首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of one-year high-dose bisphosphonates (risedronate 0.5 mg/kg/day or alendronate 1.0 mg/kg/day) on the three-dimensional (3-D) microstructural and mechanical properties of canine cancellous bone. A high-resolution micro-CT scanner was used to scan cubic specimens produced from the first lumbar vertebrae. Microstructural properties of the specimens were calculated directly from the 3-D datasets and the mechanical properties of the specimens were determined. Our data demonstrate significant microarchitectural changes in the bisphosphonate-treated cancellous bone that was typically plate-like, denser, with thicker and more trabeculae compared with those of the controls. Consistent with architectural changes, the Youngs moduli of cancellous bone increased in all three directions with the greatest increase in primary axial loading (cephalo-caudal) direction after treatment. Our results suggest a bone remodeling-adaptation mechanism stimulated by bisphosphonates that increases bone volume fraction, thickens trabeculae, changes trabeculae towards more plate-like, and increases mechanical properties. The secondary degree of anisotropy contributed significantly to the explained variance in bone strength, and the primary or tertiary degree of anisotropy improved the explanation of variances for Youngs moduli, i.e., 79% of strength variances or 74–83% of modulus variances could be explained by the combined anisotropy and bone volume fraction. These significant improvements of cancellous bone architecture provide a rationale for the clinical observation that fracture risk decreased by 50% in the first year of bisphosphonate therapy with only a 5% increase in bone mineral density. We conclude that bisphosphonates enhance mechanical properties and reduce fracture risk by improving architectural anisotropy of cancellous bone 3-D microarchitecture.  相似文献   

2.
OBJECTIVE: To describe changes to the cancellous structure of femoral bone from patients with severe primary osteoarthritis by comparison with age and sex matched controls. METHOD: Specimens were taken from 18 male and 18 female pairs. One of each pair was a normal control, the other having severe primary osteoarthritis which required hip arthroplasty. Undecalcified cancellous bone blocks were embedded in resin, sectioned and impregnated with silver. Histoquantitation was performed using image analysis. Using a plate model for the trabecular structure of bone, an estimate was made of bone volume, bone surface, trabecular thickness, trabecular separation and trabecular number. RESULTS: In osteoarthritis, pooled male and female data show a significant decrease in trabecular number together with an increase in trabecular thickness and separation. The statistical variance in the histomorphometric variables for each of the study groups was calculated and expressed as the ratio of osteoarthritic to control. This ratio shows that the variance of the osteoarthritic groups is significantly increased for each variable in the pooled data. The same trend is evident in the male and female groups. CONCLUSIONS: This quantitative study of cancellous bone architecture in the femoral head, infero-medial to the fovea, has found increased trabecular thickness and decreased trabecular number in patients with primary osteoarthritis. Increased morphometric variance has shown that severe osteoarthritis, contrary to osteoporosis, is associated with heterogeneous bone structures. These findings provide some basis for understanding how osteoarthritis may contribute to the prevention of osteoporotic fracture.  相似文献   

3.
目的 研究老年部骨折患股骨头松质骨结构。方法 取股骨示本49只,分成老年组26例及青年组23例。在股骨头致密区(负重区)和疏松区(非负重区)各截取软骨下3mm处7mm×5mm×5mm松质骨各一块作骨组织形态计量测定。结果 老年组致密区和稀疏区骨组织形态参数松质骨体积(TBV)、平均骨小梁密度(MTPD)、平均骨小梁厚度(MTPT)、骨小梁间连接点数(Tb、n)均明显低于青年组(P〈0.05~0.  相似文献   

4.
We aimed to highlight the relationship between age and the architectural properties of trabecular bone, to outline the patterns in which the variations in these properties take place, and to investigate the influence of the architecture on the mechanical properties of trabecular bone in growing animals. We studied 30 lambs in three age groups and 20 sheep in two age groups. Cubes of subchondral bone were cut from the proximal tibia according to a standardised protocol. They were serially sectioned and their architectural properties were determined. Similar cubes were obtained from the identical anatomical position of the contralateral tibia and their compressive mechanical properties measured. The values obtained from the skeletally immature and mature individuals were compared. Multiple regression analyses were performed between the architectural and the mechanical properties. The bone volume fraction, the mean trabecular volume, the architectural and the mechanical anisotropy, the elastic modulus, the bone strength, the energy absorption to failure, and the elastic energy correlated positively with increasing age whereas the connectivity density, the bone surface density, the ultimate strain, the absorption of viscoelastic energy and the relative loss of energy correlated inversely. The values of all variables were significantly different in the skeletally mature and immature groups. We determined the patterns in which the variations took place. The bone volume fraction of the trabecular bone tissue was found to be the major predictor of its compressive mechanical properties. Together with the mean trabecular volume and the bone surface density, it explained 81% of the variations in the compressive elastic modulus of specimens obtained from the contralateral tibiae.  相似文献   

5.
We obtained medial and lateral subchondral cancellous bone specimens from ten human post-mortem proximal tibiae with early osteoarthritis (OA) and ten normal age- and gender-matched proximal tibiae. The specimens were scanned by micro-CT and the three-dimensional microstructural properties were quantified. Medial OA cancellous bone was significantly thicker and markedly plate-like, but lower in mechanical properties than normal bone. Similar microstructural changes were also observed for the lateral specimens from OA bone, although there had been no sign of cartilage damage. The increased trabecular thickness and density, but relatively decreased connectivity suggest a mechanism of bone remodelling in early OA as a process of filling trabecular cavities. This process leads to a progressive change of trabeculae from rod-like to plate-like, the opposite to that of normal ageing. The decreased mechanical properties of subchondral cancellous bone in OA, which are due to deterioration in architecture and density, indicate poor bone quality.  相似文献   

6.
Introduction : The study of adaptation to mechanical loading under osteopenic conditions is relevant to the development of osteoporotic fracture prevention strategies. We previously showed that loading increased cancellous bone volume fraction and trabecular thickness in normal male mice. In this study, we tested the hypothesis that cyclic mechanical loading of the mouse tibia inhibits orchidectomy (ORX)‐associated cancellous bone loss. Materials and Methods : Ten‐week‐old male C57BL/6 mice had in vivo cyclic axial compressive loads applied to one tibia every day, 5 d/wk, for 6 wk after ORX or sham operation. Adaptation of proximal cancellous and diaphyseal cortical bone was characterized by μCT and dynamic histomorphometry. Comparisons were made between loaded and nonloaded contralateral limbs and between the limbs of ORX (n = 10), sham (n = 11), and basal (n = 12) groups and tested by two‐factor ANOVA with interaction. Results : Cyclic loading inhibited bone loss after ORX, maintaining absolute bone mass at age‐matched sham levels. Relative to sham, ORX resulted in significant loss of cancellous bone volume fraction (?78%) and trabecular number (?35%), increased trabecular separation (67%), no change in trabecular thickness, and smaller loss of diaphyseal cortical properties, consistent with other studies. Proximal cancellous bone volume fraction was greater with loading (ORX: 290%, sham: 68%) than in contralateral nonloaded tibias. Furthermore, trabeculae thickened with loading (ORX: 108%, sham: 48%). Dynamic cancellous bone histomorphometry indicated that loading was associated with greater mineral apposition rates (ORX: 32%, sham: 12%) and smaller percent mineralizing surfaces (ORX: ?47%, sham: ?39%) in the final week. Loading resulted in greater BMC (ORX: 21%, sham: 15%) and maximum moment of inertia (ORX: 39%, sham: 24%) at the cortical midshaft. Conclusions : This study shows that cancellous bone mass loss can be prevented by mechanical loading after hormonal compromise and supports further exploration of nonpharmacologic measures to prevent rapid‐onset osteopenia and associated fractures.  相似文献   

7.
To elucidate the pathology of osteoporosis, we used a computer, to investigate three-dimensional tissue morphometry in biopsied iliac bone specimens from 20 female patients with femoral neck fractures. The 20 fracture patients were divided into two groups according to age: group I, patients below 70 years of age (n=10) and group II, patient 70 years of age or more (n=10). Five patients who also underwent iliac bone biopsy but who did not have fractures served as the control group. We found that the ilium in group I patients was composed of many small thin trabecular structures, while the ilium in group II was composed of only a few broad trabecular structures. The three-dimensional Euler number was small in osteoporosis, suggesting that trabecular connectivity was also diminished and the fractal dimension decreased. This indicated that the trabecular structure had become irregular. These findings indicate that the number of trabeculae appeared to decrease with trabecular blocking due to osteoporotic changes, and, simultaneously with this phenomenon, the which of the individual trabeculae seemed to become thicker in accordance with bone adaptation to mechanical stress.A summary of this paper was reported at the 9th Annual Orthopaedic Research Meeting of the Japanese Orthopaedics Association (October, 1994), and the 3rd Study Meeting of the Japanese Society of Osteoporosis (October, 1994).  相似文献   

8.
Osteoporotic hip fracture is associated with significant trabecular bone loss, which is typically characterized as low bone density by dual-energy X-ray absorptiometry (DXA) and altered microstructure by micro-computed tomography (μCT). Emerging morphological analysis techniques, e.g. individual trabecula segmentation (ITS), can provide additional insights into changes in plate-like and rod-like trabeculae, two major microstructural types serving different roles in determining bone strength. Using ITS, we evaluated trabecular microstructure of intertrochanteric bone cores obtained from 23 patients undergoing hip replacement surgery for intertrochanteric fracture and 22 cadaveric controls. Micro-finite element (μFE) analyses were performed to further understand how the abnormalities seen by ITS might translate into effects on bone strength. ITS analyses revealed that, near fracture site, plate-like trabeculae were seriously depleted in fracture patients, but trabecular rod volume was maintained. Besides, decreased plate area and rod length were observed in fracture patients. Fracture patients also showed decreased elastic moduli and shear moduli of trabecular bone. These results provided evidence that in intertrochanteric hip fracture, preferential loss of plate-like trabeculae led to more rod-like microstructure and deteriorated mechanical competence adjacent to the fracture site, which increased our understanding of the biomechanical pathogenesis of hip fracture in osteoporosis.  相似文献   

9.
Age-related variations in the microstructure of human tibial cancellous bone.   总被引:11,自引:0,他引:11  
A thorough understanding of the microstructure of cancellous bone is crucial for diagnosis, prophylaxis, and treatment of age-related skeletal diseases. Until now, little has been known about age-related variations in the microstructure of peripheral cancellous bone. This study quantified age-related changes in the three-dimensional (3D) microstructure of human tibial cancellous bone. One hundred and sixty cylindrical cancellous bone specimens were produced from 40 normal proximal tibiae from 40 donors, aged 16-85 years. These specimens were micro-computed tomography (micro-CT) scanned, and microstructural properties were determined. The specimens were then tested in compression to obtain Young's modulus. The degree of anisotropy, mean marrow space volume, and bone surface-to-volume ratio increased significantly with age. Bone volume fraction, mean trabecular volume, and bone surface density decreased significantly with age. Connectivity did not have a general relationship with age. Bone volume fraction together with anisotropy best predicted Young's modulus. Age-related changes in the microstructural properties had the same trends for both medial and lateral condyles of the tibia. The observed increase of anisotropy and constant connectivity suggest a bone remodeling mechanism that may reorient trabecular volume orientation in aging tibial cancellous bone. The aging trabeculae align more strongly to the primary direction--parallel to the tibial longitudinal loading axis.  相似文献   

10.
Osteoporosis is typically diagnosed by dual-energy X-ray absorptiometry (DXA) measurements of areal bone mineral density (aBMD). Emerging technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), may increase the diagnostic accuracy of DXA and enhance our mechanistic understanding of decreased bone strength in osteoporosis. Women with (n = 68) and without (n = 101) a history of postmenopausal fragility fracture had aBMD measured by DXA, trabecular plate and rod microarchitecture measured by HR-pQCT image-based individual trabecula segmentation (ITS) analysis, and whole bone and trabecular bone stiffness by microfinite element analysis (μFEA) of HR-pQCT images at the radius and tibia. DXA T-scores were similar in women with and without fractures at the spine, hip, and 1/3 radius, but lower in fracture subjects at the ultradistal radius. Trabecular microarchitecture of fracture subjects was characterized by preferential reductions in trabecular plate bone volume, number, and connectivity over rod trabecular parameters, loss of axially aligned trabeculae, and a more rod-like trabecular network. In addition, decreased thickness and size of trabecular plates were observed at the tibia. The differences between groups were greater at the radius than the tibia for plate number, rod bone volume fraction and number, and plate-rod and rod-rod junction densities. Most differences between groups remained after adjustment for T-score by DXA. At a fixed bone volume fraction, trabecular plate volume, number, and connectivity were directly associated with bone stiffness. In contrast, rod volume, number, and connectivity were inversely associated with bone stiffness. In summary, HR-pQCT-based ITS and μFEA measurements discriminate fracture status in postmenopausal women independent of DXA measurements. Moreover, these results suggest that preferential loss of plate-like trabeculae contribute to lower trabecular bone and whole bone stiffness in women with fractures. We conclude that HR-pQCT-based ITS and μFEA measurements increase our understanding of the microstructural pathogenesis of fragility fracture in postmenopausal women.  相似文献   

11.
As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10° to 87°. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.  相似文献   

12.
Compared to trabecular microfracture, the biomechanical consequences of the morphologically more subtle trabecular microdamage are unclear but potentially important because of its higher incidence. A generic three-dimensional finite element model of the trabecular bone microstructure was used to investigate the relative biomechanical roles of these damage categories on reloading elastic modulus after simulated overloads to various strain levels. Microfractures of individual trabeculae were modeled using a maximum fracture strain criterion, for three values of fracture strain (2%, 8%, and 35%). Microdamage within the trabeculae was modeled using a strain-based modulus reduction rule based on cortical bone behavior. When combining the effects of both microdamage and microfracture, the model predicted reductions in apparent modulus upon reloading of over 60% at an applied apparent strain of 2%, in excellent agreement with previously reported experimental data. According to the model, up to 80% of the trabeculae developed microdamage at 2% apparent strain, and between 2% and 10% of the trabeculae were fractured, depending on which fracture strain was assumed. If microdamage could not occur but microfracture could, good agreement with the experimental data only resulted if the trabecular hard tissue had a fracture strain of 2%. However, a high number of fractures (10% of the trabeculae) would need to occur for this case, and this has not been observed in published damage morphology studies. We conclude therefore that if the damage behavior of trabecular hard tissue is similar to that of cortical bone, then extensive microdamage is primarily responsible for the large loss in apparent mechanical properties that can occur with overloading of trabecular bone.  相似文献   

13.
Yeni YN  Zelman EA  Divine GW  Kim DG  Fyhrie DP 《BONE》2008,42(3):591-596
Trabecular shear stress magnitude and variability have been implicated in damage formation and reduced bone strength associated with bone loss for human vertebral bone. This study addresses the issue of whether these parameters change with age, gender or anatomical location, and if so whether this is independent of bone mass. Additionally, 3D-stereology-based architectural parameters were examined in order to establish the relationship between stress distribution parameters and trabecular architecture. Eighty cancellous bone specimens were cored from the anterior region of thoracic 12 and donor-matched lumbar 1 vertebrae from a randomly selected population of 40 cadavers. The specimens were scanned at 21-microm voxel size using microcomputed tomography (microCT) and reconstructed at 50microm. Bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), bone surface-to-volume ratio (BS/BV), degree of anisotropy (MIL1/MIL3), and connectivity density (-#Euler/Vol) were calculated directly from micro-CT images. Large-scale finite element models were constructed and superoinferior compressive loading was simulated. Apparent cancellous modulus (EFEM) was calculated. The average trabecular von Mises stress generated per uniaxial apparent stress (sigma (-)VM / sigmaapp) and coefficient of variation of trabecular von Mises stresses (COV) were calculated as measures of the magnitude and variability of shear stresses in the trabeculae. Mixed-models and regression were used for analysis. sigma(-)VM / sigmaapp and COV were not different between genders and vertebrae. Both sigma(-)VM / sigmaapp and COV increased with age accompanied by a decrease in BV/TV. Strong relationship of sigma(-)VM / sigmaapp with BV/TV was found whereas COV was strongly related to EFEM/(BV/TV). The results from T12 and L1 were not different and highly correlated with each other. The relationship of sigma(-)VM / sigmaapp with COV was observed to be different between males and females. This difference could not be explained by architectural parameters considered in this study. Our results support the relevance of trabecular shear stress amplification and variability in age-related vertebral bone fragility. The relationships found are expected to help understand the micro-mechanisms by which cancellous bone mass and mechanical properties are modulated through a collection of local stress parameters.  相似文献   

14.
Hordon LD  Raisi M  Aaron JE  Paxton SK  Beneton M  Kanis JA 《BONE》2000,27(2):271-276
While osteoporosis is characterized by a low bone mass there is a well-recognized overlap in bone mineral density (BMD) measurements between groups of subjects with and without vertebral fracture. To investigate whether differences in trabecular architecture may contribute to the presence or absence of fractures independent of the bone mass, fracture and nonfracture groups matched for age, gender, and BMD were assembled. Transiliac biopsies and corresponding lumbar spine BMD measurements from 31 women and 16 men with vertebral fracture were compared with those from 22 women and 11 men without fracture. Lumbar BMD (L1-4) was measured using a Hologic 2000 densitometer. The lumbar BMD was similar in women with and without fracture (0.63 g/cm(3) +/- 0.10 SD and 0.71 g/cm(3) +/- 0.17 SD, n.s.) and in men with and without fracture (0.72 g/cm(3) +/- 0.12 SD and 0.76 g/cm(3) +/- 0.17 SD, n.s.). Undecalcified iliac crest biopsy sections, 8 microm thick, were analyzed for remodeling variables and trabecular architecture using OsteoMeasure and TAS image analysis systems. No significant difference was found in either gender between fracture and nonfracture groups in percent bone volume (mean 10% in all groups), or in the wide range of remodeling and architectural variables measured, including the trabecular width, number, and separation, mean trabecular plate density and fractal dimension, as well as several indirect indices of connectivity including the node:terminus ratio, marrow star volume, and trabecular pattern factor. On the basis of this evidence it was concluded that there is no difference in the trabecular architecture between patients with crush fracture and controls when account is taken of bone mass. This suggests that microanatomical disruption is a predictable intrinsic feature of bone loss. However, there remains the possibility that the two-dimensional character of the structural deterioration measured indirectly is not sufficiently sensitive for the complex cancellous system. This is considered further in part II.  相似文献   

15.
Some studies have indicated that the risk of fragility fractures in men increases as bone mineral levels decrease, but there is an overlap in the bone mineral density (BMD) measurements between patients with or without fractures. Furthermore, it has been suggested that the biomechanical competence of trabecular bone is dependent not only on the absolute amount of bone present but also on the trabecular microarchitecture. In the present study, 108 men (mean age 52.1 years) with lumbar osteopenia (T score < -2.5) were recruited to examine the relationships between BMD, architectural changes in trabecular bone, and the presence of vertebral fractures. Lumbar BMD was assessed from L2 to L4 in the anteroposterior view with dual-energy X-ray absorptiometry. At the upper left femur, hip BMD was measured at the transcervical site. Spinal X-ray films were analyzed independently by two trained investigators, and vertebral fracture was defined as a reduction of at least 20% in the anterior, middle, or posterior vertebral height. Transiliac bone biopsy specimens were obtained for all patients. Histomorphometric studies were performed on an image analyzer, and the following parameters were determined: trabecular bone volume (BV/TV), trabecular thickness (Tb.Th), number (Tb.N), and separation (Tb.Sp), interconnectivity index (ICI), characterization of the trabecular network (node count and strut analysis), and star volume of the marrow spaces. Spinal radiographs evidenced at least one vertebral crush fracture in 62 patients (group II) and none in 46 patients (group I). After adjusting for age, body mass index, and BMD, there were no significant differences between the two groups in BV/TV, Tb.Th, or star volume. In contrast, the mean values of ICI, free end-to-free end struts (FF/TSL), and Tb.Sp were significantly higher, whereas Tb.N and node-to-node struts (NN/TSL) were lower in patients with at least one vertebral fracture. Logistic regression analysis showed that only ICI, FF/TSL, NN/TSL, and Tb.N were significant predictors of the presence of vertebral fracture: odds ratios for an alteration of 1 SD ranged from 1.7 (1.0-3.2) for NN/TSL to 3.2 (1.1-10.1) for ICI. Patients with at least three vertebral fractures (n = 23) were categorized as "multiple fractures." The results of logistic regression showed that spine BMD, BV/TV, and all architectural parameters were significant predictors of multiple vertebral fractures: odds ratios for an alteration of 1 SD ranged from 2.2 (1.1-4.6) for star volume to 3.7 (1.4-9.7) for ICI. These results strongly suggest that bone trabecular microarchitecture is a major and independent determinant of vertebral fractures in middle-aged men with osteopenia.  相似文献   

16.
Mechanical consequences of bone loss in cancellous bone.   总被引:5,自引:0,他引:5  
The skeleton is continuously being renewed in the bone remodeling process. This prevents accumulation of damage and adapts the architecture to external loads. A side effect is a gradual decrease of bone mass, strength, and stiffness with age. We investigated the effects of bone loss on the load distribution and mechanical properties of cancellous bone using three-dimensional (3D) computer models. Several bone loss scenarios were simulated. Bone matrix was removed at locations of high strain, of low strain, and random throughout the architecture. Furthermore, resorption cavities and thinning of trabeculae were simulated. Removal of 7% of the bone mass at highly strained locations had deleterious effects on the mechanical properties, while up to 50% of the bone volume could be removed at locations of low strain. Thus, if remodeling would be initiated only at highly strained locations, where repair is likely needed, cancellous bone would be continuously at risk of fracture. Thinning of trabeculae resulted in relatively small decreases in stiffness; the same bone loss caused by resorption cavities caused large decreases in stiffness and high strain peaks at the bottom of the cavities. This explains that a reduction in the number and size of resorption cavities in antiresorptive drug treatment can result in large reductions in fracture risk, with small increases in bone mass. Strains in trabeculae surrounding a cavity increased by up to 1,000 microstrains, which could lead to bone apposition. These results give insight in the mechanical effects of bone remodeling and resorption at trabecular level.  相似文献   

17.
Guo XE  Kim CH 《BONE》2002,30(2):404-411
Age-related changes in the microstructure of trabecular bone, such as decreases in trabecular number and trabecular thickness, lead to reductions in mechanical properties, such as Young's modulus and strength. Current drug therapy, such as bisphosphonate or parathyroid hormone, improves the mechanical properties of bone mainly by increasing the trabecular thickness, but not increasing the trabecular number. However, the mechanical efficacy of these treatments has not been fully quantified using trabecular bone models. In this study, we used an idealized three-dimensional (3D) microstructural model of trabecular bone to create bone loss either through trabeculae thinning or random removal of trabeculae, and simulated treatment by increasing the trabeculae thickness of the remaining trabeculae. The reduction in either the Young's modulus or the strength due to trabeculae loss was proportional to a much higher power of reduction in bone volume fraction than due to trabeculae thinning. This indicates that bone loss due to trabeculae loss is much more detrimental to Young's modulus and strength of trabecular bone than due to trabeculae thinning, indicating the importance of trabecular number and connectivity in the mechanical integrity of trabecular bone. In general, treatments by increasing the trabecular thickness of remaining trabeculae after trabeculae loss cannot fully recover the initial mechanical properties of intact bone, even if bone loss is fully recovered, whereas trabecular thickening can fully restore the mechanical properties after bone loss by trabeculae thinning. The results also show that the residual loss in mechanical properties is dependent on the extent of trabeculae loss.  相似文献   

18.
Ding M  Hvid I 《BONE》2000,26(3):291-295
Structure model type and trabecular thickness are important characteristics in describing cancellous bone architecture. It has been qualitatively observed that a radical change of trabeculae from plate-like to rod-like occurs in aging, bone remodeling, and osteoporosis. Thickness of trabeculae has traditionally been measured using model-based histomorphometric methods on two-dimensional (2-D) sections. However, no quantitative study has been published based on three-dimensional (3-D) methods on the age-related changes in structure model type and trabecular thickness for human peripheral (tibial) cancellous bone. In this study, 160 human proximal tibial cancellous bone specimens from 40 normal donors, aged 16 to 85 years, were collected. These specimens were micro-computed tomography (micro-CT) scanned, then the micro-CT images were segmented using optimal thresholds. From accurate 3-D data sets, structure model type and trabecular thickness were quantified by means of novel 3-D methods. Structure model type was assessed by calculating the structure model index (SMI). The SMI was quantified based on a differential analysis of the triangulated bone surface of a structure. This technique allows quantification of structure model type, such as plate, rod objects, or mixture of plates or rods. Trabecular thickness is calculated directly from 3-D images, which is especially important for an a priori unknown or changing structure. Furthermore, 2-D trabecular thickness was also calculated based on the plate model. Our results showed that structure model type changed towards more rod-like in the elderly, and that trabecular thickness declined significantly with age. These changes become significant after 80 years of age for human tibial cancellous bone, whereas both properties seem to remain relatively unchanged between 20 and 80 years. Although a fairly close relationship was seen between 3-D trabecular thickness and 2-D trabecular thickness, real 3-D trabecular thickness was significantly underestimated using 2-D method.  相似文献   

19.
Previous studies have shown that low-density, rod-like trabecular structures develop in regions of low stress, whereas high-density, plate-like trabecular structures are found in regions of high stress. This phenomenon suggests that there may be a close relationship between the type of trabecular structure and mechanical properties. In this study, 160 cancellous bone specimens were produced from 40 normal human tibiae aged from 16 to 85 years at post-mortem. The specimens underwent micro-CT and the microstructural properties were calculated using unbiased three-dimensional methods. The specimens were tested to determine the mechanical properties and the physical/compositional properties were evaluated. The type of structure together with anisotropy correlated well with Young's modulus of human tibial cancellous bone. The plate-like structure reflected high mechanical stress and the rod-like structure low mechanical stress. There was a strong correlation between the type of trabecular structure and the bone-volume fraction. The most effective microstructural properties for predicting the mechanical properties of cancellous bone seem to differ with age.  相似文献   

20.
The vertebral trabecular bone has a complex three-dimensional (3D) microstructure, with inhomogeneous morphology. A thorough understanding of regional variations in the microstructural properties is crucial for evaluating age- and gender-related bone loss of the vertebra, and may help us to gain more insight into the mechanism of the occurrence of vertebral osteoporosis and the related fracture risks. INTRODUCTION: The aim of this study was to identify regional differences in 3D microstructure of vertebral trabecular bone with age and gender, using micro-computed tomography (micro-CT) and scanning electron microscopy (SEM). METHODS: We used 56 fourth lumbar vertebral bodies from 28 women and men (57-98 years of age) cadaver donors. The subjects were chosen to give an even age and gender distribution. Both women and men were divided into three age groups, 62-, 77- and 92-year-old groups. Five cubic specimens were prepared from anterosuperior, anteroinferior, central, posterosuperior and posteroinferior regions at sagittal section. Bone specimens were examined by using micro-CT and SEM. RESULTS: Reduced bone volume (BV/TV), trabecular number (Tb.N) and connectivity density (Conn.D), and increased structure model index (SMI) were found between ages 62 and 77 years, and between ages 77 and 92 years. As compared with women, men had higher Tb.N in the 77-year-old group and higher Conn.D in the 62- and 77-year-old groups. The central and anterosuperior regions had lower BV/TV and Conn.D than their corresponding posteroinferior region. Increased resorbing surfaces, perforated or disconnected trabeculae and microcallus formations were found with age. CONCLUSION: Vertebral trabeculae are microstructurally heterogeneous. Decreases in BV/TV and Conn.D with age are similar in women and men. Significant differences between women and men are observed at some microstructural parameters. Age-related vertebral trabecular bone loss may be caused by increased activity of resorption. These findings illustrate potential mechanisms underlying vertebral fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号