首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology in the dorsal horn of the lumbar spinal cord of the collateral branches and terminal arborizations of three different types of low-threshold mechanoreceptor innervating the skin of the rat hindlimb has been studied by the intracellular injection of horseradish peroxidase into physiologically characterized afferent fibres. The central terminals of five rapidly adapting glabrous skin mechanoreceptors (RA), six hair follicle afferents (HFA), and four slowly adapting type I afferent fibres (SA I; two from glabrous and two from hairy skin) were recovered for detailed analysis. The number of collaterals per axon varied from eight to 12, and the length of axon stained from 3.5 to 4.7 mm. In each afferent, while the majority (52-67%) of the terminal arborizations displayed extensive branching with large numbers of en passant and terminal synaptic boutons, the arborizations at the caudal and rostral extremes of the terminal field tended to be much simpler and less profuse, with few and in some cases no boutons. This did not appear to be the consequence of inadequate filling. The general pattern of the terminal arborizations was one of mediolaterally compressed, rostrocaudally oriented sheets. In the case of the RA afferents there was no overlap between the adjacent terminal arborizations; a few of the arborizations of the SA I afferents overlapped; most, but not all, of the HFA terminal arborizations overlapped. The terminal arborizations of the HFAs had a distinctive morphology identical to the flame-shaped arbors described in earlier Golgi studies and included synaptic boutons extending from inner lamina II to lamina IV. The morphologies of the RA and SA terminal arborizations were similar to each other, but the former tended to be concentrated in lamina IV with branches in III and V, whereas the latter tended to V with few branches more superficial than lamina IV. There were also differences in the intercollateral spacing between these two types of afferent fibre. While there are similarities between the morphology of the central terminals of cutaneous low-threshold mechanoreceptors in the rat and those previously described in the cat (for example, the longitudinally continuous arrangement of the mediolaterally restricted flame-shaped HFA arborizations and the discontinuous RA arborizations arising from a dorsally located axon), there are also some major differences: the large number of HFA arbors extending to lamina IIi and to lamina IV rather than being restricted to lamina III, the deeper location of the RA arbors (in laminae IV and V rather than lamina III),(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The central arborizations in the dorsal horn of the spinal cord of 23 rapidly adapting (RA) A-beta primary afferent neurons innervating different regions of the glabrous skin of the hindpaw were studied by the intra-axonal injection of horseradish peroxidase in adult rats. A total of 284 arbors of the complex, simple, and blind-ending variety were recovered. The arbors of RA afferents innervating the toes, paw pads, and non-pad hindpaw differed from each other in branch pattern and dimensions. The simple and complex arbors, which are both bouton-containing, were distributed mainly in laminae III–V, although some complex arbors projected dorsally into lamina IIi. The hindpaw glabrous skin afferent terminals were located in the lumbar enlargement from caudal L3 to rostral L6. A crude somatotopic organization was observed such that toes 1–5 were represented successively in more caudal positions from mid-L4 to caudal L5. The paw pads were organized in a rostrocaudal sequence moving from the paw pads proximal to toe 1 across the foot to the paw pads proximal to toe 5, from caudal L3 to mid-L5. Non-pad hindpaw afferents were located in caudal L5. Overlap between toe, paw pad and non-pad afferent central fields was present, however, and the central terminals of afferents with non-adjacent peripheral receptive fields were shown to occupy the same region of the dorsal horn. © 1993 Wiley-Liss, Inc.  相似文献   

3.
In order to investigate the reorganization of the neuropil of the dorsal horn following peripheral nerve injury, the central terminal arborizations of 35 A beta primary afferent neurons, chronically injured by a cut and ligation of the sural nerve 6–12 weeks previously, were studied by the intra-axonal injection of horseradish peroxidase. Their morphology was compared to 13 intact sural nerve hair follicle afferents. Following axotomy, three kinds of morphological abnormalities were observed in the collateral arbors of the 26 afferents that were hair follicle-like. Atrophy with thin stem axons and reduced terminal branch patterns with few boutons was seen in 5 afferents. Sprouting of bouton-containing terminals into lamina I and IIo was found in 8 afferents. Finally, abnormal arborization patterns in the deeper laminae were observed in 29% of the collateral arbors. Changes included the loss in some arbors of a flame-shaped appearance, which is characteristic of hair follicle afferents, atypical branching patterns and ventrally directed axons producing wider and deeper arbors, compared to normal. Axotomy also caused a disruption of the normal somatotopic organizaiton of sural nerve A beta afferents. This disruption manifested as a variability in the normally mediolaterally restricted terminal sheet, with a consequent loss of the strict somatotopic register in the rostrocaudal direction. Damage to the peripheral axon of A beta primary afferents induces a structural reorganization of their central terminals in the dorsal horn of the spinal cord, which may modify sensory input to the central nervous system.  相似文献   

4.
The capacity of the central terminals of primary afferents to sprout into denervated areas of neonatal spinal cord and the morphology of any novel terminals has been investigated. In rats which had undergone sciatic nerve section on the day of birth, 12 of 18 physiologically characterized intact saphenous hair follicle afferents (HFAs) were labelled intra-axonally with horseradish peroxidase (HRP) were shown to sprout up to 2,000 microns into the deafferented sciatic terminal field. The morphology of these sprouts depended on which area of the sciatic nerve territory was invaded by the afferent sprouts. Six HFAs sprouted into areas normally innervated by glabrous skin afferents and the morphology of the collateral sprouts in this region resembled that of rapidly adapting (RA) afferents. The other six saphenous HFAs had sprouted into sciatic "hairy" skin areas and the morphology of these sprouts, although abnormal, was flame shaped. In rats whose sural, saphenous, and superficial peroneal nerves were cut at birth, 4 of 7 single HRP labelled RA afferents had central terminals that had sprouted into regions of cord normally devoted to "hairy" input. These showed clear signs of HFA morphology despite their peripheral receptive fields remaining in the glabrous skin. The results show collateral sprouting of single cutaneous sensory afferent axons into adjacent inappropriate central target regions following neonatal deafferentation. Such plasticity may provide some compensation following neonatal injury. The morphology of the sprouted terminals is appropriate to the new target area rather than to its functional class and is also independent of the peripheral receptive field location providing an example of central rather than peripheral control over afferent growth patterns.  相似文献   

5.
Prior studies indicate that vibrissa, guard hair, hairy skin, mucosa, and nociceptive trigeminal primary afferents give rise to morphologically distinct terminal arbors in the medullary dorsal horn. The present study describes the extent to which similar structure-function relationships exist in the rostrally adjacent subnucleus interpolaris (SpVi). Seventy-three axons were physiologically characterized and visualized by standard intra-axonal HRP labeling techniques. They responded to guard hair (GH) or vibrissa (VIB) deflection; gentle pressure applied to hairy skin (HS), glabrous skin (GS), lingual mucosa (LM), or an incisor (PER); or a noxious pinch of the face (NOX). Response latencies to trigeminal ganglion shocks were equivalent for all categories with low threshold receptive fields (mean = 0.44 ms), and these were significantly shorter than those of fibers with high threshold NOX receptive fields (mean = 0.88 ms). All axons gave off transversely oriented collaterals into SpVi with rostrocaudal discontinuities in their arbors. Collaterals were topographically organized. Axons innervating the rostral mouth and face terminated medially, and those that supplied the caudal face innervated successively more lateral SpVi. The dorsal face was represented in the ventral SpVi, whereas the ventral face and mouth were represented more dorsally. This transverse topography extended largely throughout the rostrocaudal extent of SpVi. VIB, GH, GS, and LM collaterals had similar configurations with circumscribed arbors. HS, PER, and NOX arbors had a "stringy" shape without a clear terminal focus, save for the fact that PER and NOX collaterals often terminated in rostrally displaced substantia gelatinosa at the level of the caudal SpVi. Analysis of variance, considering only those data from mystacial VIB, GH, and HS fibers, indicated significant differences for all of the following measures: number of collaterals, number of boutons per collateral, arbor area, arbor circumference, and arbor circularity (form factor). A similar analysis, considering all fiber types, indicated significant differences for only the following measures: number of collaterals, arbor area, and arbor circumference. Individual group comparisons between the more heavily sampled functional categories indicated that GH afferents had significantly fewer collaterals, fewer boutons per collateral, smaller arbor area, shorter arbor circumference, and more circular arbors than those of HS axons. VIB fibers tended to fall between GH and HS afferents with respect to number of collaterals, arbor area, circumference, and circularity. The remaining functional groups were not as orderly.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Capsaicin, administered on the day of birth, was found to alter laminar distribution, but not the receptive field properties or the morphology of the collateral arborizations of hair follicle afferents (HFAs) intra-axonally injected with horseradish peroxidase (HRP). Of the 65 HFA terminal arbors in capsaicin treated rats, 46 (71%) were found to enter the substantia gelatinosa (in control rats, 44/165, 27%). All of the collaterals projected to somatotopically normal areas of cord. Dorsal horn shrinkage (21%), as estimated by planimetric measurements of Nissl and acetylcholinesterase-stained material, was only a partial explanation of this result. This idea was supported by the statistically significant increase (27%, P less than 0.05) in the absolute dorsoventral length of collaterals. The results show that the destruction of unmyelinated fibres during the early postnatal period by capsaicin induces HFA invasion into the area that C fibres normally occupy. This invasion suggests that the laminar termination sites for different primary afferent fibres are not altogether specified and that intact neonatal primary afferents have the capacity to sprout into denervated regions of spinal cord.  相似文献   

7.
The somatotopic organization of A- and C-afferent fibre terminals in the dorsal horn of the rat lumbar spinal cord was compared with the spatial location of second-order dorsal horn neuronal mechanoreceptive fields. The central terminal fields of the sural, saphenous, and tibial nerve were mapped by labelling the nerves with horseradish peroxidase (HRP). A previous study used the transganglionic transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to produce a somatotopic map of high-threshold C-fibre terminal fields in lamina II (Swett and Woolf: J. Comp. Neurol. 231:66-77, '85). In the present study the terminal fields of low-threshold A beta afferents that terminate in laminae III and IV were mapped by using unconjugated HRP at prolonged survival times (72 hours). Unfixed tissue was used to increase the sensitivity of the tetramethylbenzidine reaction, thus allowing these afferent terminals to be clearly seen. The general spatial arrangement of the terminal fields in laminae III/IV closely resembled that found in lamina II in the mediolateral and rostrocaudal planes but because of a dorsoventral obliquity of the afferent terminals, the superficial and deeper fields are not in strict vertical register. The input to laminae II-IV of the dorsal horn may therefore be viewed as two horizontally arranged sheets of afferent terminals both accurately representing the skin surface, the more superficial sheet representing the high-threshold C-afferents and the deeper sheet, low-threshold A-beta afferents. The spatial organization of high-threshold A-delta afferents in laminae I and V appears to be quite different, with a transverse rather than a longitudinal orientation. To study dorsal horn cell receptive field organization two single units with mechanoreceptive fields were recorded extracellularly in each of 87 vertical tracks in the lumbar spinal cord, one unit in the superficial dorsal horn and the second in the deep dorsal horn. In general the somatotopic organization of the receptive fields of both sets of units followed that of the afferent terminal fields but there were cells with receptive fields that were anomalous relative to the recording site. No evidence of any vertical relation or columnar arrangement in receptive field size, threshold, or location on the body surface was found when comparing the two units in a pair. Furthermore, no laminar functional specialization was found, the majority of neurones having both low- and high-threshold inputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Transganglionic transport of wheatgerm agglutinin conjugated horse-radish peroxidase (WGA-HRP) was used to reveal the central distribution of terminals of primary afferent fibers from peripheral nerves innervating the hind leg of the rat. In separate experiments the sizes and locations of cutaneous peripheral receptive fields were determined by electrophysiological recording techniques for each of the nerves that had been labeled with WGA-HRP. By using digital image analysis, the sizes and positions of the peripheral receptive fields were correlated with the areas of superficial dorsal horn occupied by terminals of primary afferents from each of these receptive fields. Data were obtained from the posterior cutaneous nerve of the thigh, lateral sural, sural, saphenous, superficial peroneal, and tibial nerves. The subdivisions of the sciatic nerve, the sural, lateral sural, superficial peroneal, and tibial nerves each projected to a separate and distinct region of the superficial dorsal horn and collectively formed a "U"-shaped zone of terminal labeling extending from lumbar spinal segments L2 to the caudal portions of L5. The gap in the "U" extended from L2 to the L3-4 boundary and was occupied by terminals from the saphenous nerve. Collectively, all primary afferents supplying the hindlimb occupied the medial 3/4 of the superficial dorsal horn with terminals from the tibial nerve lying most medially and occupying the largest of all the terminal fields. Afferents from the superficial peroneal lay in a zone between the medially situated tibial zone and the more laterally placed sural zone. Afferents from the posterior cutaneous nerve were located most caudally and laterally. Terminal fields from the posterior cutaneous and saphenous nerves differed from the others in having split representations caused presumably by their proximity to the mid-axial line of the limb. Comparisons between the peripheral and the central representations of each nerve revealed that 1 mm2 of surface area of the superficial dorsal horn serves approximately 600-900 mm2 of hairy skin and roughly 300 mm2 of glabrous skin. The vast majority of terminal labeling observed in the dorsal horn was found in the marginal layer and substantia gelatinosa, suggesting that small diameter afferents have an orderly somatotopic arrangement in which each portion of the skin surface is innervated by afferent fibers that terminate in preferred localities within the dorsal horn.  相似文献   

9.
Prior studies suggest that whisker afferents have but one central projection pattern, despite their association with differing peripheral receptors that predict central morphology in other systems. Target factors in barrelettes are thought to dictate afferent projection patterns; yet, barrelettes differ in their size, shape and development. We tested the hypothesis that whisker afferents have differing morphologies that are predicted by peripheral and central factors. Branching patterns and collaterals of 78 Neurobiotin-stained afferents were compared in rats. Fibers from one whisker had precisely somatotopic projections but highly varied morphologies. For the entire sample, analysis of variance revealed significant intrafiber variance in collateral number and arbor shape that was attributed to the target subnucleus. Significant interfiber variance did not reflect response adaptation rate, direction sensitivity, whisker row origin or parent fiber bifurcation in the trigeminal root. Instead, we found the following. 1) Mandibular fibers had more elongated arbors than maxillary axons. In subnuclei interpolaris and principalis, mandibular fibers had larger arbors with more boutons/collateral than maxillary axons; in oralis and interpolaris, mandibular fibers had fewer collaterals than those of the maxillary division. 2) Upper lip whisker axons had more boutons than those from the B-D row in all subnuclei. 3) Rostral whisker arc afferents had larger arbors and more boutons than those from middle or caudal arcs due to significant arc effects in interpolaris and oralis. Thus, whisker afferents are not structurally uniform, and some morphological features are predictable. Intrafiber variance is attributed to the central target; interfiber variance reflects maxillary versus mandibular origin, upper lip origin and whisker rostrocaudal arc. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Intra-axonal records and horseradish peroxidase (HRP) injection techniques were employed to define the response properties of the jaw-closing muscle spindle afferents in the trigeminal mesencephalic nucleus (Vmes) and their morphological characteristics. The axonal trajectories of 9 spindle afferents from the masseter and 4 afferents from the temporalis were recovered for detailed analyses. Of 13 afferents, 6 cell bodies were stained and they were located at the rostrocaudal mid-levels of the Vmes. The central courses of the stem fibers were organized in a similar manner to the Vmes periodontal afferent nerves with the exception that peripheral (P) fibers of all spindle afferents passed through the trigeminal motor tract and root. On the basis of collateral terminal arborizations, the Vmes spindle afferents could be classified into two types: type I (n = 6) and type II (n = 7). Type I afferents sent their collaterals into the trigeminal motor nucleus (Vmo), intertrigeminal region (Vint) and juxtatrigeminal region (Vjux), but collaterals from the two neurons also projected to Vmes and the nucleus oralis (Vo). The collaterals from type II afferents formed their terminal arbors in the supratrigeminal nucleus (Vsup) in addition to the Vmo, Vint and Vjux, but collaterals from one neuron also projected to the Vo. In type I afferents, terminal arbors encompassed the whole Vmo including jaw-closing motoneurons. In contrast, boutons from type II afferents were restricted to a few small portions within the Vmo in proximity to its lateral and dorsal boundaries. The diameters of the united (U), central (C) and peripheral (P), fibers were larger in type I than type II afferents; those of the U fibers were statistically significant. Any differences between the two distinct types were not found in the response pattern to the sustained jaw opening. These results suggest that the difference of primary and secondary muscle-spindle afferent nerves is reflected in a distinctive morphology in the terminal arborizations and in the diameters of united fibers rather than the response patterns in deeply anesthetized cats.  相似文献   

11.
We have studied the somatotopic reorganization in dorsal horn neurons after a disruption in the normal spatial arrangement of primary sensory axons in adult rats. Muscle afferents were redirected to skin by cutting and cross-anastomosing the hindlimb gastrocnemius nerve (GN) and sural nerve (SN). It has previously been shown that after 10 – 12 weeks GN afferents innervate the hairy skin of the lateral ankle and calf (previously innervated by SN afferents) and become potentially capable of relaying information on the location and intensity of stimuli applied to the skin. We determined the receptive field and response properties of dorsal horn neurons in the lumbar spinal cord, in regions where the lower hindlimb is normally represented. In control animals (with intact or self-anastomosed sural nerves) very few neurons (<8%) received any synaptic input from the GN as assessed by electrical stimulation of the nerve. In contrast, when this nerve innervated skin, many cells responded to GN stimulation, and these nearly all had receptive field components in the former SN territory. Moreover, in animals with cross-anastomosed nerves, cells without GN inputs all had receptive fields outside the former SN skin territory. We have shown that in all likelihood GN afferents substituted for SN afferents in subserving the low and high threshold receptive fields of dorsal horn neurons. Furthermore, for many neurons, receptive fields were formed from inappropriately regrown GN afferents and adjacent intact cutaneous afferents (in the tibial or common peroneal nerves). Therefore, when GN afferents innervate skin in adult animals, they alter their central connectivity in an appropriate manner for their new peripheral terminations, so that an orderly somatotopic representation of the hind limb skin is maintained. We suggest that this plasticity of dorsal horn somatotopy is driven in part by activity-dependent mechanisms.  相似文献   

12.
Horseradish peroxidase was intra-axonally injected into functionally identified primary afferent fibers within the rat spinal trigeminal tract in order to study the morphology of their central terminations. They were physiologically determined to be large, myelinated, cutaneous primary afferents by means of electrical and mechanical stimulation of their receptive fields. Ninety-three axons that innervated vibrissa follicles, guard hair follicles, and slowly adapting receptors were stained for distances of 4-12 mm at the levels of the main sensory nucleus, spinal trigeminal nucleus, and rostral cervical spinal cord. The collaterals of single axons from these receptors formed terminal arbors in the outer part of the spinal trigeminal nucleus rostral to and near the level of the obex (rostral type collaterals). In the rostral part of the subnucleus caudalis (Vc) they were confined to lamina V (caudalis type collaterals) and in the caudal part of Vc and in cervical segments they were confined to lamina III/IV (spinal-dorsal-horn-type collaterals). There were no transitional forms between the rostral and caudalis types, but there was a transitional form between the caudalis and spinal dorsal horn types. This transitional form was distributed in laminae III/IV and V. The terminal arbors of the rostral type of collaterals formed an interrupted, rostrocaudally oriented column like those seen in the lumbar dorsal horn, but the column shifted down to lamina V near the obex, and more caudally, gradually shifted upward to lamina III. Major morphological differences were not observed among the three different functional types of collaterals with respect to the rostrocaudal distribution of collaterals, and the shape and location of collaterals. The differential laminar distribution of collateral arbors of single axons along the rostrocaudal axis distinguishes the spinal trigeminal nucleus from the spinal dorsal horn where functional types of mechanoreceptive afferents form continuous or interrupted sagittal columns of terminal arbors that do not shift dorsoventrally within segments.  相似文献   

13.
Transganglionic transport of horseradish peroxidase-wheat germ agglutinin conjugate was used to study the central projection of primary afferent neurons innervating facial and intraoral structures. The examined primary neurons innervating the facial structures were those comprising the frontal and zygomaticofacial nerves and those innervating the cornea, while the primary neurons innervating the intraoral structures included those innervating the mandibular incisor and molar tooth pulps and those comprising the palatine nerve. The primary afferents innervating the facial structures project to the lateral or ventral parts of the trigeminal principal, oral and interpolar subnuclei, and to the rostral cervical spinal dorsal horn across laminae I through V, with a greater proportion being directed to the spinal dorsal horn. The primary afferents innervating the intraoral structures terminate in the dorsomedial subdivisions of the trigeminal principal, oral and interpolar subnuclei, and in laminae I, II, and V of the medial medullary dorsal horn, with a much denser projection being distributed to the rostral subnuclei. In addition to the above brain stem trigeminal sensory nuclear complex, they project to the supratrigeminal nucleus, caudal solitary tract nucleus, and paratrigeminal nucleus. These observations agree with previously reported data that the central projection of trigeminal nerve is organized in different manners for the facial and intraoral structures. Furthermore, the present findings in conjunction with our previous studies clarify that the central projection of primary afferents from the facial skin is organized in a clear somatotopic fashion and that the terminal fields of primary afferents from the intraoral structures extensively overlap in the brain stem trigeminal nuclear complex particularly in its rostral subdivisions. The central mechanism of trigeminal nociception is discussed with particular respect to its difference between the facial and intraoral structures.  相似文献   

14.
The organization of the whisker representation within the neocortex of the rat is dependent on an intact periphery during development. To further investigate how alterations in this cortical map arise we examined the organization of thalamocortical afferents to the whisker representation in adult animals in which the infraorbital branch of the trigeminal nerve was cut on the day of birth. The disrupted pattern of thalamocortical projections to the vibrissae representation was apparent in the abnormal pattern of the anterograde transport of horseradish peroxidase from the thalamus, as well as in the abnormal pattern of succinate dehydrogenase activity. To determine the morphology of individual thalamocortical axons associated with this disrupted pattern, terminal arbors were "bulk-labeled" by injections of horseradish peroxidase into the white matter beneath the somatosensory cortex. Terminal arbors were identified by their laminar distribution of boutons corresponding to the specific thalamocortical afferent. The medial to lateral extent of these terminal arbors varied dramatically, from 350 to 1500 microns. In addition, terminal arbors innervating the same local area of cortex appeared to have varying degrees of overlap. Thus, the disruption of the neocortical vibrissae representation appears to involve the abnormal arborization of individual thalamocortical afferents. This finding supports the hypothesis that the fine-grain organization of the somatotopic map is dependent on the morphology and organization of individual thalamocortical arbors, which, in turn, are dependent on the periphery during development.  相似文献   

15.
Previous studies have shown that following neonatal peripheral nerve injury, adjacent intact myelinated and unmyelinated primary afferents sprout into the central denervated terminal area. The present study investigates this in more detail and goes further, to study the fate of the central terminals of the surviving axotomized primary afferent neurons. Bulk labelling of the sciatic and saphenous nerves with horseradish peroxidase conjugated to choleragenoid (B-HRP), to label the A fibres, or wheatgerm agglutinin (WGA-HRP), to label C fibres were employed to investigate the central consequences of sciatic nerve section and ligation on the day of birth, in adult rats. Bulk labelling of the axotomized sciatic or intact saphenous nerve with either tracer and comparison with contralateral controls revealed alterations to the terminal field. The intact saphenous nerve terminal field expanded caudally from mid L4 to the L4-L5 boundary when labelled with WGA-HRP and to the sacral cord when labelled with B-HRP. Labelling the axotomized sciatic nerve with either tracer revealed little change in the overall somatotopic organization of central terminals, although labelling was less intense compared to control nerves and more variable with WGA-HRP. Invasion of the substantia gelatinosa (SG) by axotomized A fibres was observed in segments L3-5, into the area occupied by axotomized C fibres. This area was also invaded by intact saphenous A fibres in the L4–5 segments. These results demonstrate that following neonatal nerve section: (i) axotomized primary afferents are able to retain a ‘normal’ somatotopic map in the rostrocaudal plane; (ii) both A and C fibres from adjacent intact nerves sprout into the denervated territory, but A fibres sprout further caudally; (iii) axotomized A fibres and invading intact A fibres both sprout dorsally into denervated SG. As a result, there is considerable overlap between nerve territories in denervated spinal cord, suggesting that competition for laminar termination sites exists between A and C fibres and also between axotomized and intact primary afferents.  相似文献   

16.
The purpose of the present study was to determine if terminals of identified group II muscle spindle afferents participate in axoaxonic synaptic arrangements and, if so, to investigate the transmitter content of presynaptic terminals in these arrangements. Group II muscle afferents supplying the gastrocnemius-soleus or semitendinosus muscles were identified in adult cats and stained intra-axonally with horseradish peroxidase. In total, three group II axons were labelled and processed for combined light and electron microscopy. Group II axons gave rise to collaterals which characteristically descended through the superficial dorsal horn and formed relatively sparse terminal arborizations in the dorsal horn (laminae IV and V) and more profuse arbors in the intermediate grey matter (laminae VI-VII). Forty boutons were examined through series of ultrathin sections and all but four were postsynaptic to other axon terminals. Occasionally, more than one axon was presynaptic to a single group II terminal. Immunogold studies showed that all axons in presynaptic apposition to group II boutons contained gamma-aminobutyric acid (GABA) and also that glycine was colocalized in the majority of these axons. This evidence suggests that transmission from group II muscle afferents is under strong presynaptic inhibitory control and that it is mainly the subgroup of GABAergic interneurons with colocalized glycine which mediate this inhibition. Seventeen group II boutons were components of synaptic triads where the presynaptic axoaxonic bouton formed a synapse with the same dendrite as the group II axon. Therefore, a proportion of the interneurons which form axoaxonic synapses with group II axons are also likely to have postsynaptic inhibitory actions on target neurons of group II afferents.  相似文献   

17.
The relationship between structure and function of the projections of single identified primary cutaneous axons was investigated by recording cord dorsum potentials at 4 sites in response to electrical stimulation of the single axon and visualizing the boutons of the axon stained by intracellular injection of horseradish peroxidase. The rostrocaudal extent of boutons differed from fiber to fiber ranging from 4.14-11.50 mm; their location in the dorsal horn also varied in agreement with the known somatotopy of the presynaptic neuropil and dorsal horn neurons. Rostrocaudal distributions of cord dorsum potentials and boutons of individual fibers revealed good agreement. Cord dorsum potential amplitude and length of the spinal projection were positively correlated with number of boutons, but no correlation with bouton density was found. The spinal projection of afferents innervating slowly adapting type 1 mechanoreceptors exhibited a greater rostrocaudal extent (mean: 8.48 mm) than those innervating rapidly adapting mechanoreceptors (i.e., hair follicle and field receptors: mean: 5.87 mm). Although the mean total number of boutons was greater for axons with slowly adapting receptors (7,250/fiber) than for axons of rapidly adapting receptors (4,677/fiber), no differences in the longitudinal density of boutons (boutons/mm) were observed. Likewise, summed amplitudes of cord dorsum potentials at the 4 recording electrodes were larger for SA1 afferents than for those of field and hair follicle afferents. A major role for the number of boutons in determining these differences is supported by the finding that the calculated average contribution per bouton to cord dorsum potentials (expressed as an amplitude coefficient a) was similar for slowly and rapidly adapting afferents. No evidence was found for regions in which boutons did not contribute to the cord dorsum potential.  相似文献   

18.
The morphology of single postsynaptic afferent fibers terminating in the feline cuneate nucleus was investigated by using transport of Phasolus vulgaris leucoagglutinin from the cervical spinal cord and intraaxonal injections of horseradish peroxidase into identified postsynaptic fibers in the cuneate fasciculus. Injections of Phaseolus in C5 and C6 of both rhizotomized and non-rhizotomized cats gave similar results and confirmed previous observations with other techniques. In one animal with the smallest injection and the fewest labeled fibers in the cuneate nucleus, ten individual collaterals were reconstructed from serial sections. Most of these collaterals were at middle levels of the cuneate (from obex to about 4 mm caudal to it); they were largely confined to the rim and ventral regions of the nucleus, and their terminal fields were restricted rostrocaudally. Electrophysiologically identified fibers stained with horseradish peroxidase had large receptive fields on the ipsilateral forepaw, and latencies suggesting an oligosynaptic link to the periphery. Most of the collaterals from these fibers were also at middle cuneate levels and terminated mainly at the periphery of the nucleus but gave rise to larger terminal arbors, including sparse terminal branches to the core of the nucleus. Individual postsynaptic fibers differed in several respects from primary afferent fibers. While the spacing of collaterals of postsynaptic fibers was intermediate between that of G hair and Ia fibers, their arbors were larger than either, and could extend through the dorsoventral extent of the cuneate nucleus. The pattern of bifurcation of postsynaptic fibers resulted in stringier arbors which encompassed larger and less dense terminal fields than those of primary afferents. The number of boutons per collateral was intermediate between G hair and Ia fibers, but boutons of postsynaptic fibers were substantially smaller. These morphological differences are consistent with distinct functional roles for the two main ascending afferent systems, as suggested by electrophysiological data.  相似文献   

19.
Intra-axonal recording and horseradish peroxidase (HRP) injection techniques were employed to define the response characteristics of low-threshold, rapidly conducting trigeminal primary afferents and the morphological features of their axon arbors in subnucleus interpolaris and subnucleus caudalis (or the medullary dorsal horn; these last two terms are used synonomously throughout the paper). A total of 61 such afferents were characterized and recovered. Of these, ten gave rapidly adapting (RA) and 17 slowly adapting (SA type I) responses to vibrissa deflection. Twenty were sensitive to guard hair deflection and 14 were responsive to indentation of the hairy skin. The vibrissa-sensitive primary afferents were all quite similar morphologically. Primary collaterals proceeded directly, in a radial fashion, to their zone of termination and gave rise to dense and compact arbors. These tended to be larger in the medullary dorsal horn (MDH) than in interpolaris and they also gave rise to more boutons in the former nucleus. Guard hair afferents generally had smaller arbors and gave rise to fewer boutons than vibrissa-sensitive axons. Like vibrissa afferents, their arbor were generally circumscribed in both interpolaris and MDH, but they were larger in the latter nucleus. Skin-sensitive afferents had arbors that tended to be somewhat larger than those of vibrissa- or guard-hair-related fibers. Unlike the other fiber types, the arbors of skin-sensitive afferents were on average larger in interpolaris than MDH. Quantitative analysis of the morphological data from well-filled examples from each of these four functional types verified our qualitative impressions regarding differences between interpolaris and MDH collaterals of a given fiber-type. Statistical comparison of data from different functional classes indicated trends that supported our qualitative impressions, but none of these was statistically significant. The topography of the trigeminal primary afferent input to interpolaris was organized such that the head was inverted and fibers with caudal receptive fields terminated in the lateral portion of the nucleus. This was true for all of the functional afferent types that we examined. Vibrissa-related fibers differed from nonvibrissa afferents in that they tended to avoid the most rostral portion of interpolaris. In the MDH, the primary afferent representation of the head was also inverted, but fibers with caudal facial receptive fields tended to terminate medially rather than laterally.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Previous studies indicated that fast-adapting (FA) and slowly adapting (SA) mechanoreceptive afferents innervating the facial or intraoral structures give rise to morphologically distinct terminal arbors in the individual subdivisions of the trigeminal sensory nuclear complex. The present study examined the collateral morphologies of lingual afferents in the nuclei principalis (Vp) and oralis (Vo) of the cat. Seven FA and six SA lingual afferents were physiologically characterized and stained by the intra-axonal horseradish peroxidase (HRP) injection technique. The two types of afferents established terminal arbors in the dorsomedial subdivision (Vpd) of the Vp, and the rostrodorsomedial (Vo.r) and dorsomedial subdivisions (Vo.dm) of the Vo, but the collateral morphologies are different between the two types. The FA afferents gave rise to mediolaterally extended oblong arbors in each subdivision, but the arbors were better developed in the Vo.r than in the Vpd and Vo.dm. The number of collaterals, intercollateral distance, number of boutons per collateral, and bouton size were also different among the subdivisions. The SA afferents were divided into two subtypes; one had a preferential projection into the Vpd or the Vo.r and Vo.dm, and others lacked a selected projection. Although the shape of their arbors varied from a stringy form to a roundish form, the general profile was denser, better developed, and rounder than that of FA afferents in each subdivision. The intercollateral distance and bouton size were different among the subdivisions. The number of boutons per collateral, bouton density, and bouton size were larger in SA than FA afferents in each subdivision. The present study demonstrated that two functionally distinct lingual afferents manifest unique morphological differences in the Vpd and Vo. J. Comp. Neurol. 396:64–83, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号