首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shiga toxin-producing Escherichia coli (STEC) cause nonbloody (NBD) and bloody diarrhea (BD), and hemolytic uremic syndrome (HUS). Cattle have been described as their main reservoir. STEC O157:H7 is recognized as the predominant serotype in clinical infections, but much less is known about the dominant subtypes in humans and animals or their genetic relatedness. The aims of this study were to compare the STEC O157 subtypes found in sporadic human infections with those in the bovine reservoir using stx-genotyping, phage typing, and XbaI-pulsed-field gel electrophoresis (PFGE), and correlate the subtypes with the severity of clinical manifestations. The 280 STEC O157:H7 strains collected included in this study were isolated from HUS (n=122), BD (n=69), and NBD (n=30) cases, and healthy carriers (n=5), and from bovines (n=54) in the abattoirs. The stx-genotyping showed that stx?/stx(2c(vh-a)) was predominant in human (76.1%) and in bovine strains (55.5%), whereas the second more important genotype was stx? (20.8%) in human and stx(2c(vh-a)) (16.7%) in cattle strains. In human strains, PT4 (37.6%), PT49 (24.3%), and PT2 (18.6%) were the most frequent PTs (80.5%). In bovine isolates, PT2 (26%), PT39 (16.7%), and PT4 and PT49 (11.1% each) were predominant. By XbaI-PFGE, all 280 strains yielded 148 patterns with 75% similarity, and 169 strains were grouped in 37 clusters. Identical PT-PFGE-stx profile combinations were detected in strains of both origins: PT4-AREXH01.0011-stx?/stx(2c(vh-a)) (12 humans and one bovine), PT4-AREXH01.0543-stx?/stx(2c(vh-a)) (one human and four bovines), PT2-AREXH01.0076-stx?/stx(2c(vh-a)) (one human and four bovines), PT49-AREXH01.0175-stx?/stx(2c(vh-a)) (seven humans and one bovine), and PT49-AREXH01.0022-stx?/stx(2c(vh-a)) (seven humans and one bovine). No correlation was found among the stx-genotypes, the phage type, and the clinical symptoms.  相似文献   

2.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains isolated from a seagull in Japan were examined. A total of 50 faecal samples was collected on a harbour bank in Hokkaido, Japan, in July 1998. Two different STEC strains, whose serotypes were O136:H16 and O153:H-, were isolated from the same individual by PCR screening; both of them were confirmed by ELISA and Vero cell cytotoxicity assay to be producing active Stx2 and Stx1, respectively. They harboured large plasmids, but did not carry the haemolysin or eaeA genes of STEC O157:H7. Based on their plasmid profiles, antibiotic resistance patterns, pulsed-field gel electrophoresis analysis (PFGE), and the stx genes sequences, the isolates were different. Phylogenic analysis of the deduced Stx amino acid sequences demonstrated that the Stx toxins of seagull-origin STEC were closely associated with those of the human-origin, but not those of other animal-origin STEC. In addition, Stx2phi-K7 phage purified from O136 STEC resembled Stx2phi-II from human-origin O157:H7, and was able to convert non-toxigenic E. coli to STEC. These results suggest that birds may be one of the important carriers in terms of the distribution of STEC.  相似文献   

3.
The purpose of this study was to evaluate the value of real-time molecular typing of Shiga toxin (Verocytotoxin)-producing Escherichia coli (STEC) infections in order to detect possible outbreaks of infections. All laboratory confirmed STEC infections in Denmark from 2003 to mid 2005 were routinely characterized by serotyping, virulence genes characterization, and subtyping by pulsed-field gel electrophoresis (PFGE) using the PulseNet protocol for STEC O157. The study included 312 STEC isolates representing 50 different O groups and 75 O:H-serotypes, and 68% of the isolates belonged to the eight most common O-groups: O157 (26%), O103 (13%), O146 (8%), O26 (8%), O117 (4%), O145 (3%), O128 (3%), and O111 (2%). The remaining O-groups constituted less than 2% each, and 8.1% of the isolates were O-rough. The eae gene was found in 60% of all isolates, and detection of the two main Shiga toxin genes showed that 40% had stx1 only, 31% had stx2 only, and 29% had both stx1 and stx2. A high diversity was seen within all O groups, and for most of the rare O groups, the number of PFGE profiles equaled the number of isolates. However, one outbreak of E. coli O157 was detected by the routine PFGE typing. The value of "real-time' PFGE typing of the infrequent serotypes is limited if the full scheme for O-grouping or O:H-serotyping is used routinely for all STEC isolates. Possible outbreaks can then be detected by the increased number of isolates within a particular serotype. PFGE typing would then be valuable in subsequent steps of the outbreak investigation. However, routine PFGE typing of the three to five most common O groups will enable early recognition of possible outbreaks.  相似文献   

4.
Abstract A total of 52 Shiga toxin-producing Escherichia coli (STEC) strains, isolated from fecal samples of six ibex, 12 chamois, 15 roe deer, and 19 red deer were further characterized by subtyping the stx genes, examining strains for the top nine serogroups and testing for the presence of eae and ehxA. Eleven of the 52 strains belonged to one of the top nine STEC O groups (O26, O45, O91, O103, O111, O113, O121, O145, and O157). Eight STEC strains were of serogroup O145, two strains of serogroup O113, and one strain of serogroup O157. None of the strains harbored stx2a, stx2e, or stx2f. Stx2b (24 strains) and stx1c (21 strains) were the most frequently detected stx subtypes, occurring alone or in combination with another stx subtype. Eight strains harbored stx2g, five strains stx2d, three strains stx1a, two strains stx2c, and one strain stx1d. Stx2g and stx1d were detected in strains not harboring any other stx subtype. The eae and ehxA genes were detected in two and 24 STEC strains, respectively. Considering both, the serogroups and the virulence factors, the majority of the STEC strains isolated from red deer, roe deer, chamois, and ibex do not show the typical patterns of highly pathogenic STEC strains. To assess the potential pathogenicity of STEC for humans, strain isolation and characterization is therefore of central importance.  相似文献   

5.
Shiga toxin producing Escherichia coli O103:H2/H(-) belong to the third most frequently isolated EHEC serotypes in Germany following isolates of O157:H7/H(-) and O26:H11/H(-). A total of 145 respective E. coli 103 isolates from single cases of diarrhoea and haemolytic uremic syndrome (HUS) in 1997-2000 were characterised by a range of molecular subtyping methods (PFGE, P-gene profiling, ribotyping, electrotyping) and phage typing in order to analyse their genetic relatedness and the practicability for new epidemiological tracing back. All isolates cluster into a distinct EHEC subgroup and reveal a high clonal diversity together with a considerable stability. Since strains of this serotype rank up to the third most frequently isolated EHEC in Germany a large population of this serotype, and therefore, a great supply of such strains may exist in this country.  相似文献   

6.
The objective of this study was to characterize Escherichia coli isolates from dairy cows/feedlots, calves, mastitis, pigs, dogs, parrot, iguana, human disease, and food products for prevalence of Shiga toxin-producing E. coli (STEC) virulence markers. The rationale of the study was that, isolates of the same serotypes that were obtained from different sources and possessed the same marker profiles, could be cross-species transmissible. Multiplex polymerase chain reaction (PCR) was used to detect presence of genes encoding Shiga toxin 1 and 2 (stx1 and stx2), H7 flagella (flicC), enterohemolysin (hly) and intimin (eaeA) in E. coli isolates (n = 400). Shiga toxin-producing isolates were tested for production of Shiga toxins (Stx1 and Stx2 and enterohemolysin. Of the E. coli O157:H7/H- strains, 150 of 164 (mostly human, cattle, and food) isolates were stx+. Sixty-five percent of O157 STEC produced both Stx1 and Stx2; 32% and 0.7% produced Stx2 or Stx1, respectively. Ninety-eight percent of O157 STEC had sequences for genes encoding intimin and enterohemolysin. Five of 20 E. coli O111, 4 of 14 O128 and 4 of 10 O26 were stx+ . Five of 6 stx+ O26 and O111 produced Stx1, however, stx+ O128 were Stx-negative. Acid resistance (93.3%) and tellurite resistance (87.3%) were common attributes of O157 STEC, whereas, non-O157 stx+ strains exhibited 38.5% and 30.8% of the respective resistances. stx-positive isolates were mostly associated with humans and cattle, whereas, all isolates from mastitis (n = 105), and pigs, dogs, parrot and iguanas (n = 48) were stx-negative. Multiplex PCR was an effective tool for characterizing STEC pathogenic profiles and distinguished STEC O157:H7 from other STEC. Isolates from cattle and human disease shared similar toxigenic profiles, whereas isolates from other disease sources had few characteristics in common with the former isolates. These data suggest interspecies transmissibility of certain serotypes, in particular, STEC O157:H7, between humans and cattle.  相似文献   

7.
Shiga toxin-producing Escherichia coli (STEC) infection causes diarrhea that is often bloody and can result in potentially life-threatening hemolytic uremic syndrome (HUS). Escherichia coli O157:H7 is the most common cause of STEC infection in the United States, producing 73,000 illnesses annually, according to the last estimate in 1999. Unlike O157, however, little is known about the incidence of non-O157 strains. Because STEC other than O157 are not commonly identified, the incidence, trends, and epidemiology of non-O157 STEC are not well understood. To assess trends in Shiga toxin enzyme immunoassay (Stx EIA) testing by local clinical laboratories, the Connecticut Department of Public Health (CTDPH) analyzed results of confirmatory testing conducted in the state laboratory during 2000--2005. The findings indicated that a total of 403 STEC infections were reported by clinical laboratories in Connecticut, including 207 identified as STEC by Stx EIA testing alone, and that the use of Stx EIA increased from 2000 to 2005. Use of Stx EIA without prompt culture confirmation can delay or prevent serotyping and subtyping of isolates and detection of both O157 and non-O157 STEC outbreaks. Public health authorities in all states should ensure that clinical laboratories forward Stx EIA-positive specimens to the state laboratory for isolation and identification of STEC, as recommended by the Association of Public Health Laboratories and CDC.  相似文献   

8.
We conducted prospective surveillance of childhood hemolytic uremic syndrome (HUS) from 1997 to 2001 to describe disease incidence and clinical, epidemiologic and microbiologic characteristics. We compared our findings, where possible, with those of a previous study conducted from 1985 to 1988. The average annual incidence of HUS for the United Kingdom and Ireland (0.71/100,000) was unchanged from 1985 to 1988. The overall early mortality had halved, but the reduction in mortality was almost entirely accounted for by improved outcome in patients with diarrhea-associated HUS. The principal infective cause of diarrhea-associated HUS was Shiga toxin-producing Escherichia coli O157 (STEC O157), although in the 1997-2001 survey STEC O157 phage type (PT) 21/28 had replaced STEC O157 PT2 as the predominant PT. The risk of developing diarrhea-associated HUS was significantly higher in children infected with STEC O157 PT 2 and PT 21/28 compared with other PTs. Hypertension as a complication of HUS was greatly reduced in patients with diarrhea-associated HUS.  相似文献   

9.
Most bacterial genomes contain tandem duplications of short DNA sequences, termed "variable-number tandem repeats" (VNTR). A subtyping method targeting these repeats, multiple-locus VNTR analysis (MLVA), has emerged as a powerful tool for characterization of clonal organisms such as Shiga toxin-producing Escherichia coli O157 (STEC O157). We modified and optimized a recently published MLVA scheme targeting 29 polymorphic VNTR regions of STEC O157 to render it suitable for routine use by public health laboratories that participate in PulseNet, the national and international molecular subtyping network for foodborne disease surveillance. Nine VNTR loci were included in the final protocol. They were amplified in three PCR reactions, after which the PCR products were sized using capillary electrophoresis. Two hundred geographically diverse, sporadic and outbreak- related STEC O157 isolates were characterized by MLVA and the results were compared with data obtained by pulsed-field gel electrophoresis (PFGE) using XbaI macrorestriction of genomic DNA. A total of 139 unique XbaI PFGE patterns and 162 MLVA types were identified. A subset of 100 isolates characterized by both XbaI and BlnI macrorestriction had 62 unique PFGE and MLVA types. Although the clustering of isolates by the two subtyping systems was generally in agreement, some discrepancies were observed. Importantly, MLVA was able to discriminate among some epidemiologically unrelated isolates which were indistinguishable by PFGE. However, among strains from three of the eight outbreaks included in the study, two single locus MLVA variants and one double locus variant were detected among epidemiologically implicated isolates that were indistinguishable by PFGE. Conversely, in three other outbreaks, isolates that were indistinguishable by MLVA displayed multiple PFGE types. An additional more extensive multi-laboratory validation of the MLVA protocol is in progress in order to address critical issues such as establishing epidemiologically relevant interpretation guidelines for the MLVA data.  相似文献   

10.
目的探讨建立快速敏感的EHEC O157:H7诊断分型方法,有效地追踪溯源和控制传染源。方法分别用反向被动乳胶凝集试验(RPLA)、噬菌体分型、vt毒力基因PCR试验、脉冲场电泳胶(PFGE)4种实验方法对EHEC O157:m菌株进行分型。结果对同起事件菌株,4种方法均有较好的分型能力;PFGE对散发菌株有很强的分型能力,而RPLA与vt毒力基因PCR试验尚有不足,但其操作简便,实验要求相对不高,可以作为EHEC O157:H7致病毒素的初筛方法。结论几种分型技术联合使用比任一种技术单独使用能提供更为可靠的分型结果。  相似文献   

11.
肠道致病菌暴发事件中分子分型技术的应用   总被引:4,自引:1,他引:4  
目的探讨建立快速敏感的肠道病原菌的诊断分型方法。方法2002年7月用脉冲场电泳胶(PFGE)与噬菌体分型实验方法对发生在日本静冈县的4起暴发事件中29株宋内志贺菌(Shigella.sonnei)分离株与1999年口本静冈县某区现场分离的12株肠出血性大肠埃希菌(enterohemorrhagic Escherichia coli,EHEC)O157:H7菌株进行分型。结果4起事件中Shigetta.sonnei的PFGE结果显示,同起事件的DNA条带几乎一致;2起EHEC O157:H7暴发事件中,同起事件的PFGE条纹几乎一致,而3株散发菌株的PFGE条纹各异;12株EHEC O157:H7噬菌体分型结果也显示了比较好的分型力。结论PFGE具有分型能力强、重复性好等特点,能直观地判断肠道致病菌的亲缘关系,及时查明暴发流行的传染源,从而有效控制疫情的蔓延。  相似文献   

12.
大肠埃希菌O157∶H7携带stx2::IS1203v基因研究   总被引:2,自引:0,他引:2  
目的了解中国部分地区大肠埃希菌O157:H7菌株携带志贺毒素基因变异状况。方法采用聚合酶链反应扩增志贺毒素基因,使用核苷酸序列测定判断是否存在志贺毒素的新变种,用HeLa细胞毒性实验研究其细胞毒性的变化。结果1992—2002年中国部分地区分离到的289株产志贺毒素的大肠埃希菌O157:H7中有3株菌携带的志贺毒素2(stx2)基因有1.3kb的插入序列(IS)插入,且这段IS和IS1203变种(IS1203 variant,IS1203v)有100%的核苷酸序列同源性。IS1203v插入到3株大肠埃希菌O157:H7 stx2基因的位置及开放性读码框(ORF)方向有所不同。除此之外,3株菌原有的stx2基因序列完全一致且为Stx2原型毒素。和Stx2原型毒素相比,这3株携带stx2::IS1203v基因的菌株对HeLa细胞的毒性明显降低。结论分离到IS1203v插入stx2基因的大肠埃希菌O157:H7菌株;IS1203v的插入可导致对HeLa细胞的细胞毒性降低。  相似文献   

13.
The prevalence of Shiga toxin-producing Escherichia coli (STEC) was investigated in 350 edible beef intestinal samples, including omasum (n=110), abomasum (n=120), and large intestines (n=120), collected from traditional beef markets in Seoul, Korea. A total of 23 STEC strains were isolated from 15 samples (four strains from three omasa, 10 from five abomasa, and nine from seven large intestines). The O serotypes and toxin gene types of all STEC isolates were identified, and antimicrobial resistance was assessed using the disk diffusion method. The isolation rates of STEC from edible beef intestines were 2.8% in omasum, 4.2% in abomasums, and 5.9% in large intestines. All STEC isolates harbored either stx1, or both stx1 and stx2 genes simultaneously. Among the 23 isolates, 13 strains were identified as 11 different O serogroups, and 10 strains were untypable. However, enterohemorrhagic Esherichia coli O157, O26, and O111 strains were not isolated. The highest resistance rate observed was against tetracycline (39%), followed by streptomycin (35%) and ampicillin (22%). Of the 23 isolates, 12 isolates (52%) were resistant to at least one antibiotic, nine (39%) isolates were resistant to two or more antibiotics, and one isolate from an abmasum carried resistance against nine antibiotics, including beta-lactam/beta-lactamase inhibitor in combination and cephalosporins. This study shows that edible beef by-products, which are often consumed as raw food in many countries, including Korea, can be potential vehicles for transmission of antimicrobial-resistant pathogenic E. coli to humans.  相似文献   

14.
We present an analysis of strain and patient factors associated with the development of bloody diarrhea and hemolytic uremic syndrome (HUS) among Shiga toxin-producing Escherichia coli (STEC) patients registered in Denmark in a 6-year period. Of 343 STEC patients, bloody diarrhea developed in 36.4% and HUS in 6.1%. In a multivariate logistic regression model, risk factors for bloody diarrhea were the eae and stx2 genes, O groups O157 and O103, and increasing age. Risk factors for HUS were presence of the stx2 (odds ratio [OR] 18.9) and eae (OR undefined) genes, being a child, and having bloody diarrhea. O group O157, although associated with HUS in a univariate analysis (OR 4.0), was not associated in the multivariate analysis (OR 1.1). This finding indicates that, rather than the O group, the combined presence of the eae and stx2 genes is an important predictor of HUS.  相似文献   

15.
Phenotypic and genetic markers of Shiga toxin-producing Escherichia coli (STEC) O26 from North America were used to develop serotype-specific protocols for detection of this pathogen. Carbohydrate fermentation profiles and prevalence of gene sequences associated with STEC O26 (n = 20) were examined. Non-STEC O26 (n = 17), E. coli O157 (n = 20), E. coli O111 (n = 22), and generic E. coli (n = 21) were used as comparison strains. Effects of supplements: cefixime-tellurite, 4-methylumbelliferyl-beta-D-glucuronide (MUG) and chromogenic additives (5-bromo4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide (X-GlcA) and o-nitrophenyl-beta-D-galactopyranoside (ONPG), added to isolation agar media were examined. Tests for presence of gene sequences encoding beta intimin (eae beta), Shiga toxin 1 and 2 (stx1 and stx2), H7 flagella (flicCh7), enterohemolysin (ehlyA), O26 somatic antigen (wzx), and high pathogenicity island genes (irp2 and fyuA) were conducted using multiplex polymerase chain reaction. Pulsed-field gel electrophoresis (PFGE) of XbaI restriction endonuclease genomic DNA digests was used to establish clonality among E. coli O26 strains. Of the 26 carbohydrates tested, only rhamnose had diagnostic value. Rhamnose non-fermenters included STEC O26 (100%), non-STEC O26 (40%), generic E. coli (29%), E. coli O111 (23%), and E. coli O157 (0%). Rhamnose non-fermenting colonies growing on Rhamnose-McConkey agar supplemented with X-GlcA, X-Gal, or ONPG, respectively, were blue, white, or faint yellow, whereas rhamnose-fermenters were red. Blue colonies from X-GlcA-containing media were the most well-defined and easiest to pick for further tests. All STEC O26 were MUG-fluorescent, while STEC O157 (n = 18) were non-fluorescent. E. coli O111 and generic E. coli strains were either MUG-positive or-negative. Serotype-specific detection of STEC O26 was achieved by selecting cefixime-tellurite-resistant, MUG-fluorescent, rhamnose-nonfermenting colonies, which carried stx1, eae beta, irp2, and wzx gene sequences. STEC O26 prevalence in dairy farm environmental samples determined using the developed isolation and genetic detection protocols was 4%. PFGE indicated the presence of one major cluster of E. coli O26 with 72-100% DNA fragment-length digest similarity among test strains. The serotype-specific detection methods described herein have potential for routine application in STEC O26 diagnosis.  相似文献   

16.
To clarify the epidemiological relationship between cattle and human infections of Shiga toxin-producing Escherichia coli (STEC), we studied the duration and magnitude of the excretion of STEC O157 and STEC O26 with rectal faeces from naturally infected cattle at a breeding farm in the Tohoku area of Japan, using microbiological methods. The prevalence of STEC O157 was 3.5% (11/324), whereas that of STEC O26 was 7.9% (14/178). Faecal shedding of STEC O157 persisted for < 1 week to 10 weeks, whereas STEC O26 persisted from < 1 week to < 3 weeks. The magnitude of faecal shedding (per 10 g) ranged from 4 to > 110,000 c.f.u. for STEC O157 and from 3 to 2400 c.f.u. for STEC O26. All isolates of both STEC serotypes contained the stx1 or stx2 genes. Pulsed-field electrophoretic analysis of both STEC serotypes identified predominantly STEC O157 type III and STEC O26 type I in isolates, suggesting that a single STEC strain may be mutated in the intestinal tract of calves. These results indicate that STEC O157 is secreted for longer periods and in higher numbers than STEC O26 from healthy calves with natural infections, suggesting that STEC O157 may have more opportunities than STEC O26 to induce human disease.  相似文献   

17.
The distribution of three putative adhesin genes in 123 Shiga toxin-producing (STEC) strains was determined by PCR. The STEC strains were isolated from human patients (n=90) and food (n=33) and were characterized by serogroup, virulence markers (eae, stx(1), stx(2)) and adherence factors (efa1, lpfA(O157), saa) genes. Serogroups O157 (64.4%) and O26 (28.8%) were the most frequent among human strains and the majority (60.6%) of food strains were serologically non-typable. The adhesin genes efa1 (90%) and lpfA(O157) (73.3%) were the most common in humans strains and saa (45.5%) in food strains. The presence of these genes in addition to eae in STEC from different sources may suggest a relevant role in their pathogenesis.  相似文献   

18.
Shiga toxin-producing Escherichia coli (STEC) is a pathogen that causes gastroenteritis and bloody diarrhea but can lead to severe disease, such as hemolytic uremic syndrome (HUS). STEC serotype O78:H(-) is rare among humans, and infections are often asymptomatic. We detected a sorbitol-fermenting STEC O78:H(-):stx(1c):hlyA in blood and fecal samples of a 2-week-old boy who had bacteremia and HUS and in fecal samples of his asymptomatic family members. The phenotypic and genotypic characteristics and the virulence properties of this invasive STEC were investigated. Our findings demonstrate that contrary to earlier suggestions, STEC under certain conditions can invade the human bloodstream. Moreover, this study highlights the need to implement appropriate diagnostic methods for identifying the whole spectrum of STEC strains associated with HUS.  相似文献   

19.
A young child was admitted to hospital with haemolytic-uraemic syndrome caused by infection with a Shiga toxin 2-producing strain of Escherichia coli (STEC) O157. Five days before he became ill, the child had visited a small petting zoo. STEC O157 strains were isolated from faecal samples from goats and sheep housed on the farm. The human and the animal isolates were indistinguishable by molecular subtyping. The petting zoo voluntarily closed temporarily to prevent further cases of infection. Two out of 11 other, randomly selected petting zoos (including one deer park) visited subsequently, tested positive. Furthermore, during the study period there was one more notification of STEC O157 infection possibly linked with a farm visit. Although STEC O157 was indeed found in the petting zoo associated with this patient, transmission through animal contact could not be confirmed because the human isolate was not available for subtyping. The case study and the results of the other on-farm investigations highlight the risk of acquiring severe zoonotic infections during visits to petting zoos.  相似文献   

20.
Shiga toxin-producing Escherichia coli (STEC), and especially enterohaemorrhagic E. coli (EHEC) are important, highly virulent zoonotic and food-borne pathogens. The genes encoding their key virulence factors, the Shiga toxins, are distributed by converting bacteriophages, the Stx phages. In this study we isolated a new type of inducible Stx phage carrying the stx1 gene cluster from the prototypic EHEC O157:H7 Sakai strain. The phage showed Podoviridae morphology, and was capable of converting the E. coli K-12 MG1655 strain to Shiga toxin-producing phenotype. The majority of the phage genes originate from the stx2-encoding Sakai prophage Sp5, with major rearrangements in its genome. Beside certain minor recombinations, the genomic region originally containing the stx2 genes in Sp5 was replaced by a region containing six open reading frames from prophage Sp15 including stx1 genes. The rearranged genome, together with the carriage of stx1 genes, the morphology and the capability of lysogenic conversion represent a new type of recombinant Stx1 converting phage from the Sakai strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号