (RFLP) analysis of rrf (5S)-rrl (23S) intergenic spacer amplicons. A total of 241 to 258 bp of intergenic spacers between tandemly duplicated rrf (5S) and rrl (23S) was amplified by PCR. MseI and DraI restriction fragment polymorphisms were used to analyze these strains. PCR-RFLP analysis results indicated that the strains represented at least three genospecies and 10 different restriction patterns. Most of the strains isolated from the tick Ixodes dentatus in Missouri and Georgia belonged to the genospecies Borrelia andersonii. Excluding the I. dentatus strains, most southern strains, isolated from the ticks Ixodes scapularis and Ixodes affinis, the cotton rat (Sigmodon hispidus), and cotton mouse (Peromyscus gossypinus) in Georgia and Florida, belonged to Borrelia burgdorferi sensu stricto. Seven strains, isolated from Ixodes minor, the wood rat (Neotoma floridana), the cotton rat, and the cotton mouse in South Carolina and Florida, belonged to Borrelia bissettii. Two strains, MI-8 from Florida and TXW-1 from Texas, exhibited MseI and DraI restriction patterns different from those of previously reported genospecies. Eight Missouri tick strains (MOK-3a group) had MseI patterns similar to that of B. andersonii reference strain 21038 but had a DraI restriction site in the spacer. Strain SCGT-8a had DraI restriction patterns identical to that of strain 25015 (B. bissettii) but differed from strain 25015 in its MseI restriction pattern. Strain AI-1 had the same DraI pattern as other southern strains in the B. bissettii genospecies but had a distinct MseI profile. The taxonomic status of these atypical strains needs to be further evaluated. To clarify the taxonomic positions of these atypical Borrelia strains, the complete sequences of rrf-rrl intergenic spacers from 20 southeastern and Missouri strains were determined. The evolutionary and phylogenetic relationships of these strains were compared with those of the described genospecies in the B. burgdorferi sensu lato species complex. The 20 strains clustered into five separate lineages on the basis of sequence analysis. MI-8 and TXW-1 appeared to belong to two different undescribed genospecies, although TXW-1 was closely related to Borrelia garinii. The MOK-3a group separated into a distinct deep branch in the B. andersonii lineage. PCR-RFLP analysis results and the results of sequence analyses of the rrf-rrl intergenic spacer confirm that greater genetic heterogeneity exists among B. burgdorferi sensu lato strains isolated from the southern United States than among strains isolated from the northern United States. The B. andersonii genospecies and its MOK-3a subgroup are associated with the I. dentatus-cottontail rabbit enzootic cycle, but I. scapularis was also found to harbor a strain of this genospecies. Strains that appear to be B. bissettii in our study were isolated from I. minor and the cotton mouse, cotton rat, and wood rat. The B. burgdorferi sensu stricto strains from the south are genetically and phenotypically similar to the B31 reference strain.  相似文献   

2.
To differentiate the Borrelia burgdorferi sensu lato genospecies, LightCycler real-time PCR was used for the fluorescence (SYBR Green I) melting curve analysis of borrelial recA gene PCR products. The specific melting temperature analyzed is a function of the GC/AT ratio, length, and nucleotide sequence of the amplified product. A total of 32 DNA samples were tested. Of them three were isolated from B. burgdorferi reference strains and 16 were isolated from B. burgdorferi strains cultured from Ixodes ricinus ticks; 13 were directly isolated from nine human biopsy specimens and four I. ricinus tick midguts. The melting temperature of B. garinii was 2 degrees C lower than that of B. burgdorferi sensu stricto and B. afzelii. Melting curve analysis offers a rapid alternative for identification and detection of B. burgdorferi sensu lato genospecies.  相似文献   

3.
Borrelia burgdorferi sensu lato A14S was cultured from a skin biopsy specimen of a patient with erythema migrans in The Netherlands. This isolate had a unique DNA fingerprint pattern compared to 135 other B. burgdorferi sensu lato isolates. In this study, the isolate A14S was further characterized by protein analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and reactivity with various monoclonal antibodies. In addition, the 16S rRNA, ospA, and ospC genes, as well as the 5S-23S rRNA intergenic spacer DNA, were amplified by PCR, cloned, and sequenced. SDS-PAGE protein profiles and phylogenetic analysis based on all of the analyzed genes confirmed that B. burgdorferi sensu lato A14S was phenotypically and genetically different from the three human pathogenic species B. burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii, as well as from other B. burgdorferi sensu lato species. Our findings indicate that Borrelia genomic groups or isolates other than the three well-known human pathogenic species may also cause human Lyme borreliosis.  相似文献   

4.
Since Lyme arthritis was first described in the United States, it has now been reported in many countries of Europe. However, very few strains of the causative bacterium, Borrelia burgdorferi, have been isolated from synovial samples. For this reason, different molecular direct typing methods were developed recently to assess which species could be involved in Lyme arthritis in Europe. We developed a simple oligonucleotide typing method with PCR fragments from the flagellin gene of B. burgdorferi sensu lato, which is able to differentiate seven different Borrelia species. Among 10 consecutive PCR-positive patients with Lyme arthritis from the northeastern France, two species were identified in synovial samples: B. burgdorferi sensu stricto in 9 cases and B. garinii in 1 case. Conversely, all B. burgdorferi sensu lato species detected in 10 consecutive PCR-positive biopsies from a second set of patients with erythema migrans from the same geographical area were identified as either B. afzelii or B. garinii (P < 0.001). These results indicate that B. burgdorferi sensu stricto is the principal but not the only Borrelia species involved in Lyme arthritis in northeastern France.  相似文献   

5.
The aim of this study was to improve understanding of several factors related to the ecology and environmental risk of Borrelia infection in northern Florida. Small mammals and host-seeking adult ticks were collected at several sites, and specimens were tested for the presence of Borrelia species, primarily by PCR amplification. Tissues from some vertebrates and ticks were initially cultured in BSK-H medium to isolate spirochetes, but none were recovered. However, comparison of partial flagellin (flaB), 66-kDa protein (p66), and outer surface protein A (ospA) gene sequences from DNAs amplified from small mammals and ticks confirmed the presence of several Borrelia species. Borrelia lonestari DNA was detected among lone star ticks (Amblyomma americanum) at four sites. Borrelia burgdorferi sensu stricto strains were detected in all small mammal species tested and in A. americanum, Ixodes affinis, and Ixodes scapularis ticks. Borrelia bissettii was found in a cotton mouse and cotton rats and in I. affinis ticks. The study findings extend the known geographic distributions of B. lonestari in A. americanum and of B. burgdorferi sensu lato in A. americanum, I. affinis, I. scapularis, and small mammals to new sites in Florida. The presence of B. burgdorferi sensu stricto strains in host-seeking lone star ticks at two sites in Florida suggests that A. americanum should still be considered a possible vector of B. burgdorferi sensu lato.  相似文献   

6.
To date Borrelia lusitaniae is the only genospecies of Borrelia burgdorferi sensu lato isolated from Ixodes ricinus ticks collected in Portugal and Tunisia. This suggests that the genospecies diversity of B. burgdorferi sensu lato decreases toward the southwestern margin of its Old World subtropical range. In order to further explore the genetic diversity of B. burgdorferi sensu lato from this region, 55 I. ricinus and 27 Hyalomma marginatum questing adults, collected during the spring of 1998 from a sylvatic habitat south of Lisbon, Portugal, were analyzed. Infection prevalences of 75% in I. ricinus ticks and 7% in H. marginatum ticks were detected by a nested PCR that targets the rrf (5S)-rrl (23S) spacer of B. burgdorferi sensu lato. Restriction fragment length polymorphism (RFLP) analysis of the I. ricinus-derived amplicons showed that the sequences in the majority of samples were similar to those of B. lusitaniae type strains (76% for strain PotiB1, 5% for strain PotiB3). Two novel RFLP patterns were obtained from 12% of the samples. The remaining 7% of samples gave mixed RFLP patterns. Phylogenetic analysis of rrf-rrl spacer sequences revealed a diverse population of B. lusitaniae in questing adult I. ricinus ticks (the sequences did not cluster with those of any other genospecies). This population consisted of 10 distinct sequence types, suggesting that multiple strains of B. lusitaniae were present in the local I. ricinus population. We hypothesize that B. lusitaniae has a narrow ecological niche that involves host species restricted to the Mediterranean Basin.  相似文献   

7.
Previous work described Borrelia burgdorferi sensu lato group DN127 as a new genospecies, Borrelia bissettii, and prompted the present study to identify the Borrelia spp. that exist in northern Colorado. To determine the genospecies present, we analyzed two specific intergenic spacer regions located between the 5S and 23S and the 16S and 23S ribosomal genes. Phylogenetic analysis of the derived sequences clearly demonstrated that these isolates, originating from rodents captured in the foothills of northern Colorado, diverged from B. burgdorferi sensu stricto by 5 to 5.5% and were members of the new genospecies B. bissettii.  相似文献   

8.
By using multilocus sequence analysis, five Borrelia valaisiana-related strains isolated from rodents and ticks in southwestern China were eventually classified as a new genospecies of B. burgdorferi sensu lato rather than B. valaisiana. The finding explained the differences in transmission cycle and phenotype between B. valaisiana strains from Europe and B. valaisiana-related strains from eastern Asia.  相似文献   

9.
Molecular analyses of the genes encoding OspC, a major immunodominant protein of Borrelia burgdorferi sensu lato, revealed a considerable degree of heterogeneity. In the present study, we investigated whether a similar heterogeneity of the OspC phenotype can be shown by analysis with monoclonal antibodies (MAbs). Thirteen OspC-specific MAbs (L22 MAbs) were produced by immunizing mice with either different combinations of whole-cell antigens or recombinantly expressed OspCs cloned from strains belonging to different Borrelia spp. Ten of them differed in their reactivities with various strains. Western blot (immunoblot) analyses of 38 B. burgdorferi sensu lato strains resulted in 13 different reactivity patterns. These 13 different patterns were observed among only six different OspA serotypes, indicating that OspC is more heterogeneous than OspA. Patterns 1 to 4 were present only in B. burgdorferi sensu stricto, patterns 5 to 7 were present only in Borrelia afzelii, and patterns 9 to 13 were present only in Borrelia garinii. Pattern 8 was observed among B. afzelii and B. garinii strains but not among B. burgdorferi sensu stricto strains. One L22 MAb (2B8) recognized a common OspC-specific epitope of all 38 B. burgdorferi sensu lato strains analyzed, and another one (22C11) recognized a common epitope of OspC from both B. afzelii and B. garinii and was not reactive with OspC from B. burgdorferi sensu stricto. Western blot and sequence analysis of truncated OspCs located the 22C11 epitope as well as a species-specific sequence motif between amino acids 20 and 35.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Borrelia burgdorferi sensu lato, the spirochete that causes human Lyme borreliosis (LB), is a genetically and phenotypically divergent species. In the past several years, various molecular approaches have been developed and used to determine the phenotypic and genetic heterogeneity within the LB-related spirochetes and their potential association with distinct clinical syndromes. These methods include serotyping, multilocus enzyme electrophoresis, DNA-DNA reassociation analysis, rRNA gene restriction analysis (ribotyping), pulsed-field gel electrophoresis, plasmid fingerprinting, randomly amplified polymorphic DNA fingerprinting analysis, species-specific PCR and PCR-based restriction fragment length polymorphism (RFLP) analysis, and sequence analysis of 16S rRNA and other conserved genes. On the basis of DNA-DNA reassociation analysis, 10 different Borrelia species have been described within the B. burgdorferi sensu lato complex: B. burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii, Borrelia japonica, Borrelia andersonii, Borrelia valaisiana, Borrelia lusitaniae, Borrelia tanukii, Borrelia turdi, and Borrelia bissettii sp. nov. To date, only B. burgdorferi sensu stricto, B. garinii, and B. afzelii are well known to be responsible for causing human disease. Different Borrelia species have been associated with distinct clinical manifestations of LB. In addition, Borrelia species are differentially distributed worldwide and may be maintained through different transmission cycles in nature. In this paper, the molecular methods used for typing of B. burgdorferi sensu lato are reviewed. The current taxonomic status of B. burgdorferi sensu lato and its epidemiological and clinical implications, especiallly correlation between the variable clinical presentations and the infecting Borrelia species, are discussed in detail.  相似文献   

11.
A total of 46 Borrelia burgdorferi sensu lato isolates that were isolated from patients with Lyme borreliosis and infected animals or were extracted from ticks of the genus Ixodes were analyzed. Large restriction fragment patterns obtained after cleavage of genomic DNAs with MluI were analyzed by pulsed-field gel electrophoresis (PFGE). To eliminate the contribution of plasmid DNA, only fragments greater than 70 kb were used for the analysis. The results indicated that each of the 14 B. burgdorferi sensu stricto isolates were recognized by a band at 135 kbp, each of the 12 Borrelia garinii isolates by two bands (220 and 80 kbp), and each of the 20 Borrelia afzelii isolates by three bands (460, 320, and 90 kbp). Whereas differences in the PFGE patterns among B. burgdorferi sensu stricto isolates and B. garinii isolates were noted, B. afzelii isolates were all similar. Identification of isolates by PFGE correlates with their belonging to a given species within B. burgdorferi sensu lato.  相似文献   

12.
We report the results of a study of the prevalences of three clinically relevant Borrelia burgdorferi sensu lato genospecies (Borrelia burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii) in 1,040 questing Ixodes ticks from all regions of Latvia, where Lyme borreliosis is endemic. The prevalences of Borrelia in Ixodes ricinus and Ixodes persulcatus were 22.6 and 27.9%, respectively. Molecular typing of B. burgdorferi from infected ticks was performed by restriction fragment length polymorphism (RFLP) analysis of PCR-amplified fragments of the 16S-23S (rrs-rrlA) rRNA intergenic spacer by using species-specific primers and subsequent sequencing. The dominant Borrelia species in both Ixodes species was B. afzelii. In addition, different restriction patterns of B. garinii and B. afzelii were also identified. This study demonstrates that the 16S-23S rRNA PCR-RFLP typing method is simple, sensitive, and fast and that it allows one to differentiate among B. burgdorferi species and subspecies with various degrees of pathogenic potential directly in ticks. These features are important in monitoring Lyme disease.  相似文献   

13.
We developed a rapid and reliable method for the identification Borrelia burgdorferi sensu lato species in ticks. We used the DNA sequence polymorphism of the spacer region between 5S and 23S rRNA genes, which has been shown to be able to discriminate between eight genomic groups of B. burgdorferi sensu lato (D. Postic, M. Assous, P. A. D. Grimont, and G. Baranton, Int. J. Syst. Bacteriol. 44:743-752, 1994). Spacer DNA was amplified by PCR and was then hybridized to five membrane-bound oligonucleotides. The oligonucleotides were specific for B. burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii, and group VS116. A probe which reacted with all genomic groups of B. burgdorferi sensu lato was also used. Ninety-six ticks collected in the field were destructed by bead beating, and the supernatant was used directly in a PCR. B. burgdorferi sensu lato DNA was detected in 6 of 57 adult ticks (11%) and 9 of 39 nymphs (23%). B. garinii was found in three nymphs and four adults, three nymphs carried B. afzelii, and one adult and one nymph carried group VS116. Double infections with B. afzelii and group VS116 were found in two nymphs and one adult. Thus, our method can simultaneously identify three genomic groups of B. burgdorferi sensu lato in ticks collected in the field. This technique provides new ways to study the association of genomic groups present in ticks and the risk of Lyme borreliosis.  相似文献   

14.
The growth of 29 human strains from the three main pathogenic species of Borrelia burgdorferi sensu lato on a solid BSK-based medium was compared in two culture atmospheres: 3% CO(2) air and anaerobiosis. All strains grew under anaerobic conditions, whereas only 13 strains were able to grow in aerobiosis with 3% CO(2) (P<0.001). In the latter condition, 75% of the B. burgdorferi sensu stricto strains grew versus 33% of the B. garinii and B. afzelii strains. These data suggest that, especially for B. garinii and B. afzelii species, anaerobic conditions enhance growth yield and speed of low-passage Borrelia strains.  相似文献   

15.
The outer surface protein C gene (ospC) of Lyme disease spirochaetes (Borrelia burgdorferi sensu lato) was analysed for the first time in Taiwan. The genetic identities of these Taiwan isolates (TWKM1-7) were determined by restriction fragment length polymorphism (RFLP) analysis and sequence similarities of the PCR-amplified ospC gene amplicons. After cleavage by nuclease Dral, differential fragment patterns of PCR-amplified ospC DNA in relation to different genospecies of Lyme disease spirochaetes were observed and all of these Taiwan isolates were genetically affiliated to the genospecies of B. burgdorferi sensu stricto. The phylogenetic analysis on the sequence similarity of these Taiwan isolates revealed a highly homogeneous genotype, ranging from 99.3% to 100%, within the genospecies of B. burgdorferi sensu stricto and was distinguished from other genospecies of Borrelia isolates. The sequence similarity analysis also revealed the high sequence variability of the ospC gene among Borrelia strains that belong to the same genospecies but were isolated from different biological and geographical sources. Thus, these results provide the first investigation on the genetic identity of the ospC gene of these Taiwan isolates and show that these Taiwan isolates were closely related genetically to the genospecies of B. burgdorferi sensu stricto.  相似文献   

16.
Fifteen Borrelia burgdorferi sensu lato isolates from questing ticks and skin biopsy specimens from erythema migrans patients in three different areas of Spain were characterized. Four different genospecies were found (nine Borrelia garinii, including the two human isolates, three B. burgdorferi sensu stricto, two B. valaisiana, and one B. lusitaniae), showing a diverse spectrum of B. burgdorferi sensu lato species. B. garinii isolates were highly variable in terms of pulsed-field gel electrophoresis pattern and OspA serotype, with four of the seven serotypes described. One of the human isolates was OspA serotype 5, the same found in four of seven tick isolates. The second human isolate was OspA serotype 3, which was not present in ticks from the same area. Seven B. garinii isolates were able to disseminate through the skin of C3H/HeN mice and to cause severe inflammation of joints. One of the two B. valaisiana isolates also caused disease in mice. Only one B. burgdorferi sensu stricto isolate was recovered from the urinary bladder. One isolate each of B. valaisiana and B. lusitaniae were not able to disseminate through the skin of mice or to infect internal organs. In summary, there is substantial diversity in the species and in the pathogenicity of B. burgdorferi sensu lato in areas in northern Spain where Lyme disease is endemic.  相似文献   

17.
The molecular and antigenic variabilities of BmpA (P39) among European isolates of Borrelia burgdorferi were analyzed. The bmpA sequences of 12 isolates representing all three species of B. burgdorferi sensu lato pathogenic for humans were amplified by PCR, cloned, and sequenced. The BmpA protein of Borrelia garinii is heterogeneous, with an amino acid sequence identity ranging from 91 to 97%, whereas the BmpA proteins of Borrelia afzelii and B. burgdorferi sensu stricto strains appear to be highly conserved (>98.5% intraspecies identity). The interspecies identities ranged from 86 to 92%. Cluster analysis of BmpA reflected the subdivision of B. burgdorferi sensu lato isolates into the three species as well as a considerable heterogeneity among B. garinii strains. The BmpA protein of each species of B. burgdorferi sensu lato was recombinantly expressed in Escherichia coli, purified, and used to generate monoclonal antibodies. Seven BmpA-specific antibodies were identified; six of them recognized conserved epitopes of all three species, whereas one was specific for BmpA of B. afzelii and B. garinii. A monoclonal antibody (H1141) recommended by the Centers for Disease Control and Prevention for use in the standardization of immunoblots showed strong reactivity with BmpA of B. burgdorferi sensu stricto but no or only weak reactivity with BmpA of B. garinii and B. afzelii, respectively. Sera from 86 European patients with Lyme borreliosis in different stages and 73 controls were tested in immunoglobulin G (IgG) and IgM immunoblots with the recombinant BmpA proteins of the three species, revealing specificities of 98.6 to 100%. IgM antibodies against recombinant BmpA were only rarely detected (1.1 to 8.1%). With the BmpA proteins of B. afzelii and B. garinii, sensitivities for the IgG test (sera from stages I to III) were 36.0 and 34.9%, respectively, in contrast to 13.9% with BmpA of B. burgdorferi sensu stricto. Therefore, we recommend that recombinant BmpA of B. afzelii or B. garinii should be used solely, or in addition to B. burgdorferi sensu stricto BmpA, in serodiagnostic tests for Lyme borreliosis in Europe.  相似文献   

18.
Among Borrelia burgdorferi sensu lato isolates, seven outer surface protein A (OspA) serotypes have been described: serotypes 1 and 2 correspond to B. burgdorferi sensu stricto and Borrelia afzelii, respectively, and serotypes 3 to 7 correspond to Borrelia garinii. In Europe, serotype 4 has never been isolated from Ixodes ricinus ticks until recently, although this serotype has been frequently isolated from cerebrospinal fluid from patients. In Europe, B. afzelii and B. burgdorferi sensu stricto were found associated with rodents and B. garinii was found associated with birds. In this study, the reservoir role of Apodemus mice for B. garinii OspA serotype 4 was demonstrated by xenodiagnosis. Apodemus mice are the first identified reservoir hosts for B. garinii OspA serotype 4.  相似文献   

19.
A LightCycler-based PCR protocol was developed which targets the ospA gene for the identification and quantification of the different Borrelia burgdorferi sensu lato species in culture and in ticks, based on the use of a fluorescently labeled probe (HybProbe) and an internally labeled primer. The detection limit of the PCR was 1 to 10 spirochetes. A melting temperature determined from the melting curve of the amplified product immediately after thermal cycling allowed the differentiation of the three different B. burgdorferi sensu lato genospecies (B. burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii) that are clinically relevant in Europe in a single PCR run. This method represents a simplified approach to study the association of different Borrelia species in ticks, the risk of Lyme borreliosis, and the putatively species-specific clinical sequelae. To determine the reliability of the real-time PCR protocol, we studied the prevalence of B. burgdorferi sensu lato infection in Ixodes ricinus ticks. A total of 1,055 ticks were collected by flagging vegetation in five different sites in the region of Konstanz (south Germany) and were examined for the distribution of B. burgdorferi species by real-time PCR. The mean infection rate was 35%. Of 548 adult ticks, 40% were positive, and of 507 nymphs, 30% were positive. The predominant genospecies (with 18% mixed infections) in the examined areas was B. afzelii (53%), followed by B. garinii (18%) and B. burgdorferi sensu stricto (11%); 0.8% of the infecting Borrelia could not be identified.  相似文献   

20.
At least three Borrelia species (Borrelia afzelii, Borrelia garinii and Borrelia burgdorferi sensu stricto) cause disease in humans, but Borrelia spielmanii, Borrelia valaisiana, Borrelia lusitaniae and Borrelia bissettii have also been reported to be rare or potential causes of human disease in Europe. Pulsed-field gel electrophoresis after MluI restriction of the genomic DNA (MluI large restriction fragment patterns, LRFPs) represents one of several approaches that have been used to assess Borrelia genotypic characteristics. The aim of the present report was to analyze the value of MluI-LRFP for identification of B. burgdorferi sensu lato at a species level and for further species subtype delineation. Results of the present study are based on 1487 B. afzelii strains, 285 B. garinii strains, 29 B. burgdorferi sensu stricto strains, 23 B. valaisiana strains, 8 B. spielmanii strains and 3 B. lusitaniae strains. Using MluI-LRFP, we were able to delineate all Borrelia species included in the study. Each of the six examined Borrelia species displayed unique MluI-LRFPs that enabled straightforward separation of strains into particular species, and also of strains within species. The subtypes of B. afzelii (Mla2 and Mla3), B. spielmanii (Mls1 and Mls2) and B. lusitaniae (Mll1 and Mll2) uncovered in the present analysis have not been reported previously. MluI-LRFP represents a highly specific and reproducible method for Borrelia identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号