首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report a direct comparison of the differential effects of individual p53 mutations on lung tumor growth and progression, and the creation of a murine model of spontaneous advanced lung adenocarcinoma that closely recapitulates several aspects of advanced human pulmonary adenocarcinoma. We generated compound conditional knock-in mice with mutations in K-ras combined with one of three p53 alleles: a contact mutant, a structural mutant, or a null allele. p53 loss strongly promoted the progression of K-ras-induced lung adenocarcinomas, yielding a mouse model that is strikingly reminiscent of advanced human lung adenocarcinoma. The influence of p53 loss on malignant progression was observed as early as 6 weeks after tumor initiation. Furthermore, we found that the contact mutant p53R270H, but not the structural mutant p53R172H, acted in a partially dominant-negative fashion to promote K-ras-initiated lung adenocarcinomas. However, for both mutants, loss-of-heterozygosity occurred uniformly in advanced tumors, highlighting a residual tumor-suppressive function conferred by the remaining wild-type allele of p53. Finally, a subset of mice also developed sinonasal adenocarcinomas. In contrast to the lung tumors, expression of the point-mutant p53 alleles strongly promoted the development of sinonasal adenocarcinomas compared with simple loss-of-function, suggesting a tissue-specific gain-of-function.  相似文献   

3.
4.
One of the hallmarks of carcinomas is epithelial disorganization, linked to overexpression of matrix metalloproteases (MMP) like MMP‐9, loss of intercellular E‐cadherin and activation of epidermal growth receptor (EGFR/erbB1). Since the p53 tumor suppressor pathway is inactivated in most human cancers due to gene mutations or defective wt p53 signaling, we now investigated in human wt p53 breast carcinoma MCF‐7 cells, whether single treatment with the p53 transactivation pharmacological inhibitor pifithrin‐α, transient p53 siRNA interference or stable insertion of a dominant‐negative (DN) R175H p53 mutant increase: (i) EGFR/erbB1 activation, (ii) MMP‐9 expression and (iii) loss of surface E‐cadherin. Transient abrogation of wt p53 function increased phosphorylation of EGFR/erbB1 and MMP‐9 expression. However, all these effects were much more pronounced in cells stably transduced with the dominant negative–Arg‐175His mutant p53 (DN‐R175H mutant p53), which also showed loss of epithelial cytoarchitecture and extensive E‐cadherin downregulation. Collectively, these results support the notion that the DN‐R175H mutant p53 exerts a gain of oncogenic function by promoting disruption of E‐cadherin intercellular contacts and activation of proliferation signals. Our data suggests that epithelial shape and growth control are unequally affected depending on how wt p53 function is impaired and whether partial or full tumor suppressor activity is lost. © 2009 UICC  相似文献   

5.
Chronic exposure to ultraviolet (UV) radiation causes skin cancer in humans and mice. We have previously shown that in hairless SKH-hr1 mice, UVB-induced p53 mutations arise very early, well before tumor development. In this study, we investigated whether discontinuation of UVB exposure before the onset of skin tumors results in the disappearance of p53 mutations in the skin of hairless SKH-hr1 mice. Irradiation of mice at a dose of 2.5 kJ/m2 three times a week for 8 weeks induced p53 mutations in the epidermal keratinocytes of 100% of the mice. UVB irradiation was discontinued after 8 weeks, but p53 mutations at most hotspot codons were still present even 22 weeks later. During that period, the percent of mice carrying p53(V154A/R155C), p53(H175H/H176Y), and p53R275C mutant alleles remained at or near 100%, whereas the percentage of mice with p53R270C mutation decreased by 45%. As expected, discontinuation of UVB after 8 weeks resulted in a delay in tumor development. A 100% of tumors carried p53(V154A/R155C) mutant alleles, 76% carried p53(H175H/H176Y) mutants, and 24 and 19% carried p53R270C and p53R275C mutants, respectively. These results suggest that different UVB-induced p53 mutants may provide different survival advantages to keratinocytes in the absence of further UVB exposure and that skin cancer development can be delayed but not prevented by avoidance of further exposure to UVB radiation.  相似文献   

6.
The tumor suppressor gene p53 has an apparent role in breast tumor development in humans, as approximately 30% of sporadic tumors acquire p53 mutations and Li-Fraumeni syndrome patients carrying germ line p53 mutations frequently develop breast tumors at early age. In the present study, conditional expression of a targeted mutation is used to analyze the role of the human R273H tumor-associated hotspot mutation in p53 in mammary gland tumorigenesis. Heterozygous p53(R270H/+)WAPCre mice (with mammary gland-specific expression of the p53.R270H mutation, equivalent to human R273H, at physiologic levels) develop mammary tumors at high frequency, indicating that the R270H mutation predisposes for mammary gland tumor development and acts in a dominant-negative manner in early stages of tumorigenesis. Spontaneous tumor development in these mice is further accelerated by 7,12-dimethylbenz(a)anthracene (DMBA) treatment at young age. The majority of spontaneous and DMBA-induced carcinomas and sarcomas from p53(R270H/+)WAPCre mice is estrogen receptor alpha positive, and expression profiles of genes also implicated in human breast cancer appear similarly altered. As such, p53(R270H/+)WAPCre mice provide a well-suited model system to study the role of p53 in breast tumorigenesis and the responsiveness of mammary gland tumors to chemotherapeutics.  相似文献   

7.
To study the postulated mutant p53 (mutp53) “gain of function” effects in mammary tumor development, progression and metastasis, we crossed SV40 transgenic WAP‐T mice with mutant p53 transgenic WAP‐mutp53 mice. Compared to tumors in monotransgenic WAP‐T mice, tumors in bitransgenic WAP‐T x WAP‐mutp53 mice showed higher tumor grading, enhanced vascularization, and significantly increased metastasis. Bitransgenic tumors revealed a gene signature associated with the oncogenic epithelial‐mesenchymal transition pathway (EMT gene signature). In cultures of WAP‐T tumor‐derived G‐2 cancer cells, which are comprised of subpopulations displaying “mesenchymal” and “epithelial” phenotypes, this EMT gene signature was associated with the “mesenchymal” compartment. Furthermore, ectopic expression of mutp53 in G‐2 cells sufficed to induce a strong EMT phenotype. In contrast to these in vitro effects, monotransgenic and bitransgenic tumors were phenotypically similar suggesting that in vivo the tumor cell phenotype might be under control of the tumor microenvironment. In support, orthotopic transplantation of G‐2 cells as well as of G‐2 cells expressing ectopic mutp53 into syngeneic mice resulted in tumors with a predominantly epithelial phenotype, closely similar to that of endogenous primary tumors. We conclude that induction of an EMT gene signature by mutp53 in bitransgenic tumors primarily promotes tumor cell plasticity, that is, the probability of tumor cells to undergo EMT processes under appropriate stimuli, thereby possibly increasing their potential to disseminate and metastasize.  相似文献   

8.
Sigal A  Rotter V 《Cancer research》2000,60(24):6788-6793
The p53 guardian of the genome is inactivated in the majority of cancers, mostly through missense mutations that cause single residue changes in the DNA binding core domain of the protein. Not only do such mutations result in the abrogation of wild-type p53 activity, but the expressed p53 mutant proteins also tend to gain oncogenic functions, such as interference with wild-type p53-independent apoptosis. Because p53 mutants are highly expressed in cancer cells and not in normal cells, their reactivation to wild-type p53 function may eliminate the cancer by apoptosis or another p53-dependent mechanism. Several studies that embarked on this quest for reactivation have succeeded in restoring wildtype p53 activity to several p53 mutants. However, mutants with more extensive structural changes in the DNA binding core domain may be refractory to reactivation to the wild-type p53 phenotype. Therefore, understanding the structure and functions of oncogenic p53 mutants may lead to more potent reactivation modalities or to the ability to eliminate mutant p53 gain of function.  相似文献   

9.
Both inactivation of p53 function and loss of sensitivity to Fas contribute to a malignant phenotype and frequently occur during tumor progression. Although in the majority of cases only one of the p53 alleles is mutated, some tumors acquire mutations in both alleles of the p53 gene. To determine the biological significance of this phenomenon, we analyzed p53 mutants, p53(223Leu) and p53(274Phe), from Fas-resistant prostate carcinoma cell line DU145. Both mutants differed from wild-type p53 in their conformation, transactivation ability, and effect on the growth of p53-deficient cells, with p53(223Leu) being more similar to wild-type p53 than was p53(274Phe). Interestingly, the biological effect of coexpression of the DU145-derived mutants was dramatically different from that of each mutant expressed alone. Whereas neither of the two mutants was found to be dominant-negative against wild-type p53, each neutralized the other's growth-suppressive effects and, in combination, were capable of down-regulating Fas expression and converting Fas-sensitive prostate carcinoma cells PC3 into Fas-resistant ones. These results indicate that two different p53 mutants that are separately rather weak can cooperate to generate p53 protein with anti-Fas function that is likely to provide additional selective advantages to the tumor.  相似文献   

10.
Inactivation of wild-type p53 tumor suppressor function is the primary mechanism of tumor initiation in Li-Fraumeni syndrome (LFS) individuals with germline p53 mutations. Tumors derived from LFS patients frequently retain the normal p53 allele, suggesting that alternative mechanisms in addition to gene deletion must be involved in inactivating wild-type p53 protein. DNA tumor viruses, such as SV40, target p53 for inactivation through the action of viral oncoproteins. We studied the probands from two unrelated LFS families, each of whom presented with multiple malignant neoplasms. Patient 1 developed an embryonal rhabdomyosarcoma (RMS) and a choroid plexus carcinoma (CPC), while patient 2 developed a CPC and subsequently presented with both an osteosarcoma (OS) and renal cell carcinoma (RCC). We utilized DNA sequence analysis and immunohistochemistry to determine p53 gene status in the germline and tumors, as well as evidence for SV40 T-antigen oncoprotein expression. Each patient harbored a heterozygous germline p53 mutation at codons 175 and 273, respectively. In patient 1, the normal p53 gene was lost while the mutant p53 allele was reduced to homozygosity in the RMS. Both normal and mutant genes were maintained in the CPC. In patient 2, normal and mutant p53 alleles were retained in both the CPC and RCC. Both specific PCR and immunostaining detected SV40 T-antigen in both CPCs and the RCC. In addition to chromosomal alterations, epigenetic mechanisms may disrupt p53 function during tumorigenesis. In two LFS patients, we found SV40 DNA sequences and viral T-antigen expression that could account for inactivation of the normal p53 protein. Inactivation of p53 or other tumor suppressors by viral proteins may contribute to tumor formation in specific tissues of genetically susceptible individuals.  相似文献   

11.
The underlying basis for rising levels of prostate-specific antigen (PSA) in prostate cancer is not fully understood, but attention has turned to the possibility that loss of normal p53 function might be directly involved. We have investigated the relationship between p53 function and PSA expression using in vitro and in vivo approaches. Three prostate cancer-derived p53 mutants (F134L, M237L, R273H) were introduced into LNCaP prostate cancer cells and stable transfectants established. Expression of mutant p53 was demonstrated by Western blot analysis, inactivation of wtp53 function, and a loss of p53-dependent responses to DNA damage induced by UV-irradiation and cisplatin. Levels of PSA mRNA and secreted protein were determined by RT-PCR and Western blotting, respectively. Serine protease activity was assessed using an esterase assay. In vivo effects of mutant p53 expression were examined after orthotopic implantation into prostates of nude mice. Expression of all p53 mutants was associated with elevated PSA mRNA and secreted PSA protein. In a representative line, mutant p53 was also associated with increased PSA protease-like activity compared with a control line expressing wildtype p53. Overall PSA levels, and PSA levels in serum from mice bearing tumors derived from cells expressing mutant p53, were increased compared with levels in mice bearing tumors derived from control cells. In addition, the tumors derived from cells with mutant p53 had increased vascularization and induced lymph node metastases. These data provide in vitro and in vivo support for the notion that p53 mutations directly contribute to increased levels of serum PSA, and are associated with more aggressive tumors.  相似文献   

12.
For pediatric cancers like neuroblastoma, the most common extracranial solid tumor of infancy, p53 mutations are rare at diagnosis, but may be acquired after chemotherapy, suggesting a potential role in drug resistance. Heavy metal-selected neuroblastoma cells were found to acquire an unusually broad multidrug resistance (MDR) phenotype but displayed no alterations in genes associated with "classic" MDR. These cells had acquired a mutant p53 gene, linking p53 to drug sensitivity in neuroblastoma. We therefore generated p53-deficient variants in neuroblastoma cell lines with wild-type p53 by transduction of p53-suppressive constructs encoding either short hairpin RNA or a dominant-negative p53 mutant. Analysis of these cells indicated that (a) in contrast to previous reports, wild-type p53 was fully functional in all neuroblastoma lines tested; (b) inactivation of p53 in neuroblastoma cells resulted in establishment of a MDR phenotype; (c) p53-dependent senescence, the primary response of some neuroblastoma cells to DNA damage, is replaced after p53 inactivation by mitotic catastrophe and subsequent apoptosis; (d) knockdown of mutant p53 did not revert the MDR phenotype, suggesting it is determined by p53 inactivation rather than gain of mutant function. These results suggest the importance of p53 status as a prognostic marker of treatment response in neuroblastoma. p53 suppression may have opposite effects on drug sensitivity as determined by analysis of isogenic pairs of tumor cell lines of nonneuroblastoma origin, indicating the importance of tissue context for p53-mediated modulation of tumor cell sensitivity to treatment.  相似文献   

13.
The growth suppressor protein p53 is abnormally expressed in a variety of different human tumor cells. We have analyzed the expression of p53 in cell cultures derived from tissues of radical prostatectomies and in the permanent prostate carcinoma cell line PC-3 using two different p53 specific monoclonal antibodies. With the wild-type specific monoclonal antibody PAb1620 we found p53 localized in nucleoli whereas only a few cells were positively stained in the nucleus with the mutant specific monoclonal antibody PAb240. Control experiments with p53 from SV80 cells which express wild-type p53 and HT29 cells expressing mutant p53 documented the specificity of the monoclonal antibodies. The specificity of the antibodies in recognizing indeed p53 was demonstrated further by immunoprecipitation analysis of p53 from the same cell cultures. Since p53 is usually localized to the nucleus our results may represent a specific feature of the wild-type phenotype of p53 in prostate carcinoma cells. The localization of p53 in nucleoli may be another mechanism of the inactivation of wild-type p53.  相似文献   

14.
15.
p53 levels are tightly regulated in normal cells, and thus, the wild-type p53 protein is nearly undetectable until stimulated through a variety of stresses. In response to stress, p53 is released from its negative regulators, mainly murine double minute 2 (Mdm2), allowing p53 to be stabilized to activate cell-cycle arrest, senescence, and apoptosis programs. Many of the upstream signals that regulate wild-type p53 are known; however, limited information for the regulation of mutant p53 exists. Previously, we showed that wild-type and mutant p53R172H are regulated in a similar manner in the absence of Mdm2 or p16. In addition, this stabilization of mutant p53 is responsible for the gain-of-function metastatic phenotype observed in the mouse. In this report, we examined the role of oncogenes, DNA damage, and reactive oxygen species, signals that stabilize wild-type p53, on the stabilization of mutant p53 in vivo and the consequences of this expression on tumor formation and survival. These factors stabilized mutant p53 protein which oftentimes contributed to exacerbated tumor phenotypes. These findings, coupled with the fact that patients carry p53 mutations without stabilization of p53, suggest that personalized therapeutic schemes may be needed for individual patients depending on their p53 status.  相似文献   

16.
Willis A  Jung EJ  Wakefield T  Chen X 《Oncogene》2004,23(13):2330-2338
Mutation of the p53 tumor suppressor gene is the most common genetic alteration in human cancer. A majority of these mutations are missense mutations in the DNA-binding domain. As a result, the mutated p53 gene encodes a full-length protein incapable of transactivating its target genes. In addition to this loss of function, mutant p53 can have a dominant negative effect over wild-type p53 and/or gain of function activity independently of the wild-type protein. To better understand the nature of the tumorigenic activity of mutant p53, we have investigated the mechanism by which mutant p53 can exert a dominant negative effect. We have established several stable cell lines capable of inducibly expressing a p53 mutant alone, wild-type p53 alone, or both proteins concurrently. In this context, we have used chromatin immunoprecipitation to determine the ability of wild-type p53 to bind to its endogenous target genes in the presence of various p53 mutants. We have found that p53 missense mutants markedly reduce the binding of wild-type p53 to the p53 responsive element in the target genes of p21, MDM2, and PIG3. These findings correlate with the reduced ability of wild-type p53 in inducing these and other endogenous target genes and growth suppression in the presence of mutant p53. We also showed that mutant p53 suppresses the ability of wild-type p53 in inducing cell cycle arrest. This highlights the sensitivity and utility of the dual inducible expression system because in previous studies, p53-mediated cell cycle arrest is not affected by transiently overexpressed p53 mutants. Together, our data showed that mutant p53 exerts its dominant negative activity by abrogating the DNA binding, and subsequently the growth suppression, functions of wild-type p53.  相似文献   

17.
18.
Mutations in p53 occur at a rate of approximately 70% in hormone-refractory prostate cancer (CaP), suggesting that p53 mutations facilitate the progression of CaP to androgen-independent (AI) growth. We have previously reported that transfection of p53 gain of function mutant alleles into LNCaP, an androgen-sensitive cell line, allows for AI growth of LNCaP in vitro. We herein confirm the in vivo relevance of those findings by demonstrating that the R273H p53 mutation (p53(R273H)) facilitates AI growth in castrated nude mice. In addition, we demonstrate that H2 relaxin is responsible for facilitating p53(R273H)-mediated AI CaP. H2 relaxin is overexpressed in the LNCaP-R273H subline. Downregulation of H2 relaxin expression results in significant inhibition of AI growth, whereas addition of recombinant human H2 relaxin to parental LNCaP promotes AI growth. Inhibition of AI growth was also achieved by blocking expression of LGR7, the cognate receptor of H2 relaxin. Chromatin immunoprecipitation analysis was used to demonstrate that p53(R273H) binds directly to the relaxin promoter, further confirming a role for H2 relaxin signaling in p53(R273H)-mediated AI CaP. Lastly, we used a reporter gene assay to demonstrate that H2 relaxin can induce the expression of prostate-specific antigen via an androgen receptor-mediated pathway.  相似文献   

19.
To investigate whether dysregulation of p53 phosphorylation confers tumor resistance to p53, we analysed the effects of wild-type p53 on oral squamous cell carcinoma (SCC) cell lines carrying various mutations of p53. Introduction of exogenous p53 neither induced apoptosis nor suppressed colony formation in HSC-3 cells lacking any detectable p53 and HSC-4 cells expressing mutant p53R248Q protein. Consistently, exogenous p53 did not induce proapoptotic p53-target genes in these p53-resistant cells. We found that phosphorylation of exogenous p53 on serine 46 (Ser46) was severely impaired in HSC-3 but not HSC-4 cells. A mutant mimicking Ser46-phosphorylation (p53S46D) enhanced proapoptotic Noxa promoter activity, and overcame the resistance to p53-mediated apoptosis and growth suppression in HSC-3 cells. Conversely, a mutant defective for Ser46-phosphorylation (p53S46A) failed to suppress the growth of p53-sensitive HSC-2 cells. In contrast to HSC-3 cells, p53S46D had no effect on HSC-4 cells, and inhibition of endogenous p53R248Q by siRNA restored p53-mediated apoptosis in HSC-4 cells, indicating a dominant-negative effect of p53R248Q protein on wild-type p53 function. These results demonstrate that the defect in Ser46 phosphorylation accounts for the p53 resistance of HSC-3 cells, and provide evidence for a mechanism underlying the acquisition of p53 resistance in oral SCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号