首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that opening of cephalic arteriovenous anastomoses may be involved in the headache phase of migraine. Indeed, a number of acutely acting anti-migraine drugs, including the ergot alkaloids and sumatriptan, constrict porcine carotid arteriovenous anastomoses. In this study, using pentobarbital anaesthetised pigs, we investigated the effects of eletriptan, a close structural analogue of sumatriptan, on the distribution of common carotid artery blood flow into arteriovenous anastomotic and nutrient (capillary) fractions. Eletriptan (10, 30, 100, 300 and 1000 μg kg–1, i.v.) decreased the total carotid blood flow, exclusively by decreasing cephalic arteriovenous anastomotic blood flow; nutrient blood flow, particularly to the ear, skin and fat, was significantly increased. The doses of eletriptan needed to reduce arteriovenous anastomotic blood flow and conductance by 50% (ED 50) were, respectively, 117±21 μg kg–1 (251±45 nmol kg–1) and 184±42 μg kg–1 (396±91 nmol kg–1); the highest dose caused reductions of 84±3% and 77±4%, respectively. The eletriptan-induced changes in carotid haemodynamics were clearly attenuated by pretreating the pigs with the selective 5-HT1B/1D receptor antagonist GR127935 (0.5 mg kg–1). On the basis of these results, we conclude that (1) the eletriptan-induced constriction of cephalic arteriovenous anastomoses as well as the arteriolar dilatation in head tissues is predominantly mediated by 5-HT1B/1D receptors, and (2) eletriptan should be effective in aborting migraine headache. Clinical studies have already demonstrated its therapeutic action in migraine patients. Received: 9 February 1998 / Accepted: 28 March 1998  相似文献   

2.
Eight days of isolation induced in mice a social behavioral deficit responsive to the serotonin agonists, TFMPP (1-(m-trifluoromethylphenyl)piperazine), m-CPP (1-(3-chlorophenyl)piperazine), RU 24969. These drugs are not specific for one subtype of serotonin receptors but share the property of being able to stimulate 5-HT1B receptors. They exert their effects in this test through this receptor. Fluoxetine and phenelzine were behaviorally inactive and did not impair the TFMPP effect when given acutely. On the contrary, the chronic administration of these two antidepressant drugs significantly antagonized the TFMPP effect. These results demonstrate a link between two antidepressant drugs and a function of 5-HT1B receptors. The lack of effect of acute versus chronic treatments suggests the involvement of 5-HT1B receptors in the therapeutic effect of these drugs.  相似文献   

3.
Dysfunction of monoamine neurotransmission seems to contribute to such pathopsychological states as depression, schizophrenia, and drug abuse. The present study examined the effects of the selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) and antidepressant fluvoxamine on locomotor activity in rats following administration of the catecholamine reuptake inhibitor mazindol. Mazindol (1 mg/kg) did not alter locomotor activity; whereas, fluvoxamine (20 mg/kg) given alone induced a brief period of hypomotility. Hyperactivity was elicited in a dose-related manner when fluvoxamine (5-20 mg/kg) was combined with mazindol (1 mg/kg). The hyperactivity elicited by fluvoxamine (20 mg/kg) plus mazindol (1 mg/kg) was significantly attenuated by the 5-HT(2A) receptor antagonist M100907 (2 mg/kg) and potentiated by the 5-HT(2B/2C) receptor antagonist SB 206553 (2 mg/kg). Neither antagonist significantly altered basal activity. The hyperactivity evoked by the combination of fluvoxamine and mazindol seems to be mediated in part by 5-HT(2A) receptors; whereas, 5-HT(2B/2C) receptors may serve to limit this effect. Thus, the balance of activation between 5-HT(2A) and 5-HT(2B/2C) receptors seems to contribute to the expression of locomotor hyperactivity evoked via combination of a 5-HT and a catecholamine reuptake inhibitor. A disruption in this balance may contribute to the expression of affective disorders, schizophrenia, and drug abuse.  相似文献   

4.
The effects of two selective serotonin reuptake inhibitors on 5-hydroxy-tryptamine (5-HT) in the hippocampus were studied in wildtype and in 5-HT(1B) receptor knockout mice using in vivo microdialysis. Basal 5-HT levels in the hippocampus were not different between the two genotypes. The functional absence of 5-HT(1B) receptors was examined in the knockout mice by local infusion of the 5-HT(1B) receptor agonist, 1,4-Dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-pyrrolo[3,2-b]pyridin-5-one (CP93129) into the hippocampus. CP93129 (1 microM) decreased 5-HT levels in wildtype mice, but not in 5-HT(1B) knockout mice. Systemic administration of the selective 5-HT reuptake inhibitor paroxetine (5 mg/kg, i.p.) increased extracellular 5-HT levels. The increase of 5-HT in 5-HT(1B) knockout mice was almost twofold higher than in wildtype mice. Systemic administration of selective 5-HT reuptake inhibitors stimulates both terminal 5-HT(1B) autoreceptors and somatodendritic 5-HT(1A) autoreceptors. Therefore, the selective 5-HT reuptake inhibitor, fluvoxamine, was applied locally into the hippocampus to investigate the role of the terminal 5-HT(1B) autoreceptors. Local administration of 0.3 microM fluvoxamine resulted in comparable increases in extracellular 5-HT in both genotypes, whereas 1.0 microM fluvoxamine produced a twofold greater increase in 5-HT levels in 5-HT(1B) knockout as compared to wildtype mice. In conclusion, the differences in hippocampal 5-HT output between wildtype and 5-HT(1B) knockout mice after local or systemic administration of selective 5-HT reuptake inhibitors show that 5-HT(1B) autoreceptors play a significant role in the inhibition of 5-HT release at serotonergic nerve terminals. In addition, the different dose-response to fluvoxamine suggests that 5-HT(1B) knockout mice have possible adaptations of 5-HT transporters in order to compensate for the loss of the terminal 5-HT(1B) autoreceptor.  相似文献   

5.
(1) 5-HT moduline (5-HTm) is tetrapeptide (Leu-Ser-Ala-Leu) previously shown to act as a specific endogenous antagonist to central 5-HT(1B/1D) receptors. Its effects were investigated in rat and rabbit pulmonary arteries (PAs). (2) In rabbit PAs, contractile responses to the 5-HT(1B/1D) receptor agonist 5-carboxamidotryptamine (5-CT) were inhibited by 1 and 10 micro M 5-HTm in a non-competitive fashion with the maximum contractile response (E(max), per cent of response to 50 mM KCl) being reduced from 65.6+/-7% (n=6) to 39.7+/-6.5% (n=6) and 25.2+/-7.9 (n=4), respectively. The ability of 5-HTm to inhibit responses to 5-CT was increased by the aminopeptidase inhibitor bestatin (10 micro M). (3) In the rabbit PAs, the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methylester (L-NAME) potentiated responses to 5-CT (E(max): 106+/-22.5 (n=4)) and this response was also inhibited by 10 micro M 5-HTm (E(max): 38+/-13% (n=8)). (4) 5-HTm (10 micro M) inhibited responses to 5-CT in rat PAs, the E(max) being reduced from 24.8+/-4.1% (n=7) to 15.5+/-3.7% (n=9). 5-HTm induced relaxation of 5-CT-pre-constricted rat PAs with a pIC(50) of 9.0+/-0.6 (n=9). (5) In PAs from chronic hypoxic, pulmonary hypertensive rats, the maximum response to 5-CT was increased to 80+/-8.5% (n=11). 5-HTm reduced this response to 34.4+/-6.3% (n=12). L-NAME markedly inhibited the ability of 5-HTm to inhibit responses to 5-CT (E(max) before 5-HTm: 100.5+/-16% (n=5), E(max) after 5-HTm: 107+/-11.3% (n=4)). (6) In conclusion we show here for the first time that 5-HTm is a non-competitive inhibitor of 5-HT(1B/1D) receptor-mediated constriction in PAs. In rat PAs, L-NAME can inhibit this effect of 5-HTm.  相似文献   

6.
The ability of sumatriptan (GR 43175; 3-[2-dimethylamino]ethyl-N-methyl-1H-indole-5 methane sulphonamide) to interact with 13 neurotransmitter receptor sites was determined using radioligand binding techniques. Sumatriptan displayed the highest affinity for 5-HT1D (Ki = 17 nM) and 5-HT1B (Ki = 27 nM) binding sites and was slightly less potent at 5-HT1A binding sites (Ki = 100 nM). By contrast, sumatriptan was essentially inactive (Ki greater than 10,000 nM) at each of the 10 other binding sites analyzed. These data indicate that sumatriptan interacts selectively with 5-HT1B and 5-HT1D sites and suggest that these interactions may be the basis of its apparent efficacy in the acute treatment of migraine.  相似文献   

7.
The present study examined whether animals attend to the individual components of the cue produced by a drug that stimulates different 5-hydroxytryptamine (5-HT) receptor populations, using a drug discrimination task based on the conditioned taste aversion (CTA) procedure. The training drug was indorenate (5-methoxytryptamine beta-methylcarboxylate) (INDO) that has been described as a 5-HT(1A/2C/1B) agonist able to exert discriminative control in both operant and CTA procedures. The principal objective was to examine generalization with the combined administration of agonists for the different receptor sites that may mimic the mechanism of action of the training drug. Male Wistar rats, deprived of water, were trained to discriminate INDO from saline; during the drug trials, the administration of INDO preceded saccharin-LiCl pairings, while, during the saline trials, the administration of saline preceded the saccharin-saline pairings. In generalization tests, INDO, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, a 5-HT(1A) agonist), 1-(3-trifluoromethylphenyl)piperazine (TFMPP, a 5-HT(1B) agonist), alpha-methyl-5-HT (a 5-HT(2C) agonist) or 2-methyl-5-HT (a 5-HT(3) agonist), were administered alone or in combination. The results showed that 8-OH-DPAT, TFMPP and alpha-methyl-5-HT produced dose-dependent generalization, up to 88% in the case of 8-OH-DPAT. The combined administration of the following pairs of drugs, 8-OH-DPAT+TFMPP or 8-OH-DPAT+ alpha-methyl-5-HT, at doses that produced only 15-55% generalization when administered alone, produced greater than 80% generalization to INDO. However, the single administration of 2-methyl-5-HT produced only saline-like responding and its combined administration with 8-OH-DPAT did not modify the generalization produced by the single administration of 8-OH-DPAT. These results suggest that animals attend to the individual components of the drug cue; in the case of INDO, which has three elements, each mediated by a different receptor subpopulation (5-HT(1A), 5-HT(1B) and 5-HT(2C) ), the separate stimulation of at least two receptor subpopulations was 'interpreted' by the subject as the presence of the training drug.  相似文献   

8.
A novel compound, SB-272183 (5-Chloro-2, 3-dihydro-6-[4-methylpiperazin-1-yl]-1[4-pyridin-4-yl]napth-1-ylaminocarbonyl]-1H-indole), has been shown to have high affinity for human 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors with pK(i) values of 8.0, 8.1 and 8.7 respectively and is at least 30 fold selective over a range of other receptors. [(35)S]-GTPgammaS binding studies showed that SB-272183 acts as a partial agonist at human recombinant 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors with intrinsic activities of 0.4, 0.4 and 0.8 respectively, compared to 5-HT. SB-272183 inhibited 5-HT-induced stimulation of [(35)S]-GTPgammaS binding at human 5-HT(1A) and 5-HT(1B) receptors to give pA(2) values of 8.2 and 8.5 respectively. However, from [(35)S]-GTPgammaS autoradiographic studies in rat and human dorsal raphe nucleus, SB-272183 did not display intrinsic activity up to 10 microM but did block 5-HT-induced stimulation of [(35)S]-GTPgammaS binding. From electrophysiological studies in rat raphe slices in vitro, SB-272183 did not effect cell firing rate up to 1 microM but was able to attenuate (+)8-OH-DPAT-induced inhibition of cell firing to give an apparent pK(b) of 7.1. SB-272183 potentiated electrically-stimulated [(3)H]-5-HT release from rat and guinea-pig cortical slices at 100 and 1000 nM, similar to results previously obtained with the 5-HT(1B) and 5-HT(1D) receptor antagonist, GR127935. Fast cyclic voltammetry studies in rat dorsal raphe nucleus showed that SB-272183 could block sumatriptan-induced inhibition of 5-HT efflux, with an apparent pK(b) of 7.2, but did not effect basal efflux up to 1 microM. These studies show that, in vitro, SB-272183 acts as an antagonist at native tissue 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors.  相似文献   

9.
Rizatriptan (MAXALT MK-0462) is a new 5-HT(1B/1D) receptor agonist for the acute treatment of migraine. The marketed 10 mg and 5 mg oral doses are rapidly and consistently effective in relieving headache pain with associated migraine symptoms, and in enabling patients to return to their normal activities of daily living. Rizatriptan 10 mg is more effective than rizatriptan 5 mg. Compared to oral sumatriptan, the established agent in this class, rizatriptan has a shorter Tmax and greater bioavailability. In comparative clinical trials, the probability of having pain relief sooner was higher for rizatriptan 10 mg than for sumatriptan 100 mg or 50 mg. Over the 2 h after dosing, rizatriptan 10 mg was also superior to sumatriptan 100 mg and 50 mg on a range of other outcome measures. Both doses of rizatriptan are well-tolerated. The most common side-effects are dizziness, drowsiness, and asthenia/fatigue, which are short-lasting and of mild or moderate severity. In summary, rizatriptan is an effective and well-tolerated acute treatment for migraine, which may offer some advantages over oral sumatriptan.  相似文献   

10.
The molecular pharmacology, functional role and behavioural implications of central 5-HT1B/1D receptors suggest that these particular receptor subtypes probably play an important role in brain serotonin neurotransmission. This article summarises the rationale for considering 5-HT1B/1D antagonists as potential new, fast-acting antidepressants and describes the development of recent selective potent 5-HT1B/1D antagonists, reviewing both the primary and patent literature.  相似文献   

11.
In the present study, we examined effects of the selective serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitor citalopram, the 5-HT/noradrenaline reuptake inhibitor imipramine, the selective noradrenaline reuptake inhibitor desipramine or the monoamine oxidase-A inhibitor moclobemide, administered in combination with the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridynyl)cyclohexanecarboxamide (WAY 100635) or the 5-HT(1B/1D) receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)1,1'-biphenyl-4-carboxamide (GR 127935) and the 5-HT(1B) receptor antagonist N-[3-(2-dimethylamino) ethoxy-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide (SB 216641) in the forced swimming test in rats. When given alone, citalopram (20 and 30 mg/kg), imipramine (20 mg/kg), desipramine (20 mg/kg), moclobemide (20 mg/kg), WAY 100635 (0.1 and 1 mg/kg), GR 127935 (10 and 20 mg/kg) or SB 216641 (2 mg/kg) did not shorten the immobility time of rats. Co-administration of WAY 100635 (0.1 and 1 mg/kg) and citalopram (20 mg/kg), or imipramine (20 mg/kg), or moclobemide (20 mg/kg) did not affect the immobility time of rats, whereas WAY 100635 given jointly with desipramine (20 mg/kg) induced a weak anti-immobility effect. GR 127935 (10 and 20 mg/kg) or SB 216641 (2 mg/kg) co-administered with imipramine, desipramine or moclobemide, but not citalopram, produced a significant anti-immobility action in the forced swimming test in rats. These results indicate that the blockade of 5-HT(1B) rather than 5-HT(1A) receptors may facilitate the anti-immobility effect of imipramine, desipramine or moclobemide in the forced swimming test. No interaction was observed between 5-HT(1A) or 5-HT(1B/1D) receptor antagonists and citalopram.  相似文献   

12.
Summary 5-Hydroxytryptamine1B (5-HT1B) receptor mediated-inhibition of forskolin-stimulated adenylate cyclase activity in rat substantia nigra was characterized pharmacologically and compared to 5-HT1D receptor mediated-inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra. Special attention was paid to the effects of drugs known to bind with high affinity to 5-HT1B (pindolol, propranolol, cyanopindolol, SDZ 21-009, isamoltane) or 5-HT1D recognition sites (yohimbine, rauwolscine).PEC50 or pK B values of a variety of 5-HT-receptor ligands (6 agonists including 5-HT, and 12 antagonists) for the inhibition of adenylate cyclase activity in rat substantia nigra, correlated significantly to the corresponding pK D values at 5-HT1B binding sites (r = 0.90, P = 0.0001). Amongst the 2- and -adrenoceptor antagonists tested, none of the drugs expressed more than 35% of the intrinsic activity of 5-HT at 5-HT1B receptors. When tested as antagonists, their pK B values were in good agreement with their pK D values for 5-HT1B sites. By contrast, these drugs displayed marked intrinsic activity at 5-HT1D receptors: their pEC50 values were close to their pK D values for 5-HT1D sites and their effects could be potently antagonized by methiothepin. The rank orders of potency of the tested compounds at 5-HT1B and 5-HT1D were markedly different.The results strengthen the identity between 5-HT receptors mediating inhibition of adenylate cyclase activity in rat and calf substantia nigra and 5-HT1B and 5-HT1D binding sites, respectively. They underline the differences between these receptors in terms of intrinsic activities and potencies of drugs. Send offprint requests to: D. Hoyer at the above address  相似文献   

13.
Summary The effects of several putative 5-HT1 receptorsubtype selective ligands were investigated in biochemical models for 5-HT1A, 5-HT1B, and 5-HT1D receptors (inhibition of forskolin-stimulated adenylate cyclase activity in calf hippocampus, rat and calf substantia nigra, respectively) and 5-HT1C receptors (stimulation of inositol phosphates production in pig choroid plexus). Following compounds were studied: 5-HT (5-hydroxytryptamine), TFMPP (1-(mtrifluoromethylphenyl)piperazine), mCPP (1-m-chlorophe-nyl)piperazine, 1 CGS 12066 (7-trifluoromethyl-4-(4-methyl1-piperazinyl)-pyrrolo[1,2-a]quinoxaline 1), isamoltane (CGP 361A, 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propranol), quipazine, 1-NP (1-(1-naphthyl)piperazine), and PAPP (LY165163, 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine). Among reported 5-HT1B receptor selective drugs, TFMPP had similar potency at 5HT1A, 5-HT1B and 5-HT1C receptors, mCPP did not separate between 5-HT1B and 5-HT1C receptors, CGS 12066 was equipotent at 5-HT1B and 5-HT1D receptors, and isamoltane was only slightly 5-HTIB versus 5-HT1A selective. Quipazine showed equal potency at 5-HTIB and 5-HT1C receptors and 1-NP did not discriminate between the four receptor subtypes. PAPP described as 5-HT1A receptor selective, was equally potent at 5-HT1A and 5-HT1D receptors. The potencies determined in second messenger studies were in good agreement with the affinity values determined in radioligand binding studies. Thus 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors have different pharmacological profiles as predicted from radioligand binding studies. Despite claims to the contrary, none of the tested compounds had actual selectivity for a given 5-HT1 receptor subtype. Of interest were the properties of several of these drugs, which behaved as agonists at some receptors and as antagonists at others (e. g. quipazine, 1-NP, PAPP and isamoltane). Send offprint requests to D. Hoyer at the above address  相似文献   

14.
This study utilized pharmacological manipulations to analyze the role of direct and indirect activation of 5-HT7 receptors (5-HT7Rs) in passive avoidance learning by assessing emotional memory in male C57BL/6J mice. Additionally, 5-HT7R binding affinity and 5-HT7R-mediated protein phosphorylation of downstream signaling targets were determined. Elevation of 5-HT by the selective serotonin reuptake inhibitor (SSRI) fluoxetine had no effect by itself, but facilitated emotional memory performance when combined with the 5-HT1AR antagonist NAD-299. This facilitation was blocked by the selective 5-HT7R antagonist SB269970, revealing excitatory effects of the SSRI via 5-HT7Rs. The enhanced memory retention by NAD-299 was blocked by SB269970, indicating that reduced activation of 5-HT1ARs results in enhanced 5-HT stimulation of 5-HT7Rs. The putative 5-HT7R agonists LP-44 when administered systemically and AS19 when administered both systemically and into the dorsal hippocampus failed to facilitate memory. This finding is consistent with the low efficacy of LP-44 and AS19 to stimulate protein phosphorylation of 5-HT7R-activated signaling cascades. In contrast, increasing doses of the dual 5-HT1AR/5-HT7R agonist 8-OH-DPAT impaired memory, while co-administration with NAD-299 facilitated of emotional memory in a dose-dependent manner. This facilitation was blocked by SB269970 indicating 5-HT7R activation by 8-OH-DPAT. Dorsohippocampal infusion of 8-OH-DPAT impaired passive avoidance retention through hippocampal 5-HT1AR activation, while 5-HT7Rs appear to facilitate memory processes in a broader cortico-limbic network and not the hippocampus alone.  相似文献   

15.
Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPγS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg–1 protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPγS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 μM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 μM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPγS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 μM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist’s maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. Received: 28 October 1997 / Accepted: 14 February 1998  相似文献   

16.
The stimulation of terminal 5-HT(1B/1D) autoreceptors limits the effects of selective serotonin reuptake inhibitors on extracellular levels of 5-hydroxytryptamine (5-HT, serotonin) in vivo. Microdialysis studies show that acute oral administration of LY393558-a 5-HT reuptake inhibitor and antagonist at both the human 5-HT(1B) and 5-HT(1D) receptor-in the dose range 1-20 mg/kg, increases extracellular levels of 5-HT in both the guinea pig hypothalamus and rat frontal cortex. In both species, the levels of 5-HT that were attained were higher than following an acute, maximally effective dose of fluoxetine (20 mg/kg orally), reaching approximately 1500% in the guinea pig hypothalamus and 700% in the rat frontal cortex. In both species, the response to LY393558 (10 mg/kg p.o.) was impulse dependent, being absent in the presence of tetrodotoxin delivered at 1 microM via the microdialysis probe. The sensitivity to tetrodotoxin contrasted with the effects seen with DL-fenfluramine. Studies in rats showed that the microdialysate 5-HT concentration achieved in the frontal cortex after an acute challenge with LY393558 (5 mg/kg p.o.) was significantly greater than following a chronic regime of fluoxetine treatment (10 mg/kg/day orally for 21 days). Moreover, in rats chronically treated with LY393558 (5 mg/kg/day orally for 21 days), the mean basal concentration, 24 h after the final pretreatment dose, was of the same magnitude as that following chronic fluoxetine. However, in contrast to the response seen in fluoxetine-pretreated animals, a challenge dose of LY393558 still elicited a further increase in extracellular 5-HT in LY393558-pretreated animals. LY393558 is a potent 5-HT reuptake inhibitor and 5-HT(1B/1D) receptor antagonist. Microdialysis studies show that acute oral administration increases extracellular levels of 5-HT, by an impulse-dependent mechanism, above those produced by a maximally effective dose of fluoxetine, and in rats to levels only achieved following chronic fluoxetine treatment. Its neurochemical profile in vivo suggests that it may be a more effective antidepressant with the potential for producing an earlier onset of clinical activity than selective serotonin reuptake inhibitors.  相似文献   

17.
The role of serotonin 5-HT(2) receptors (5-HT(2)R) in the hyperactivity induced by (+)-3,4-methylenedioxy-methamphetamine ((+)-MDMA; 3 mg/kg) was investigated. Hyperactivity induced by (+)-MDMA was robustly potentiated by the 5-HT(2B/2C)R antagonist SB 206553 (1.0, 2.0, and 4.0 mg/kg). Administration of the 5-HT(1B/1D)R antagonist GR 127935 (2.5 mg/kg) or the 5-HT(2A)R antagonist M100907 (1.0 mg/kg) partially suppressed the potentiated hyperactivity seen following SB 206553 plus (+)-MDMA; a blockade to activity levels seen with (+)-MDMA alone was observed following the combination of GR 127935 plus M100907. A modest potentiative interaction was seen when SB 206553 was combined with the DA releaser amphetamine (0.5 mg/kg) or amphetamine plus the 5-HT releaser fenfluramine (4.0 mg/kg). SB 206553 (1-4 mg/kg), GR 127935 (2.5 mg/kg) and M100907 (1 mg/kg) did not alter spontaneous activity upon administration singly or in combination. These data suggest that activation of 5-HT(2C)R exerts a strong inhibitory influence on the hyperactivity induced by (+)-MDMA, and that 5-HT(2C)R blockade unmasks hyperactivity mediated through several mechanisms.  相似文献   

18.
Selective serotonin reuptake inhibitors (SSRIs) are extensively used for the treatment of depression. Aside from their antidepressant properties, they provoke a deficit in paradoxical sleep (PS) that is most probably mediated by the transporter blockade-induced increase in serotonin concentration in the extracellular space. Such an effect can be accounted for by the action of serotonin at various types of serotonergic receptors involved in PS regulation, among which the 5-HT(1A) and 5-HT(1B) types are the best candidates. According to this hypothesis, we examined the effects of citalopram, the most selective SSRI available to date, on sleep in the mouse after inactivation of 5-HT(1A) or 5-HT(1B) receptors, either by homologous recombination of their encoding genes, or pharmacological blockade with selective antagonists. For this purpose, sleep parameters of knockout mice that do not express these receptors and their wild-type counterparts were monitored during 8 h after injection of citalopram alone or in association with 5-HT(1A) or 5-HT(1B) receptor antagonists. Citalopram induced mainly a dose-dependent inhibition of PS during 2-6 h after injection, which was observed in wild-type and 5-HT(1B)-/- mice, but not in 5-HT(1A)-/- mutants. This PS inhibition was fully antagonized by pretreatment with the 5-HT(1A) antagonist WAY 100635, but only partially with the 5-HT(1B) antagonist GR 127935. These data indicate that the action of the SSRI citalopram on sleep in the mouse is essentially mediated by 5-HT(1A) receptors. Such a mechanism of action provides further support to the clinical strategy of antidepressant augmentation by 5-HT(1A) antagonists, because the latter would also counteract the direct sleep-inhibitory side-effects of SSRIs.  相似文献   

19.
GR127935 (N-[methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2’-methyl-4’-(5-methyl-1,2,4-oxadiazol-3-yl) [1, 1-biphenyl]-4-carboxamide hydrochloride) has been recently introduced as an experimental tool to antagonize 5-HT1B/D receptor-mediated functional responses. The compound indeed exhibits a very high affinity and selectivity for 5-HT1B/D binding sites and it antagonizes a number of 5-HT1B/D receptor-mediated responses. The present experiments were performed to investigate the selectivity of GR127935 against functional responses mediated by 5-HT1-like, ‘orphan’ 5-HT1-like (5-ht7?), 5-HT2, 5-HT3 or 5-HT4 receptors in several invivo preparations. Intravenous (i.v.) treatment with GR127935 (300μg?kg-1) potently antagonized decreases in total carotid blood flow as well as hypotensive responses induced by the 5-HT1-like receptor agonist sumatriptan in rabbits. I.v. bolus injections of GR127935 (up to 500 and/or 1500μg?kg-1) did not significantly modify 5-HT-induced: (i) tachycardia in the pig (5-HT4 receptor-mediated) and cat (‘orphan’ 5-HT1-like or, perhaps, 5-ht7 receptor-mediated); (ii) depressor effects in the rat and cat (‘orphan’ 5-HT1-like or 5-ht7 receptor-mediated); (iii) vonBezold-Jarisch reflex in the rat or the early phase of the urinary bladder contraction in the cat (both 5-HT3 receptor-mediated). In contrast, high doses (500-1500μg?kg-1) of GR127935 suppressed 5-HT-induced pressor responses in the rat and cat and urinary bladder contractions (secondary phase) in the cat as well as the DOI ((±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride)-induced pressor responses in the rat, which are all mediated by 5-HT2A receptors. In conclusion, the present study demonstrates that GR127935 is a selective 5-HT1B/D receptor antagonist devoid of interactions at ‘orphan’ 5-HT1-like (5-ht7?), 5-HT3 and 5-HT4 receptors. However, GR127935 possesses a moderate 5-HT2A receptor blocking property, which is consistent with its binding profile (pKi: 7.4). Lastly, in view of the potent antagonist action of GR127935, the sumatriptan-induced hypotension in rabbits seems to be mediated by 5-HT1B/D receptors.  相似文献   

20.
Electrical stimulation of the superior sagittal sinus in the cat activated neurones in the trigeminal nucleus caudalis. The mean latency of these responses (10.1 ms) was consistent with activation of Adelta-fibres. Microiontophoretic ejection of either the selective serotonin(1A) (5-HT(1A)) agonist (+)8-OH-DPAT or the 5-HT(1B/1D) agonist alniditan resulted in the reversible suppression of the response to superior sagittal sinus stimulation of 29/46 and 18/20 trigeminal neurones, respectively. The response to sagittal sinus stimulation was suppressed by 39+/-5% (n=46) by (+)8-OH-DPAT and 65+/-5% (n=20) by alniditan. Microiontophoretic ejection of the selective 5-HT(1A) receptor antagonist WAY-100635 significantly antagonised the effect of (+)8-OH-DPAT (effect reduced by 30%, P<0.05). The ejection of GR-127935, a selective 5-HT(1B/1D), antagonist, significantly antagonised the effect of alniditan (effect reduced by 52%, P<0.02). In eight neurones the response to convergent facial receptive field stimulation was also tested in the presence of alniditan. Only 4/8 receptive field responses were suppressed by alniditan (compared to 8/8 sagittal sinus responses) and alniditan had significantly less quantitative effect on the response to receptive field stimulation than on the response to sagittal sinus stimulation in the same neurones (mean reduction 36+/-14% and 66+/-8%, respectively, P<0.05). These results suggest that pharmacological modulation of the trigeminovascular system can occur at the first central synapse and that, in addition to 5-HT(1B/1D) receptors, 5-HT(1A) receptors may be involved in the modulation of sensory neurotransmission in the trigeminovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号