首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Although mononuclear cell infiltration is a hallmark of cellular rejection of a vascularized allograft, efforts to inhibit rejection by blocking leukocyte-endothelial cell adhesion have proved largely unsuccessful, perhaps in part because of persistent generation of chemokines within rejecting grafts. We now provide, to our knowledge, the first evidence that in vivo blockade of specific chemokine receptors is of therapeutic significance in organ transplantation. Inbred mice with a targeted deletion of the chemokine receptor CCR1 showed significant prolongation of allograft survival in 4 models. First, cardiac allografts across a class II mismatch were rejected by CCR1(+/+) recipients but were accepted permanently by CCR1(-/-) recipients. Second, CCR1(-/-) mice rejected completely class I- and class II-mismatched BALB/c cardiac allografts more slowly than control mice. Third, levels of cyclosporin A that had marginal effects in CCR1(+/+) mice resulted in permanent allograft acceptance in CCR1(-/-) recipients. These latter allografts showed no sign of chronic rejection 50-200 days after transplantation, and transfer of CD4(+) splenic T cells from these mice to naive allograft recipients significantly prolonged allograft survival, whereas cells from CCR1(+/+) mice conferred no such benefit. Finally, both CCR1(+/+) and CCR1(-/-) allograft recipients, when treated with a mAb to CD4, showed permanent engraftment, but these allografts showed florid chronic rejection in the former strain and were normal in CCR1(-/-) mice. We conclude that therapies to block CCR1/ligand interactions may prove useful in preventing acute and chronic rejection clinically.  相似文献   

3.
Bronchiolitis obliterans (BO) after lung transplantation prevents a satisfactory prognosis, and recent studies suggested that interleukin-10 (IL-10) gene transfer to distant organs could inhibit BO in rodent models. Although delivery of the therapeutic gene to a local airway would be favored to minimize systemic effects, current limitations include lower gene transfer efficiency to airway epithelium. As recombinant Sendai virus (SeV) can produce dramatically efficient gene transfer to airway epithelium, we determined if SeV-mediated IL-10 gene transfer to the local airway would inhibit bronchial fibrous obliteration in murine tracheal allografts. Administration of cyclosporine A (CsA) significantly promoted not only recovery of the injured airway epithelium but also SeV-mediated IL-10 expression (CsA- versus CsA+ =228+/-78 versus 3627+/-1372 pg/graft with 5 x 10(7) pfu), thereby suggesting the requirement of epithelia for efficient gene transfer. Even at the highest expression, no significant leakage of IL-10 was evident in the systemic circulation, and the induction of interferon-gamma was completely diminished on day 7 by IL-10 gene transfer. As a result, luminal loss was significantly prevented in allografts treated with SeV-IL-10 (luminal opening, all control groups: 0% respectively, and SeV-IL-10 5 x 10(7) pfu: 25.7+/-10.5%), an effect that was enhanced by short-term CsA treatment (SeV-IL-10 5 x 10(7) pfu with CsA: 63.7+/-12.7%). We propose that SeV is a useful vector that can target airway epithelium to prevent BO avoiding putative systemic effect.  相似文献   

4.
Obliterative bronchiolitis (OB) is a form of chronic rejection after lung transplantation. Lentiviral vectors (LVs) facilitate long-term gene transduction in many tissues and organs. We hypothesized that lentiviral gene transfer of interleukin (IL)-10, a potent immune-modulating cytokine, to the lung could modulate the alloimmune responses in the lung after transplantation. C57BL6 mice received LVs encoding luciferase, enhanced green fluorescent protein (eGFP), or human IL-10 (huIL-10) through airways and underwent repeated bioluminescent imaging, immunofluorescence imaging, or ELISA of lung tissues, respectively. Luciferase activities peaked at day 7 and were stable after day 28 to over 15 months. eGFP staining demonstrated LV-mediated gene transduction mainly in alveolar macrophages. LV-huIL-10 delivery resulted in stable long-term expression of huIL-10 in the lung tissue (average 3.66?pg/mg at 1 year). Intrapulmonary allograft tracheal transplantation (BALBc→C57BL6) was used as a model of OB. LV-huIL-10 or LV-eGFP were delivered 7 days before transplantation and compared with no LV-transfection group. Allograft airways at day 28 were almost completely obliterated in all the groups. However, at day 42, allograft airways treated with LV-huIL-10 showed a spectrum of attenuation in airway fibrosis ranging from complete obliteration through bubble-like partial opening to complete patency with epithelial coverage in association with a significantly reduced obliteration ratio compared with the other groups (p<0.05). In conclusion, lentivirus-mediated gene transduction is useful in achieving long-term transgene expression in the lung. Long-term IL-10 expression has the potential to attenuate allograft airway obliteration. LV-mediated gene therapy could be a useful strategy to prevent or treat OB after lung transplantation.  相似文献   

5.
In cardiac transplantation, chronic rejection takes the form of an occlusive vasculopathy. The mechanism underlying this disorder remains unclear. The purpose of this study was to investigate the role nitric oxide (NO) may play in the development of allograft arteriosclerosis. Rat aortic allografts from ACI donors to Wistar Furth recipients with a strong genetic disparity in both major and minor histocompatibility antigens were used for transplantation. Allografts collected at 28 d were found to have significant increases in both inducible NO synthase (iNOS) mRNA and protein as well as in intimal thickness when compared with isografts. Inhibiting NO production with an iNOS inhibitor increased the intimal thickening by 57.2%, indicating that NO suppresses the development of allograft arteriosclerosis. Next, we evaluated the effect of cyclosporine (CsA) on iNOS expression and allograft arteriosclerosis. CsA (10 mg/kg/d) suppressed the expression of iNOS in response to balloon-induced aortic injury. Similarly, CsA inhibited iNOS expression in the aortic allografts, associated with a 65% increase in intimal thickening. Finally, we investigated the effect of adenoviral-mediated iNOS gene transfer on allograft arteriosclerosis. Transduction with iNOS using an adenoviral vector suppressed completely the development of allograft arteriosclerosis in both untreated recipients and recipients treated with CsA. These results suggest that the early immune-mediated upregulation in iNOS expression partially protects aortic allografts from the development of allograft arteriosclerosis, and that iNOS gene transfer strategies may prove useful in preventing the development of this otherwise untreatable disease process.  相似文献   

6.
Obliterative bronchiolitis (OB) is the most serious late complication of lung transplantation, but the pathogenesis of this disorder has not been elucidated. We sought evidence that OB is mediated by a cellular immunologic response by characterizing T cell antigen receptor beta-chain variable gene (TCRBV) repertoires in lung allograft recipients. Expression levels of 27 TCRBV among recipients were determined by multiprobe RNase protection assay after PCR amplification. In comparison to recipients with no evidence of rejection (n = 9), the PBL TCRBV repertoires of OB subjects (n = 16) exhibited more frequent expansions (16 vs. 9% of all measured TCRBV, P < 0.02), and the magnitudes of these abnormalities were greater (8.2 +/- 0.8 vs. 4.5 +/- 0.3 SD from mean normal values, P < 0.01). TCRBV sequencing showed these expansions were composed of clonal or oligoclonal populations. Thus, T cell responses in the recipients are marked by highly selective clonal expansions, presumably driven by indirect recognition of a limited number of immunodominant alloantigens. These processes are exaggerated among allograft recipients with OB, implying that cognate immune mechanisms are important in the pathogenesis of the disorder. Furthermore, the prominence of finite, distinct TCR phenotypes raise possibilities for development of novel diagnostic modalities and targeted immunotherapies for OB and other manifestations of chronic allograft rejection.  相似文献   

7.
Cardiac transplantation, effective therapy for end-stage heart failure, is frequently complicated by allograft rejection, the mechanisms of which remain incompletely understood. Nitric oxide (NO), a vasodilator which is cytotoxic and negatively inotropic, can be produced in large amounts by an inducible NO synthase (iNOS) in response to cytokines. To investigate whether iNOS is induced during cardiac allograft rejection, hearts from Lewis or Wistar-Furth rats were transplanted into Lewis recipients. At day 5, allogeneic grafts manifested reduced contractility and histologic evidence of rejection (inflammatory infiltrate, edema, necrosis of myocytes). The mRNA for iNOS and iNOS protein were detected in ventricular homogenates and in isolated cardiac myocytes from rejecting allogeneic grafts but not in tissue and myocytes from syngeneic control grafts. Immunocytochemistry showed increased iNOS staining in infiltrating macrophages and in microvascular endothelial cells and cardiac muscle fibers and also in isolated purified cardiac myocytes from the rejecting allografts. Using a myocardial cytosolic iNOS preparation, nitrite formation from L-arginine and [3H] citrulline formation from [3H]L-arginine were increased significantly in the rejecting allogeneic grafts (P < 0.01). Myocardial cyclic GMP was also increased significantly (P < 0.05). The data indicate myocardial iNOS mRNA, protein and enzyme activity are induced in infiltrating macrophages and cardiac myocytes of the rejecting allogeneic grafts. Synthesis of NO by iNOS may contribute to myocyte necrosis and ventricular failure during cardiac allograft rejection.  相似文献   

8.
Leukotriene B4 is a lipid mediator that recently has been shown to have potent chemotactic activity for effector T lymphocytes mediated through its receptor, BLT1. Here, we developed a novel murine model of acute lung rejection to demonstrate that BLT1 controls effector CD8+ T cell trafficking into the lung and that disruption of BLT1 signaling in CD8+ T cells reduces lung inflammation and mortality in the model. In addition, we used BLT1-deficient mice and a BLT1 antagonist in two tracheal transplant models of lung transplantation to demonstrate the importance of BLT1 for the recruitment of T cells into tracheal allografts. We also show that BLT1-mediated CD8+ T cell recruitment plays an important role in the development of airway fibroproliferation and obliteration. Finally, in human studies of lung transplant recipients, we found that BLT1 is up-regulated on T lymphocytes isolated from the airways of patients with obliterative bronchiolitis. These data demonstrate that BLT1 contributes to the development of lung rejection and obliterative bronchiolitis by mediating effector T lymphocyte trafficking into the lung. This is the first report that describes a pathologic role for BLT1-mediated T lymphocyte recruitment in disease and identifies BLT1 as a potential therapeutic target after lung transplantation.  相似文献   

9.
Transcutaneous low-frequency ultrasound (US) preserves myocardial and skeletal muscle viability by increasing tissue perfusion through an undefined nitric oxide (NO)-dependent mechanism. We have examined whether US increases tissue expression and activity of the three nitric oxide synthase (NOS) isoforms: endothelial (eNOS), neuronal (nNOS) and inducible (iNOS). The two femoral arteries of four New Zealand rabbits were ligated for a total of 120 min. After 60 min of ligation, transcutaneous low-frequency US (27 kHz, 0.13 W/cm2) was applied for 60 min to one thigh, while the contra-lateral artery served as a control (total ischemia time=120 min). Calcium-dependent (cNOS) and -independent (ciNOS) NOS activity, and concentration of total eNOS, ser-1177 phosphorylated eNOS (P-eNOS), nNOS and iNOS were then determined in the gracilis muscle. Compared with the control, US application significantly increased cNOS activity [3.34+/-0.28 versus 3.87+/-0.10x1000 counts per minute (cpm), respectively, p=0.031] and ciNOS activity (1.99+/-0.09 versus 3.26+/-0.68 cpm, respectively, p<0.001). Western immunoblotting revealed a significant increase in protein content of both iNOS (184.5+/-1.08%; p<0.0001) and P-eNOS (381.5+/-2.47%; p<0.001), with only a small increase in total eNOS and nNOS expression. In conclusion, application of transcutaneous low-frequency US to ischemic muscular tissue significantly increases both cNOS and ciNOS activity by increasing eNOS phosphorylation and iNOS expression, respectively.  相似文献   

10.
The role of nitric oxide in obliterative bronchiolitis development, i.e., chronic rejection, was investigated in the heterotopic rat tracheal allograft model. An increase in the intragraft inducible nitric oxide synthase (iNOS) mRNA and mononuclear inflammatory cell iNOS immunoreactivity was demonstrated during progressive loss of respiratory epithelium and airway occlusion in nontreated allografts compared to syngeneic grafts. In nontreated allografts, however, intragraft nitric oxide production was decreased, most likely because of loss of iNOS epithelial expression. Treatment with aminoguanidine, a preferential inhibitor of inducible nitric oxide synthase, was associated with enhanced proliferation of alpha-smooth muscle actin immunoreactive cells and the intensity of obliterative bronchiolitis early after transplantation. Aminoguanidine treatment did not affect iNOS mRNA synthesis or intragraft nitric oxide production, but decreased iNOS immunoreactivity in smooth muscle cells. Treatment with L-arginine, a precursor of nitric oxide, significantly reduced obliterative changes. L-arginine supplementation enhanced intragraft iNOS mRNA synthesis and iNOS immunoreactivity in capillary endothelial and smooth muscle cells as well as intragraft nitric oxide production. Immunohistochemical analysis of allografts showed that neither iNOS inhibition nor supplementation of the nitric oxide pathway affected the number of graft-infiltrating CD4+ and CD8+ T cells, ED1+ and ED3+ macrophages, immune activation with expression of IL-2R or MHC class II, or production of macrophage or Th1 cytokines. In contrast, L-arginine treatment was associated with increased staining for Th2 cytokines IL-4 and IL-10. In conclusion, this study demonstrates that nitric oxide has a protective role in obliterative bronchiolitis development in this model, and suggests that nitric oxide either directly or indirectly inhibits smooth muscle cell proliferation and modulates immune response towards Th2 cytokines.  相似文献   

11.
Excess NO generation plays a major role in the hypotension and systemic vasodilatation characteristic of sepsis. Yet the kidney response to sepsis is characterized by vasoconstriction resulting in renal dysfunction. We have examined the roles of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) on the renal effects of lipopolysaccharide administration by comparing the effects of specific iNOS inhibition, -N6-(1-iminoethyl)lysine (L-NIL), and 2,4-diamino6-hydroxy-pyrimidine vs. nonspecific NOS inhibitors (nitro- -arginine-methylester). cGMP responses to carbamylcholine (CCh) (stimulated, basal) and sodium nitroprusside in isolated glomeruli were used as indices of eNOS and guanylate cyclase (GC) activity, respectively. LPS significantly decreased blood pressure and GFR (112+/-4 vs. 83+/-4 mmHg; 2.66+/-0.29 vs. 0. 96+/-0.22 ml/min, P < 0.05) and inhibited the cGMP response to CCh. GC activity was reciprocally increased. L-NIL and 2, 4-diamino-6-hydroxy-pyrimidine administration prevented the decrease in GFR (2.71+/-0.28 and 3.16+/-0.18 ml/min, respectively), restored the normal response to CCh, and GC activity was normalized. In vitro application of L-NIL also restored CCh responses in LPS glomeruli. Neuronal NOS inhibitors verified that CCh responses reflected eNOS activity. L-NAME, a nonspecific inhibitor, worsened GFR (0.41+/-0.15 ml/min), a reduction that was functional and not related to glomerular thrombosis, and eliminated the CCh response. No differences were observed in eNOS mRNA expression among the experimental groups. Selective iNOS inhibition prevents reductions in GFR, whereas nonselective inhibition of NOS further decreases GFR. These findings suggest that the decrease in GFR after LPS is due to local inhibition of eNOS by iNOS, possibly via NO autoinhibition.  相似文献   

12.
Nitric oxide and other reactive oxygen species generated by nitric-oxide synthases (NOS) modulate, among several other cellular responses, the production of eicosanoids and platelet aggregation. The roles of specific NOS in these two phenomena remain to be determined. Thus, the present study assessed whether inducible NOS (iNOS) and endothelial NOS (eNOS) modulate in a similar manner the production of eicosanoids and platelet aggregation. Mice knocked out for eNOS (eNOS-/-) or iNOS (iNOS-/-) and their wild-type (WT) congeners were used to analyze agonist-induced increases in plasma levels of eicosanoids as well as inhibition of platelet aggregation ex vivo. Systemically administered endothelin-1 (ET-1) triggered an increase in plasma levels of 6-keto prostaglandin F(1alpha) (6-keto PGF(1alpha)) in WT and eNOS-/- but not in iNOS-/- mice. ET-1 (0.01-1 nmol/kg) also induced a dose-dependent inhibition of platelet aggregation in WT and eNOS-/- but not in iNOS-/- mice. Another agonist, bradykinin (10 nmol/kg), triggered the release of 6-keto PGF(1alpha) and inhibited platelet aggregation in all strains of mice studied. In addition, ADP-induced platelet aggregation in vitro was similarly reduced by iloprost (100 nM) in iNOS-/- mice and WT congeners. In another series of experiments, ET-1 (0.1 nmol/kg) significantly increased 8-isoprostane plasma levels in WT but not in iNOS-/- mice. Finally, a 3-week treatment with anti-oxidants inhibited the capacity of ET-1 to significantly increase plasma 6-keto PGF(1alpha) in WT mice. We show for the first time that iNOS is involved in the control of ET-1-induced prostacyclin release and related inhibition of platelet aggregation in the murine model.  相似文献   

13.
Increases in the signaling molecule nitric oxide (NO) during inflammation may be linked not only to inducible nitric-oxide synthase (iNOS) but also to endothelial (e)NOS. Escherichia coli lipopolysaccharide (LPS) induces an inflammatory response in the bladder and rapidly increases phosphorylation of Akt/protein kinase B (Akt), a key enzyme regulating proliferation, apoptosis, and inflammation. Activated Akt phosphorylates human eNOS at serine 1177 and subsequently increases NOS activity. Because Akt and eNOS are both localized in the bladder urothelium, phosphorylation of eNOS by Akt provides an attractive mechanism for rapid increases in urinary NO production. Female mice were intraperitoneally injected with LPS (25 mg/kg) or pyrogen-free water (control). Four hours before LPS injection, some mice were injected with wortmannin, which inhibits Akt phosphorylation. Levels of urinary cyclic GMP, a downstream product of NO, increase 75% within 1 h after intraperitoneal injection of LPS, and this increase is blocked by wortmannin. Bladder eNOS and phosphorylated eNOS protein increase 94 and 151%, respectively, 1 h after LPS treatment, whereas iNOS was not detected. Wortmannin decreases eNOS phosphorylation by 60%. Furthermore, bladder Ca(2+)-dependent NOS activity (eNOS, neuronal NOS) is increased 79 +/- 20% 1 h after LPS treatment, whereas there is no increase in Ca(2+)-independent (iNOS) activity (n = 4). Increases in urinary cyclic GMP, NOS activity, and eNOS protein and phosphorylation 1 h after induction of inflammation with LPS, indicate that eNOS plays a role in the early response to bladder inflammation.  相似文献   

14.
Bronchiolitis obliterans syndrome (BOS) is the major limitation to survival after lung transplantation. Acute rejection, its main risk factor, is characterized by perivascular/bronchiolar leukocyte infiltration. BOS is characterized by persistent peribronchiolar leukocyte recruitment leading to airway fibrosis and obliteration. The specific mechanism(s) by which these leukocytes are recruited are unknown. Because MCP-1, acting through its receptor CCR2, is a potent mononuclear cell chemoattractant, we hypothesized that expression of this chemokine during an allogeneic-response promotes persistent recruitment of leukocytes and, ultimately, rejection. We found that elevated levels of biologically active MCP-1 in human bronchial lavage fluid (BALF) were associated with the continuum from acute to chronic allograft rejection. Translational studies in a murine model of BOS demonstrated increased MCP-1 expression paralleling mononuclear cell recruitment and CCR2 expression. Loss of MCP-1/CCR2 signaling, as seen in CCR2(-/-) mice or in WT mice treated with neutralizing antibodies to MCP-1, significantly reduced recruitment of mononuclear phagocytes following tracheal transplantation and led to attenuation of BOS. Lymphocyte infiltration was not reduced under these conditions. We suggest that MCP-1/CCR2 signaling plays an important role in recruitment of mononuclear phagocytes, a pivotal event in the pathogenesis of BOS.  相似文献   

15.
We have hypothesized that T cell cytokines participate in the pathogenesis of graft arterial disease (GAD). This study tested the consequences of IFN-gamma deficiency on arterial and parenchymal pathology in murine cardiac allografts. Hearts from C-H-2(bm12)KhEg (bm12, H-2(bm12)) were transplanted into C57/B6 (B6, H-2(b)), wild-type, or B6 IFN-gamma-deficient (GKO) recipients after immunosuppression by treatment with anti-CD4 and anti-CD8 mAbs. In wild-type recipients, myocardial rejection peaked at 4 wk, (grade 2. 1+/-0.3 out of 4, mean+/-SEM, n = 9), and by 8-12 wk evolved coronary arteriopathy. At 12 wk, the GAD score was 1.4+/-0.3, and the parenchymal rejection grade was 1.2+/-0.3 (n = 8). In GKO recipients of bm12 allografts, myocardial rejection persisted at 12 wk (grade 2.5+/-0.3, n = 6), but no GAD developed (score: 0.0+/-0.0, n = 6, P < 0.01 vs. wild-type). Mice treated with anti-IFN-gamma mAbs showed similar results. Isografts generally showed no arterial changes. In wild-type recipients, arterial and parenchymal cells showed increased MHC class II molecules, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 compared to normal or isografted hearts. The allografts in GKO recipients showed attenuated expression of these molecules (n = 6). Thus, development of GAD, but not parenchymal rejection, requires IFN-gamma. Reduced expression of MHC antigens and leukocyte adhesion molecules may contribute to the lack of coronary arteriopathy in hearts allografted into GKO mice.  相似文献   

16.
Angiogenesis and vascular remodeling support fibroproliferative processes; however, no study has addressed the importance of angiogenesis during fibro-obliteration of the allograft airway during bronchiolitis obliterans syndrome (BOS) that occurs after lung transplantation. The ELR(+) CXC chemokines both mediate neutrophil recruitment and promote angiogenesis. Their shared endothelial cell receptor is the G-coupled protein receptor CXC chemokine receptor 2 (CXCR2). We found that elevated levels of multiple ELR(+) CXC chemokines correlated with the presence of BOS. Proof-of-concept studies using a murine model of BOS not only demonstrated an early neutrophil infiltration but also marked vascular remodeling in the tracheal allografts. In addition, tracheal allograft ELR(+) CXC chemokines were persistently expressed even in the absence of significant neutrophil infiltration and were temporally associated with vascular remodeling during fibro-obliteration of the tracheal allograft. Furthermore, in neutralizing studies, treatment with anti-CXCR2 Abs inhibited early neutrophil infiltration and later vascular remodeling, which resulted in the attenuation of murine BOS. A more profound attenuation of fibro-obliteration was seen when CXCR2(-/-) mice received cyclosporin A. This supports the notion that the CXCR2/CXCR2 ligand biological axis has a bimodal function during the course of BOS: early, it is important for neutrophil recruitment and later, during fibro-obliteration, it is important for vascular remodeling independent of neutrophil recruitment.  相似文献   

17.
18.
19.
20.
We investigated the role of thromboxane in mediating the reduction in renal function and renal blood flow characteristic of acute renal allograft rejection. We transplanted kidneys from Lewis rats to Brown-Norway recipients. By the third day after transplantation, histologic changes that were consistent with cellular rejection occurred in the kidney. These changes were associated with a moderate reduction in renal function. By day 6, histologic changes of rejection were advanced and included interstitial and perivascular infiltration by mononuclear cells. The clearances of inulin and para-aminohippuric acid were also markedly reduced. As renal function deteriorated, thromboxane B2 (TXB2) production by ex vivo perfused renal allografts increased progressively from 2 to 6 d after transplantation. However, prostaglandin (PG) E2 and 6-keto PGF1 alpha production remained essentially unchanged. There was a significant inverse correlation between the in vivo clearance of inulin and the log of ex vivo TXB2 production. Infusion of the thromboxane synthetase inhibitor UK-37248-01 into the renal artery of 3-d allografts significantly decreased urinary TXB2 excretion and significantly increased renal blood flow (RBF) and glomerular filtration rate (GFR). Although renal function improved significantly after the acute administration of UK-37248-01, GFR and RBF did not exceed 33 and 58% of native control values, respectively. In other animals, daily treatment with cyclophosphamide improved the clearances of inulin and para-aminohippuric acid and reduced thromboxane production by 6-d renal allografts. These studies demonstrate that histologic evidence of rejection is associated with increased renal thromboxane production. Inhibition of thromboxane synthetase improves renal function in 3-d allografts. Cytotoxic therapy improves renal function, reduces mononuclear cell infiltration, and decreases allograft thromboxane production. Thus, the potent vasoconstrictor thromboxane A2 may play a role in the impairment of renal function and renal blood flow during acute allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号