首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Topotecan (TPT) is indicated against a variety of solid tumors, but has restricted clinical use owing to associated pharmaceutical caveats. This study is focused at formulating a successful TPT PLGA nanosystem which ameliorates the rapid conversion of active lactone form of drug to its inactive carboxylate form and consequently improvises its efficacy. TPT PLGA nanoparticles were formulated by a double emulsion-solvent evaporation technique with sequential optimization to obtain desired particle size, PDI, zeta potential, and entrapment efficiency. Stability of TPT was ensured by maintaining an acidic pH in the drug-containing phase and the system was evaluated for in vitro–in vivo performance including cytotoxic potency. The optimized nanosystem had a particle size of 187.33?±?7.50?nm, a PDI of 0.179?±?0.05, and an entrapment efficiency of 56?±?1.2%. Low pH in the interior of nanoparticles stabilized the drug to remain in its active lactone form and revealed a biphasic release pattern till 15?d. Additionally, an in vitro cytotoxicity testing as well as in vivo antitumor efficacy demonstrated a significant potential of higher proliferation inhibition as compared with neat drug (TPT). Thus, the investigation summarized an innovative simple tool for developing stable TPT NPs for effective delivery for treating solid tumors.  相似文献   

2.
Diacerein (DCN) is a hydrophobic osteoarthritis (OA) drug with short half-life and low oral bioavailability. Furthermore, DCN oral administration is associated with diarrhea which represents obstacle against its oral use. Hence, this article aimed at developing elastosomes (edge activator (EA)-based vesicular nanocarriers) as a novel transdermal system for delivering DCN efficiently and avoiding its oral problems. For achieving this goal, elastosomes were prepared according to 41.21 full factorial design using different EAs in varying amounts. The prepared formulae were characterized regarding their entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), zeta potential (ZP) and deformability index (DI). Desirability function was employed using Design-Expert® software to select the optimal elastosomes (E1) which showed EE% of 96.25?±?2.19%, PS of 506.35?±?44.61?nm, PDI of 0.46?±?0.09, ZP of ?38.65?±?0.91?mV, and DI of 12.74?±?2.63?g. In addition, E1 was compared to DCN-loaded bilosomes and both vesicles exhibited superior skin permeation potential and retention capacity compared to drug suspension. In-vivo histopathological study was performed which ensured the safety of E1 for topical application. Furthermore, the pharmacokinetic study conducted in albino rabbits demonstrated that there was no significant difference in the rate and extent of DCN absorption from topically applied E1 compared to oral suspension. Multiple level C in-vitro in-vivo correlation showed good correlation between in-vitro release and in-vivo drug performance for E1 and DCN oral suspension. Overall, results confirmed the admirable potential of E1 to be utilized as novel carrier for transdermal delivery of DCN and bypassing its oral side effects.  相似文献   

3.
The principal purpose of the present study was to prepare and characterize a complex drug delivery system consisting of Nafarelin-poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles (NPs) in combination with sodium alginate/poloxamer 407 in situ gel. Nafarelin-loaded PHBV NPs were prepared via double emulsion solvent evaporation technique. Box–Behnken Response Surface Methodology was utilized to optimize NPs. Mean particle size, polydispersity index (PDI), entrapment efficiency (EE), and drug loading (DL) of the optimized NPs were measured. Incorporation of Nafarelin within NPs was proven by differential scanning calorimetry (DSC). The combination delivery system (CDS) was prepared by adding Nafarelin-loaded PHBV NPs to sodium alginate/poloxamer 407 solution followed by physical mixing. Morphological properties of Nafarelin-loaded PHBV NPs and CDS were evaluated by SEM. Rheological properties were employed to investigate the effects of alginate concentration on sol–gel transition temperature. The release profile of Nafarelin from both PHBV NPs and CDS were individually assessed. The cumulative release percentage from CDS was significantly lower than Nafarelin released from PHBV NPs. Based on the favorable results in this study, the CDS consisting of sodium alginate/poloxamer 407 loaded with PHBV NPs could be a promising candidate for designing a long-lasting formulation of Nafarelin.  相似文献   

4.
In the present study, rosuvastatin calcium-loaded nanostructured lipid carriers were developed and optimized for improved efficacy. The ROS-Ca-loaded NLC was prepared using melt emulsification ultrasonication technique and optimized by Box–Behnken statistical design. The optimized NLC composed of glyceryl monostearate (solid lipid) and capmul MCM EP (liquid lipid) as lipid phase (3% w/v), poloxamer 188 (1%) and tween 80 (1%) as surfactant. The mean particle size, polydispersity index (PDI), zeta potential (ζ) and entrapment efficiency (%) of optimized NLC formulation was observed to be 150.3?±?4.67?nm, 0.175?±?0.022, ?32.9?±?1.36?mV and 84.95?±?5.63%, respectively. NLC formulation showed better in vitro release in simulated intestinal fluid (pH 6.8) than API suspension. Confocal laser scanning showed deeper permeation of formulation across rat intestine compared to rhodamine B dye solution. Pharmacokinetic study on female albino Wistar rats showed 5.4-fold increase in relative bioavailability with NLC compared to API suspension. Optimized NLC formulation also showed significant (p?<?0.01) lipid lowering effect in hyperlipidemic rats. Therefore, NLC represents a great potential for improved efficacy of ROS-Ca after oral administration.  相似文献   

5.
Abstract

Context: Doxorubicin (DOX)-loaded folate-targeted poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) [P(HB-HO)] nanoparticles [DOX/FA-PEG-P(HB-HO) NPs] have potential application in clinical treatments for cervical cancer due to specific affinity of folate and folate receptor in HeLa cells.

Objective: The aim of this study was to develop an optimized formulation for DOX/FA-PEG-P(HB-HO) NPs, and investigate the targeting and efficacies of the nanoparticles.

Materials and methods: DOX/FA-PEG-P(HB-HO) NPs were prepared by W1/O/W2 solvent extraction/evaporation method, and an orthogonal experimental design [L9 (34)] was applied to establish the optimum conditions. The physico–chemical characteristics, microscopic observation and in vivo antitumor study of the nanoparticles were evaluated.

Results: The optimum formulation was obtained with DOX 10% (w/v), FA-PEG-P(HB-HO) 6.5% (w/v), PVA 3%(w/v) and oil phase/internal water phase volume ratio of 3/1. The size distribution, drug loading and encapsulation efficiency of the optimized nanoparticles were 150–350?nm, 29.6?±?2.9% and 83.5?±?5.7%, respectively. In vitro release study demonstrated that 80% of the drug could release from the nanoparticles within 11 days. Furthermore, in vitro microscopic observation and in vivo antitumor study showed that DOX/FA-PEG-P(HB-HO) NPs could inhibit HeLa cells effectively, and the tumor inhibition rate (TIR) in vivo was 76.91%.

Discussion and conclusions: DOX/FA-PEG-P(HB-HO) NPs have been successfully developed and optimized. In vitro drug release study suggested a sustained release profile. Moreover, DOX/FA-PEG-P(HB-HO) NPs could effectively inhibit HeLa cells with satisfying targeting, and reduce side effects and toxicity to normal tissues. DOX/FA-PEG-P(HB-HO) NPs were superior in terms of inhibiting HeLa tumor over non-targeted formulations therapy.  相似文献   

6.
The purpose of this study was the preparation, optimisation and in vitro characterisation of PHBV and PLGA blend nanoparticles (NPs) for prolonged delivery of Teriparatide. Double emulsion solvent evaporation technique was employed for the fabrication of NPs. The nanoformulation was optimised using the Box–Behnken methodology. The morphological properties of NPs were assessed by both SEM and transmission electron microscopy (TEM). Encapsulation of Teriparatide within the NPs and lacking of chemical bonds between drug and copolymers were proved by XRPD, FTIR and DSC. The structural stability of Teriparatide after processing was confirmed by fluorescence spectrometry. The average size of optimised NPs was 250.0?nm with entrapment efficiency (EE) of 89.5% and drug loading (DL) of 5.0%. Teriparatide release from optimised NPs led to 64.4% release over 30 days and it showed a diffusion-based mechanism. Based on the favourable results, PHBV/PLGA blend NPs could be a promising candidate for designing a controlled release formulation of Teriparatide.  相似文献   

7.
Abstract

The present work was performed aiming to develop a new solid self-emulsifying system (SMEDDS) for poorly water-soluble drug Lornoxicam and evaluate the bioavailability in Wister rats by oral gavage. Liquid SMEDDS of Lornoxicam was formulated with Labrafil M 1944 CS as oil phase, Kolliphor HS 15 as a surfactant and Transcutol HP as a cosurfactant after screening various vehicles. The microemulsion system selected from the phase diagram and optimized by central composite design (CCD) response surface method was transformed into solid-SMEDDS (S-SMEDDS) by lyophilization using sucrose as cryoprotectant. The formulations were further characterized by the particle size, poly dispersity index (PDI), self-emulsifying time, zeta potential, transmission electron microscope (TEM), differential scanning calorimeter (DSC), in vitro drug release and in vivo pharmacokinetics. Results of DSC studies confirmed that the drug was incorporated in the S-SMEDDS. The in vitro drug release from Lornoxicam SMEDDS was found to be greatly higher in comparison with that from the commercial tablets. It was indicated that SMEDDS might be effective in reducing the effect of pH variability of Lornoxicam and improving the release performance of Lornoxicam. HPLC system was applied to study the concentration of Lornoxicam in the plasma of the Wister rats after oral administration of Lornoxicam SMEDDS and Lornoxicam commercial tablets. The pharmacokinetics parameters of the rats were Cmax 1065.91?±?224.90 and 1855.22?±?748.25?ngmL?1, Tmax were 2.5?±?0.4?h and 1.8?±?0.5?h, and AUC0~t were 5316.35?±?323.62 and 7758.07?±?241.57?ngmL?1?h, respectively. Calculated by AUC0~∞, the relative bioavailability of Lornoxicam S-SMEDDS was 151.69?±?15.32%. It suggested that this S-SMEDDS could be used as a successful oral solid dosage form to improve the solubility and bioavailability of poorly water-soluble drug Lornoxicam as well.  相似文献   

8.
Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4–5?h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190?nM, 380?nM and 950?nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2?h (Q2h) and 24?h (Q24h). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10?mg) and G6 (190?nM). It possessed small particle size (113.85?nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q2?h (41.45%) and Q24?h (74.05%). Compared to Levitra® tablets, the significantly (p?<?0.01) delayed Tmax, prolonged MRT(0?∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.  相似文献   

9.
Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) of Val-Val dipeptide monoester prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV) and D-Val-L-Val-GCV (DLGCV) were formulated and dispersed in thermosensitive PLGA-PEG-PLGA polymer gel for the treatment of herpes simplex virus type 1 (HSV-1)-induced viral corneal keratitis. Nanoparticles containing prodrugs of GCV were prepared by a double-emulsion solvent evaporation technique using various PLGA polymers with different drug/polymer ratios. Nanoparticles were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential and crystallinity. Prodrugs-loaded NP were incorporated into in situ gelling system. These formulations were examined for in vitro release and cytotoxicity. The results of optimized entrapment efficiencies of LLGCV-, LDGCV- and DLGCV-loaded NP are of 38.7?±?2.0%, 41.8?±?1.9%, and 45.3?±?2.2%; drug loadings 3.87?±?0.20%, 2.79?±?0.13% and 3.02?±?0.15%; yield 85.2?±?3.0%, 86.9?±?4.6% and 76.9?±?2.1%; particle sizes 116.6?±?4.5, 143.0?±?3.8 and 134.1?±?5.2?nm; and zeta potential ?15.0?±?4.96, ?13.8?±?5.26 and ?13.9?±?5.14?mV, respectively. Cytotoxicity studies suggested that all the formulations are non-toxic. In vitro release of prodrugs from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels with near zero-order release kinetics. Prodrugs-loaded PLGA NP dispersed in thermosensitive gels can thus serve as a promising drug delivery system for the treatment of anterior eye diseases.  相似文献   

10.
This study aims at developing an optimised nanostructured lipid carrier (NLC) of lycopene for efficient absorption following oral administration. The optimised formulation showed an average particle size of 121.9?±?3.66?nm, polydispersity index (PDI) 0.370?±?0.97 and zeta potential ?29.0?±?0.83?mV. Encapsulation Efficiency (% EE) and drug loading (% DL) was found to be 84.50%?±?4.38 and 9.54%?±?2.65, respectively. In vitro release studies demonstrated the burst release within 4–9?h followed by sustained release over 48?h. The IC50 value of lycopene extract and optimised NLC for ABTS+? were found to be 172.37?μg Trolox equivalent and 184.17?μg Trolox equivalent whereas, for DPPH?, 117.76?μg Trolox equivalent and 143.08?μg Trolox equivalent respectively. Ex vivo studies and MTT assay revealed that the NLC had better permeation and cause sufficiently more cytotoxicity as compared to drug extract due to higher bioavailability and greater penetration.  相似文献   

11.
The aim of the present study was to develop and evaluate positively charged nanoparticles of aceclofenac for ocular delivery. The nanoparticles were prepared by the nanoprecipitation method using Eudragit RS 100. The optimized nanoparticles were found to have narrow particle size range (238.9?±?8?nm) with nearly spherical shape, positive zeta potential (40.3?±?3.8). Higher entrapment efficiency of aceclofenac (94.53?±?1.0%) with prolonged in vitro drug release profiles was also observed. Powder X-ray diffraction and differential scanning calorimetry studies indicated decrease in crystallinity of drug within the nanoparticulate polymeric matrix. The formulation was found to have higher permeation as compared to aceclofenac aqueous solution. Nanoparticle formulation was found to be quite stable and well tolerated with no signs of corneal damage. The in vivo studies involving the arachidonic acid-induced ocular inflammation in rabbits showed optimal efficacy of the nanoparticles with significantly higher inhibition of polymorphonuclear leukocytes migration (p?<?0.05) and lid closure scores.  相似文献   

12.
Controlled-release multiparticulate systems of hydrophilic drugs usually suffer from poor encapsulation and rapid-release rate. In the present study, ultra-high loaded controlled release polymeric beads containing verapamil hydrochloride (VP) as hydrophilic model drug were efficiently prepared using superamphiphobic substrates aiming to improve patient compliance by reducing dosing frequency. Superamphiphobic substrates were fabricated using clean aluminum sheets etched with ammonia solution and were treated with 1.5% (w/v) perfluorodecyltriethoxysilane (PFDTS) alcoholic solution. The effect of the main polymer type (lactide/glycolide (PLGA) 5004A, PLGA 5010, and polycaprolactone (PCL)), copolymer (Eudragit RS100) content together with the effect of drug load on encapsulation efficiency (EE%) and in vitro drug release was statistically studied and optimized via D-optimal statistical design. In vivo pharmacokinetic study was carried out to compare the optimized system relative to the market product (Isoptin®). Results revealed that superamphiphobic substrates were successfully prepared showing a rough micro-sized hierarchical structured surface upon observing with scanning electron microscope and were confirmed by high contact angles of 151.60?±?2.42 and 142.80°±05.23° for water and olive oil, respectively. The fabricated VP-loaded beads showed extremely high encapsulation efficiency exceeding 92.31% w/w. All the prepared systems exhibited a controlled release behavior with Q12?h ranging between 5.46 and 95.90%w/w. The optimized VP-loaded system composed of 150?mg (1.5% w/v) PCL without Eudragit RS100 together with 160?mg VP showed 2.7-folds mean residence time compared to the market product allowing once daily administration instead of three times per day.  相似文献   

13.
《Drug delivery》2013,20(6):785-794
Abstract

The objective of this study was to evaluate the potential of using polymeric micelles modified with a peptide (termed GE11) ligand of epidermal growth factor receptor as the targeted carriers to achieve increased accumulation in laryngeal cancer and enhanced intracellular delivery for the encapsulated anticancer drugs. Poly (ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) micelles containing paclitaxel were prepared via film-hydration method followed by investigation of in vitro release of paclitaxel in phosphate-buffered saline. The average size of GE11-PEG-DSPE/paclitaxel micelle and mPEG-DSPE/paclitaxel were 35?±?2.8?nm [the polydispersity index (PDI)?=?0.207] and 28?±?2.1?nm (PDI?=?0.154), respectively. Micelles with or without GE11-modified had similar physicochemical properties. Transmission electron microscopy showed that the micelles were homogeneous and spherical in shape. Encapsulation efficiency and drug loading of the micelle were 74.11?±?3.89% and 3.58?±?2.82%, respectively. The in vitro targeting characteristic of GE11-modified micelles was investigated by observing the level of cellular uptake of fluorescent coumarin-6-loaded micelles on EGFR over-expressed human laryngeal cancer cell line Hep-2 and EGFR low-expressed human leukemic cell line U-937. Hep-2 cell proliferation was significantly inhibited by GE11-PEG-DSPE/paclitaxel micelle compared to mPEG-DSPE/paclitaxel micelle and Taxol in vitro. Our results suggested that GE11-PEG-DSPE micelle could be a promising strategy for enhancing paclitaxel’s chemotherapeutic effects on EGFR over-expressed cancer cells.  相似文献   

14.
Background: Generally, chemotherapeutic drugs attack on both normal and tumor cells non-specifically causing life threatening side effects, necessitating targeted drug delivery to tumors.

Purpose: The purpose of this study is to formulate albumin-based nanoparticles for tumor targeted drug delivery and noninvasive diagnosis.

Methods: Albumin based nanoparticles (NPs) were developed as a potential tumor theragnostic agent by entrapping an anti cancer drug, doxorubicin and a near infrared dye, indocyanine green. Theragnostic nanoparticles were prepared using a well established coacervation/nanoprecipitation method followed by lyophilization. The formulation was optimized by varying process parameters using full factorial design of experiments. Release of dye and drug from NPs and physical state of the drug in NPs was studied using DSC. The NPs were injected into tumor bearing mice intravenously and imaged using a bio-imager.

Results: The optimized nanoparticle formulation had a particle size of 125.0?±?1.8?nm, poly dispersity index of 0.180?±?0.057 and zeta potential of ?32.7?±?0.9 mV. The release of dye and drug from the nanoparticles was determined to be quasi-fickian diffusion mediated. Differential scanning calorimetry (DSC) studies revealed the stability of drug in the NP. The in-vivo studies showed enhanced accumulation of the dye loaded NPs at the tumor site than the dye solution, thus allowing noninvasive tumor monitoring.

Conclusion: These results project the newly proposed and evaluated nanoparticle formulation as a potential tumor targeting and imaging delivery system.  相似文献   

15.
Letrozole (LTZ), an aromatase inhibitor used for the treatment of hormonally-positive breast cancer in postmenopausal women, has poor water solubility, rapid metabolism, and a range of side effects. In this study, polymer-based nanoparticles (NPs) incorporating the drug have been designed and characterized, aimed to control the release, potentially maximize the therapeutic efficiency, and minimize the side effects of the drug. LTZ was incorporated into poly(d,l-lactide) (PDLLA) NPs by employing the emulsion-solvent evaporation technique using a range of drug concentrations. Loaded drug and drug-polymer interactions were studied using X-ray diffraction and NPs morphology was evaluated using scanning electron microscopy (SEM). Particle size distribution (PSD) and zeta potential of the NPs were analyzed using dynamic light scattering (DLS) and laser Doppler velocimetry (LDV), respectively. Drug content and release profile studies were carried out and determined using ultra performance liquid chromatography (UPLC). The yield of LTZ-PDLLA NPs reached as high as 85%. The NPs were spherical and smooth, regardless of LTZ concentration in the formulation. However, particle size increased from 241.6?±?1.2 to 348.7?±?6.1?nm upon increasing LTZ concentration from 0 to 30% w/w, with entrapment efficiencies reaching up to 96.8%. Drug release from the polymeric matrix was best described by Higuchi model with a predominant diffusion-based mechanism. More than 15, 46, and 86% of LTZ was released in a controlled fashion over 30?d from the 10, 20, and 30% LTZ-PDLLA NPs, respectively. Overall, LTZ-PDLLA NPs were designed with appropriate size and surface charge, high drug loading, superior entrapment efficiency, and prolonged release profile.  相似文献   

16.
The aim of this study was to develop anti-EGFR antibody conjugated poly(lactide-co-glycolide) nanoparticles (NPs) to target epidermal growth factor receptor, highly expressed on non-small cell lung cancer cells to improve cytotoxicity and site specificity. Cetuximab was conjugated to docetaxel (DTX) loaded PLGA NPs by known EDC/NHS chemistry and characterised for size, zeta potential, conjugation efficiency and the results were 128.4?±?3.6?nm, –31.0?±?0.8?mV, and 39.77?±?3.4%, respectively. In vitro release study demonstrated sustained release of drug from NPs with 25% release at pH 5.5 after 48?h. In vitro cytotoxicity studies demonstrated higher anti-proliferative activity of NPs than unconjugated NPs. Cell cycle analysis and apoptosis study were performed to evaluate extent of cell arrest at different phases and apoptotic potential for the formulations, respectively. In vivo efficacy study showed significant reduction in tumour growth and so antibody conjugated NPs present a promising active targeting carrier for tumour selective therapeutic treatment.  相似文献   

17.

Purpose

Preparation of topical ophthalmic formulations containing brimonidine-loaded nanoparticles prepared from various biodegradable polymers—PCL, PLA and PLGA—for sustained release of brimonidine as a once daily regimen for management of glaucoma.

Methods

Nanoparticles were prepared using spontaneous emulsification solvent diffusion method then characterized regarding their particle size, zeta potential, morphology and drug contents. Brimonidine-loaded nanoparticles were incorporated into eye drops, temperature-triggered in situ gelling system and preformed gel and characterized regarding their pH, viscosity, uniformity of drug contents, in vitro release study, in vitro cytotoxicity and in vivo intraocular pressure (IOP) lowering effects.

Results

The results of optimized brimonidine-loaded PCL-, PLGA- and PLA-NPs respectively, are: particle sizes of 117.33?±?4.58 nm, 125.67?±?5.15 nm and 131.67?±?3.79 nm; zeta potentials of ?18.5?±?2.87 mV, ?21.82?±?2.7 mV and ?28.11?±?2.21 mV; and encapsulation efficiencies of 77.97?±?1.38%, 68.65?±?3.35% and 73.52?±?2.92%. TEM analyses revealed that all NPs have spherical shapes with dense core and distinct coat. In vitro release data showed a sustained release without any burst effect with Higuchi non-Fickian diffusion mechanism. Cytotoxicity studies revealed that all formulations are non-toxic. Also all formulations possessed a sustained IOP lowering effect compared to Alphagan® P eye drops.

Conclusions

Our formulations showed prolonged management of glaucoma that should meet with better patient compliance as a once-daily formulation.  相似文献   

18.
Chitosan nanoparticles loaded with insulin (IN-CS-NPs) were prepared using ionic gelation method using sodium tripolyphophate as a crosslinker. Later the nanoparticles (NPs) were dispersed in buccal films. The physicochemical properties and the morphology of the nanoparticles were characterized. The stability and release of insulin from the NPs were investigated. Buccal films were prepared separately and their properties such as the weight, thickness, pH, and mucoadhesiveness were investigated. The best film was used to disperse IN-CS-NPs and the loaded film was characterized. The nanoparticles size, polydispersity index, zeta potential, entrapment efficacy, and the loading capacity were 325.07?±?1.32?nm, 0.38?±?0.03 and 8.41?±?0.80?mV, and 73.27 and 18.03%, respectively. The weight and thickness of the loaded film with IN-CS-NPs were 23.0?±?3.0?mg and 0.32?±?0.04?mm, respectively and the mucoadhesive force was 2.3?±?0.2 N. The drug was stable in the NPs and in the films for three months, and its release was controlled by the film and the nanoparticles. Finally, the films loaded with IN-CS-NPs were studied in vivo and were compared to the commercially available insulin. The films prepared in this work were found to decrease glucose level significantly in diabetic rats.  相似文献   

19.
The blood-brain barrier is a major barrier in the neurological diseases treatment and precludes the entry of drugs from blood to brain. Here, we developed 29-amino-acid peptide derived from rabies virus glycoprotein (RVG29) peptide conjugated itraconazole-loaded albumin nanoparticles (RVG29-ITZ-NPs). The RVG29 peptide was conjugated to the albumin NPs using biotin-binding streptavidin as crosslinker. The NPs were characterized in terms of particle size, zeta potential, drug loading and release behavior in vitro. Cellular uptake of RVG29-ITZ-NPs was investigated by flow cytometry. Pharmacokinetics and brain distribution of RVG29-ITZ-NPs were investigated after intravenous administration of NPs. The particle size of RVG29-ITZ-NPs was 89.3?±?1.9?nm as determined by dynamic light scattering. The zeta potential of RVG29-ITZ-NPs was ?33.1?±?0.9 mV. RVG29-ITZ-NPs exhibited a sustained release profile within 24?h. In vitro cellular uptake studies demonstrated that RVG29 significantly facilitated the intracellular delivery of NPs. A significant (P?<?0.05) accumulation of ITZ in brain was observed for RVG29-ITZ-NPs as compared with ITZ-NPs and cyclodextrin formulation of ITZ (ITZ-CD). These results suggested that RVG29-ITZ-NPs can be exploited as a potential therapeutic formulation for the intracranial fungal infection.  相似文献   

20.

Purpose

The aim of this study was to incorporate noscapine (Nos) into methoxy poly (ethylene glycol)-poly (lactide-co-glycolide) (mPEG-PLGA) nanoparticles and optimize its size, entrapment efficacy% (EE%), and drug loading% (DL%).

Methods

Nanoprecipitation was employed for preparation of the nanoparticles. In this respect, the Box–Behnken experimental design was applied to optimize preparation of formulation ingredients and process conditions. Polymer concentration (Polymer Conc.), drug concentration (Drug Conc.), and solvent to antisolvent ratio (S/A) were chosen as independent factors, while size, EE%, and DL% were dependent parameters.

Results

Obtained model demonstrated that polymer and drug concentration had direct effects on size while the effect of S/A was non-linear and somehow negligible. Also, to have maximum EE% and DL%, drug Conc. should be at the highest level, while polymer Conc. should be decreased. The optimized sample, with mean ± SD size (nm), EE%, and DL% of 156?±?17 nm, 98?±?0.15, and 19.1?±?0.5, respectively, was achieved experimentally, by utilizing drug Conc. of 0.25% (W/V), polymer Conc. of 0.19% (W/V), and S/A of 0.93. The optimized sample showed spherical shape and monodisperse distribution using scanning electron microscopy. In vitro release profile of the optimized nanoparticles showed a biphasic release pattern for the drug. A 3-month stability study of freeze-dried formulation demonstrated negligible change in size and DL%.

Conclusion

The obtained model showed that concentrations of polymer and drug are the dominant factors in determining size, EE%, and DL%.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号