首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
Activity plays multiple roles in the expression of synaptic plasticity, and has been shown to regulate the localization of both neurotransmitter receptors and downstream signaling machinery. However, the role of activity in central synapse formation and organization is incompletely understood. Some studies indicate that synapse formation can occur in the absence of synaptic activity, while others indicate that activity is required for synapse maintenance and receptor recruitment. In addition, the effects of long-term blockade of transmission generally, rather than blockade of specific receptors, on postsynaptic protein complement has been poorly characterized. In order to address the role of activity in synapse formation and postsynaptic specialization, we used tetanus toxin to chronically cleave VAMP2 and inhibit SNARE-mediated neurotransmitter release in cultured hippocampal neurons. Although these neurons are deficient in synaptic release, they are of normal size and morphology. In addition, both excitatory and inhibitory synapses form along their processes with normal density. These synapses have a remarkably similar cellular and molecular organization compared to controls, and are capable of recruiting postsynaptic scaffolding proteins, GABA, and glutamate receptors. Subcellular enrichment of synaptic proteins into specialized domains also appears intact. These data indicate that global activity inhibition is insufficient to disrupt central synapse formation or organization.  相似文献   

2.
Szabo TM  Zoran MJ 《Brain research》2007,1129(1):63-71
Electrical synapses are abundant before and during developmental windows of intense chemical synapse formation, and might therefore contribute to the establishment of neuronal networks. Transient electrical coupling develops and is then eliminated between regenerating Helisoma motoneurons 110 and 19 during a period of 48-72 h in vivo and in vitro following nerve injury. An inverse relationship exists between electrical coupling and chemical synaptic transmission at these synapses, such that the decline in electrical coupling is coincident with the emergence of cholinergic synaptic transmission. In this study, we have generated two- and three-cell neuronal networks to test whether predicted synaptogenic capabilities were affected by previous synaptic interactions. Electrophysiological analyses demonstrated that synapses formed in three-cell neuronal networks were not those predicted based on synaptogenic outcomes in two-cell networks. Thus, new electrical and chemical synapse formation within a neuronal network is dependent on existing connectivity of that network. In addition, new contacts formed with established networks have little impact on these existing connections. These results suggest that network-dependent mechanisms, particularly those mediated by gap junctional coupling, regulate synapse formation within simple neural networks.  相似文献   

3.
The impact of presynaptic transmitter release site organization on synaptic function has been a vibrant area of research for synaptic physiologists. Because there is a highly nonlinear relationship between presynaptic calcium influx and subsequent neurotransmitter release at synapses, the organization and density of calcium sources (voltage‐gated calcium channels [VGCCs]) relative to calcium sensors located on synaptic vesicles is predicted to play a major role in shaping the dynamics of neurotransmitter release at a synapse. Here we review the history of structure‐function studies within transmitter release sites at the neuromuscular junction across three model preparations in an effort to discern the relationship between VGCC organization and synaptic function, and whether that organizational structure imparts evolutionary advantages for each species.  相似文献   

4.
A mixed chemical/electrical synapse can generate variable output when the strength of each synaptic component is modulated. At mixed synapses of the lobster pyloric network, the chemical component is inhibitory. Without neuromodulation, the chemical component is weak or absent and the electrical component often dominates. Dopamine reverses the sign of these mixed synaptic interactions by a reduction in the strength of electrical coupling and an enhancement of chemical inhibition, including activation of silent chemical synapses. Sign reversal at mixed synapses by neuromodulators may contribute to functional rewiring of neural networks.  相似文献   

5.
The active zone (AZ) is a thickening of the presynaptic membrane where exocytosis takes place. Chemical synapses contain neurotransmitter-loaded synaptic vesicles (SVs) that at rest are tethered away from the synaptic release site, but after the presynaptic inflow of Ca+2 elicited by an action potential translocate to the AZ to release their neurotransmitter load. We report that tissue-type plasminogen activator (tPA) is stored outside the AZ of cerebral cortical neurons, either intermixed with small clear-core vesicles or in direct contact with the presynaptic membrane. We found that cerebral ischemia-induced release of neuronal tPA, or treatment with recombinant tPA, recruits the cytoskeletal protein βII-spectrin to the AZ and promotes the binding of SVs to βII-spectrin, enlarging the population of SVs in proximity to the synaptic release site. This effect does not require the generation of plasmin and is followed by the recruitment of voltage gated calcium channels (VGCC) to the presynaptic terminal that leads to Ca+2-dependent synapsin I phosphorylation, freeing SVs to translocate to the AZ to deliver their neurotransmitter load. Our studies indicate that tPA activates the SV cycle and induces the structural and functional changes in the synapse that are required for successful neurotransmission.  相似文献   

6.
Activity plays important roles in the formation and maturation of synaptic connections. We examined these roles using solitary neocortical excitatory neurons, receiving only self-generated synaptic inputs, cultured in a microisland with and without spontaneous spike activity. The amplitude of excitatory postsynaptic currents (EPSCs), evoked by applying brief depolarizing voltage pulses to the cell soma, continued to increase from 7 to 14 days in culture. Short-term depression of EPSCs in response to paired-pulse or 10-train-pulse stimulation decreased with time in culture. These developmental changes were prevented when neurons were cultured in a solution containing tetrodotoxin (TTX). The number of functional synapses estimated by recycled synaptic vesicles with FM4-64 was significantly smaller in TTX-treated than control neurons. However, the miniature EPSC amplitude remained unchanged during development, irrespective of activity. Transmitter release probability, assessed by use-dependent blockade of N-methyl-D-aspartate receptor-mediated EPSCs with MK-801, was higher in TTX-treated than control neurons. Therefore, the activity-dependent increase in EPSC amplitude was mainly ascribed to the increase in synapse number, while activity-dependent alleviation of short-term depression was mostly ascribed to the decrease in release probability. The effect of activity blockade on short-term depression, but not EPSC amplitude, was reversed after 4 days of TTX removal, indicating that synapse number and release probability are controlled by activity in very different ways. These results demonstrate that activity regulates the conversion of immature synapses transmitting low-frequency input signals preferentially to mature synapses transmitting both low- and high-frequency signals effectively, which may be necessary for information processing in mature cortex.  相似文献   

7.
J Yu  H Qian  JH Wang 《Molecular brain》2012,5(1):26-13
ABSTRACT: Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners.  相似文献   

8.
Glia constitute 90% of cells in the human nervous system, but relatively little is known about their functions. We have been focusing on the potential synaptic roles of glia in the CNS. We recently found that astrocytes increase the number of mature, functional synapses on retinal ganglion cells (RGCs) by sevenfold and are required for synaptic maintenance in vitro. These observations raised the question of whether glia similarly enhance synapse formation by other neuron types. Here we have investigated whether highly purified motor neurons isolated from developing rat spinal cords are able to form synapses in the absence of glia or whether glia similarly enhance synapse number. We show that spinal motor neurons (SMNs) form few synapses unless Schwann cells or astrocytes are present. Schwann cells increase the number of functional synapses by ninefold as measured by immunostaining, and increase spontaneous synaptic activity by several hundredfold. Surprisingly, the synapses formed between spinal motor neurons were primarily glutamatergic, as they could be blocked by CNQX. This synapse-promoting activity is not mediated by direct glial-neuronal cell contact but rather is mediated by secreted molecule(s) from the Schwann cells, as we previously found for astrocytes. Interestingly, the synapse-promoting activity from astrocytes and Schwann cells was functionally similar: Schwann cells also promoted synapse formation between retinal ganglion cells, and astrocytes promoted synapse formation between spinal motor neurons. These studies show that both astrocytes and Schwann cells strongly promote synapse formation between spinal motor neurons and demonstrate that glial regulation of synaptogenesis extends to other neuron types.  相似文献   

9.
New roles for astrocytes: regulation of synaptic transmission   总被引:31,自引:0,他引:31  
Abstract Although glia often envelop synapses, they have traditionally been viewed as passive participants in synaptic function. Recent evidence has demonstrated, however, that there is a dynamic two-way communication between glia and neurons at the synapse. Neurotransmitters released from presynaptic neurons evoke Ca2+ concentration increases in adjacent glia. Activated glia, in turn, release transmitters, including glutamate and ATP. These gliotransmitters feed back onto the presynaptic terminal either to enhance or to depress further release of neurotransmitter. Transmitters released from glia can also directly stimulate postsynaptic neurons, producing either excitatory or inhibitory responses. Based on these new findings, glia should be considered an active partner at the synapse, dynamically regulating synaptic transmission.  相似文献   

10.
The role of synapsin I, a synaptic vesicle-associated phosphoprotein, in the maturation of nerve–muscle synapses was investigated in nerve–muscle co-cultures prepared from Xenopus embryos loaded with the protein by the early blastomere injection method. The stage of maturation of the synapses was analysed by electron microscopy as well as by whole-cell patch-clamp recording. The acceleration in the functional maturation of neuromuscular synapses induced by synapsin I was accompanied by a profound rearrangement in the ultrastructure of the nerve terminal. Nerve terminals formed by synapsin I-loaded neurons were characterized by a higher number of small synaptic vesicles organized in clusters and predominantly localized close to the nerve terminal plasma membrane, a smaller number of large dense-core vesicles and no significant change in the number of coated vesicles. Precocious development of active zone-like structures as well as deposition of basal lamina into the synaptic cleft were also observed at these synapses. These results support a role for synapsin I in the architectural changes which occur during synaptogenesis and lead to the maturation of quantal neurotransmitter release mechanisms.  相似文献   

11.
Graded chemical synaptic transmission is important for establishing the motor patterns produced by the pyloric central pattern generator (CPG) circuit of the lobster stomatogastric ganglion (Raper, 1979; Anderson and Barker, 1981; Graubard et al., 1983). We examined the modulatory effects of the amines dopamine (DA), serotonin (5-HT), and octopamine (Oct) on graded synaptic transmission at all the central chemical synapses made by the pyloric dilator (PD) neuron onto its follower cells, using synaptic input-output curves measured from cell somata. DA strongly reduced the graded synaptic strength at all the PD synapses. DA reduction of chemical synaptic strength from PD onto the inferior cardiac (IC) neuron could change the sign of synaptic interaction between these 2 cells from inhibitory to excitatory by uncovering a weak electrical connection. 5-HT had weaker and more variable effects, reducing graded synaptic strength from the PD onto the lateral pyloric and pyloric neurons and enhancing the weak synapse from the PD to the IC cell. Oct strongly enhanced the graded synaptic strength at all the PD central synapses. Oct enhancement of graded synaptic strength between the PD and IC cells could also change the sign of the interaction: weak, excitatory electrical coupling, which was sometimes dominant before Oct, was masked by the enhanced chemical inhibitory interaction during Oct application. Measurements of electrical coupling between 2 PD cells and between 2 postsynaptic cells suggest that Oct does not change the input resistance of these cells and may act directly at the PD synapses. The effects of DA and 5-HT are most easily explained by their general reductions in pre- and postsynaptic input resistance. DA, 5-HT, and Oct each produce a distinct pyloric motor pattern (Flamm and Harris-Warrick, 1986a). These amine-induced motor patterns may be explained by the unique actions of each amine on the intrinsic membrane properties of different pyloric CPG neurons (Flamm and Harris-Warrick, 1986b) and by modulation of graded synaptic transmission between the pyloric neurons.  相似文献   

12.
Systematic testosterone treatment induces adult female canaries to develop male-like song. This same treatment induces a doubling in size of the forebrain nucleus robustus archistriatalis (RA), known to be involved in song control, and a 51% increase in the number of synapses formed on RA neurons. In central RA, the number of synaptic vesicles per synapse increases as do several measures of synaptic size. Housing in spring-like conditions is also associated with larger synapses and more vesicles per synapse than housing in fall-like conditions. We suggest that formation of new synapses on existing neurons leading to or associated with modifications in synaptic morphology is important for acquisition of a new behavior. We also suggest that maximal behavioral and anatomical effects are associated with testosterone given under spring-like conditions.  相似文献   

13.
On the basis of ultrastructural parameters, the concept was formulated that asymmetric Type I and symmetric Type II synapses are excitatory and inhibitory, respectively. This "functional Gray synapses concept" received strong support from the demonstration of the excitatory neurotransmitter glutamate in Type I synapses and of the inhibitory neurotransmitter γ-aminobutyric acid in Type II synapses, and is still frequently used in modern literature. However, morphological and functional evidence has accumulated that the concept is less tenable. Typical features of synapses like shape and size of presynaptic vesicles and synaptic cleft and presence of a postsynaptic density (PsD) do not always fit the postulated (excitatory/inhibitory) function of Gray's synapses. Furthermore, synapse function depends on postsynaptic receptors and associated signal transduction mechanisms rather than on presynaptic morphology and neurotransmitter type. Moreover, the notion that many synapses are difficult to classify as either asymmetric or symmetric has cast doubt on the assumption that the presence of a PsD is a sign of excitatory synaptic transmission. In view of the morphological similarities of the PsD in asymmetric synapses with membrane junctional structures such as the zonula adherens and the desmosome, asymmetric synapses may play a role as links between the postsynaptic and presynaptic membrane, thus ensuring long-term maintenance of interneuronal communication. Symmetric synapses, on the other hand, might be sites of transient communication as takes place during development, learning, memory formation, and pathogenesis of brain disorders. Confirmation of this idea might help to return the functional Gray synapse concept its central place in neuroscience.  相似文献   

14.
The synaptic vesicle-associated cysteine string protein (CSP) is critical for neurotransmitter release at the neuromuscular junction (NMJ) of Drosophila, where the approximately 4% of mutant flies lacking CSP that survive to adulthood exhibit spastic jumping and shaking, temperature-sensitive paralysis, and premature death. Previously, it has been shown that CSP is also required for nerve terminal growth and the prevention of neurodegeneration in Drosophila and mice. At larval csp null mutant NMJs of Drosophila, intracellular recordings from the muscle showed that evoked release is significantly reduced at room temperature. However, it remained unclear whether the reduction in evoked release might be due to a loss of synaptic boutons, loss of synapses, and alterations in trafficking of vesicles to synapses. To resolve these issues, we have examined synaptic structure and function of csp null mutant NMJs at the level of single boutons. csp null mutations proportionally reduce the number of synaptic boutons of both motor neurons (1s and 1b) innervating larval muscles 6 and 7, while the number of synapses per bouton remains normal. However, focal recordings from individual synaptic boutons show that nerve-evoked neurotransmitter release is also impaired in both 1s and 1b boutons. Further, our ultrastructural analyses show that the reduction in evoked release at low stimulation frequencies is not due to a loss of synapses or to alterations in docked vesicles at synapses. Together, these data suggest that CSP promotes synaptic growth and evoked neurotransmitter release by mechanistically independent signaling pathways.  相似文献   

15.
Matching of pre- and postsynaptic specializations during synaptogenesis.   总被引:4,自引:0,他引:4  
Formation of chemical synapses in the central nervous system is a highly regulated, multistep process that requires bidirectional communication across the synaptic cleft. Neurotransmitter receptors, scaffolding proteins, and signaling molecules need to be concentrated in the postsynaptic density, a specialized membrane microdomain apposed to the active zone of presynaptic terminals, where transmitter release occurs. This precise, synapse-specific matching implicates that sorting and targeting mechanisms exist for the molecular constituents of different types of synapses to ensure correct formation of neuronal circuits in the brain. There is considerable evidence from in vitro and in vivo studies that neurotransmitter signaling is not required for proper sorting during synapse formation, whereas active neurotransmission is essential for long-term synapse maintenance. Here, the authors review recent studies on the role of cell adhesion molecules in synaptogenesis and on possible mechanisms ensuring correct matching of pre- and postsynaptic sites. They discuss the role of neurotransmitter receptors and scaffolding proteins in these processes, focusing on fundamental differences between synapse formation during development and synapse maintenance and plasticity in adulthood.  相似文献   

16.
Crayfish abdominal stretch receptor organs are innervated by inhibitory (GABA) and excitatory (glutamate) synapses. Previous studies with aldehyde fixation showed that synaptic vesicles in the inhibitory synapse are flat and small, whereas those in the excitatory synapse are rounder and larger. We have reexamined these inhibitory and excitatory synapses by using direct rapid-freezing and freeze-substitution in order to preserve synaptic structure closer to its living state. Fine details of synaptic structure appear to be better preserved by this method. Synaptic vesicles in inhibitory as well as excitatory synapses are round, so the conventional flattened shape of vesicles in the inhibitory synapse must depend on some aspect of aldehyde processing. However, the average size of vesicles in the inhibitory synapse is significantly smaller than that of vesicles in the excitatory synapse, so synaptic vesicle size is regarded as having functional significance.  相似文献   

17.
The retinal photoreceptor ribbon synapse is a chemical synapse structurally and functionally specialized for the tonic release of neurotransmitter. It is characterized by the presynaptic ribbon, an electron‐dense organelle at the active zone covered by hundreds of synaptic vesicles. In conventional synapses, dense‐core transport vesicles carrying a set of active zone proteins are implicated in early steps of synapse formation. In photoreceptor ribbon synapses, synaptic spheres are suggested to be involved in ribbon synapse assembly, but nothing is known about the molecular composition of these organelles. With light, electron, and stimulated emission depletion microscopy and immunocytochemistry, we investigated a series of presynaptic proteins during photoreceptor synaptogenesis. The cytomatrix proteins Bassoon, Piccolo, RIBEYE, and RIM1 appear early in synaptogenesis. They are transported in nonmembranous, electron‐dense, spherical transport units, which we called precursor spheres, to the future presynaptic site. Other presynaptic proteins, i.e., Munc13, CAST1, RIM2, and an L‐type Ca2+ channel α1 subunit are not associated with the precursor spheres. They cluster directly at the active zone some time after the first set of cytomatrix proteins has arrived. By quantitative electron microscopy, we found an inverse correlation between the numbers of spheres and synaptic ribbons in the postnatally developing photoreceptor synaptic terminals. From these results, we suggest that the precursor spheres are the transport units for proteins of the photoreceptor ribbon compartment and are involved in the assembly of mature synaptic ribbons. J. Comp. Neurol. 512:814–824, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
19.
Classic cadherins are synaptic adhesion proteins that have been implicated in synapse formation and targeting. Brief inactivation of classic cadherin function in young neurons appears to abrogate synapse formation when examined acutely. It remains unknown if such abrogation is unique to young neurons, whether it occurs by stalling neuronal maturation or by directly interfering with the process of synapse assembly, or whether synapse targeting is altered. Here we asked if sustained pan-cadherin blockade would prevent or alter the progression of axonal and dendritic outgrowth, synaptogenesis, or the stereotypic distribution of excitatory and inhibitory synapses on cultured hippocampal neurons. While pre- and postsynaptic cadherins are required for synapse assembly in young neurons, we find that in neurons older than 10 days, classic cadherins are entirely dispensable for joining and aligning presynaptic vesicle clusters with molecular markers of the postsynaptic density. Furthermore, we find that the proportion and relative distributions of excitatory and inhibitory terminals on single neurons are not altered. However, synapses that form on neurons in which cadherin function is blocked are smaller; they exhibit decreased synaptic vesicle recycling and a decreased frequency of spontaneous EPSCs. Moreover, they fail to acquire resistance to F-actin depolymerization, a hallmark of mature, stable contacts. These data provide new evidence that cadherins are required to promote synapse stabilization and structural and functional maturation, but dispensable for the correct subcellular distribution of excitatory and inhibitory synapses.  相似文献   

20.
Synapses in the central nervous system can be very unreliable: stimulation of an individual synapse by an action potential often does not lead to release of neurotransmitter. The probability of transmitter release is not always the same, however, which enables the average strength of synaptic transmission to be regulated by modulation of release probability. Release probability is believed to be determined by the number of fusion competent vesicles (the readily releasable vesicle pool) and the release probability per vesicle. Studies from single synapses have shown that release probability correlates with the size of the readily releasable pool of vesicles across the population of excitatory CA3-CA1 synapses, both in hippocampal slices and in cultured cells. Here I present evidence that the same relationship exists between release probability and the size of the readily releasable vesicle pool within individual synapses, further suggesting that the size of the readily releasable pool helps determine release probability. In addition, using a simple model, I examine how both the number of readily releasable vesicles and the average release probability per vesicle change during trains of high frequency stimulation, and present evidence for non-uniformity of the release probability among vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号