首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coxsackievirus B3, a cytopathic virus in the family Picornaviridae, induces degenerative changes in host cell morphology. Here we demonstrate cytochrome c release and caspases-2, -3, -6, -7, -8, and -9 processing. Enforced Bcl-2 and Bcl-xL expression markedly reduced release of cytochrome c, presentation of the mitochondrial epitope 7A6, and depressed caspase activation following infection. In comparison, cell death using TRAIL ligand caused caspase-8 processing prior to cytochrome c release and executioner caspases and cell death was only partially rescued by Bcl-2 and Bcl-xL overexpression. Disruption of the mitochondrial inner membrane potential following CVB3 infection was not inhibited by zVAD.fmk treatment. Bcl-2 or Bcl-xL overexpression or zVAD.fmk treatment delayed the loss of host cell viability and decreased progeny virus release following infection. Our data suggest that mitochondrial release of cytochrome c may be an important early event in caspase activation in CVB3 infection, and, as such, may contribute to the loss of host-cell viability and progeny virus release.  相似文献   

2.
Nijhawan D  Fang M  Traer E  Zhong Q  Gao W  Du F  Wang X 《Genes & development》2003,17(12):1475-1486
Ultraviolet (UV) irradiation of HeLa cells triggers an apoptotic response mediated by mitochondria. Biochemical analysis of this response revealed that the elimination of cytosolic inhibitors is required for mitochondrial release of cytochrome c and subsequent caspase activation. These inhibitors were found to be Mcl-1 and Bcl-xL, two antiapoptotic members of the Bcl-2 family. Following UV treatment, Mcl-1 protein synthesis is blocked, the existing pool of Mcl-1 protein is rapidly degraded by the proteasome, and cytosolic Bcl-xL translocates to the mitochondria. These events are sequential; the elimination of Mcl-1 is required for the translocation of Bcl-xL. The disappearance of Mcl-1 is also required for other mitochondrial apoptotic events including Bax translocation, cytochrome c release, and caspase activation.  相似文献   

3.
Although the executioner phase of apoptosis has been well defined in many cell types, the subcellular events leading to apoptosis in endothelial cells remain undefined. In the current study, apoptosis was induced in primary human umbilical venous endothelial cells by the photosensitizer verteporfin and light. Release of mitochondrial cytochrome c into the cytosol was detectable immediately and accumulated over 2 hours after treatment while cytosolic levels of the proapoptotic Bcl-2 family member, Bax, decreased reciprocally over the same time period. Cleavage of another proapoptotic Bcl-2 family member, Bid, was observed by 2 hours after treatment. Although Bid cleavage has been shown to occur as an upstream event responsible for inducing cytochrome c release, we demonstrate that Bid cleavage can also occur after cytochrome c release. Activation of caspases 2, 3, 6, 7, 8, and 9 occurred following the release of cytochrome c, and cleavage of downstream substrates was observed. In summary, endothelial cell death involves the cellular redistribution of Bax and cytochrome c, followed by the activation of multiple caspases which manifest the apoptotic phenotype.  相似文献   

4.
Vesicular Stomatitis Virus (VSV) has been shown to induce apoptosis in a caspase-dependent manner, but the precise apoptotic pathway remains unknown. We found that caspases 9 and 3, but not caspase 8, were activated during VSV-induced apoptosis in infected Vero cells. Since caspase 9 is related to the mitochondrial apoptotic pathway, we analyzed some mitochondrial events such as changes in the mitochondrial transmembrane potential (Deltapsim) and mitochondrial release of apoptogenic proteins such as cytochrome c and the apoptosis inducing factor (AIF). We found that VSV infection triggers the dissipation of the Deltapsim and the release of both cytochrome c and AIF from the mitochondrial intermembrane space very early in the VSV infection. These results indicate that the trigger of apoptosis in VSV-infected cells occurs through the early activation of the mitochondrial apoptotic pathway. On the other hand, intracellular levels of the anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, and the pro-apoptotic protein Bax, were assessed during viral infection. These analyses showed that as viral infection proceeded, the cellular level of Bcl-xL decreased, while the levels of Bax and Bcl-2 remained unaffected. The significance of the Bcl-xL modulation is also discussed.  相似文献   

5.
Norcantharidin (NCTD) is the demethylated form of cantharidin, which is the active substance of mylabris. To examine the pathway of NCTD-induced A375-S2 cell death, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-dipheyltetrazolium bromide (MTT) assay, photomicroscopical observation, DNA agarose gel electrophoresis, caspase activity assay and Western blot analysis were carried out. A375-S2 cells treated with NCTD exhibited several typical characteristics of apoptosis. The inhibitory effect of NCTD on human melanoma, A375-S2 cells, was partially reversed by the inhibitors of pan-caspase, caspase-3 and caspase-9. The activities of caspase-3 and -9 were significantly increased after treatment with NCTD at different time. The expression of inhibitor of caspase-activated DNase was decreased in a time-dependent manner, simultaneously, the ratio of Bcl-2/Bax or Bcl-xL/Bax was decreased and the expression ratio of proteins could be reversed by caspase-3 inhibitor. The expression of cytochrome c in cytosol was increased after NCTD treatment and caspase- 3 inhibitor had no significant effect on the up-regulation of cytochrom c. These results suggest that NCTD induced A375-S2 cell apoptosis and the activation of caspase and mitochondrial pathway were involved in the process of NCTD-induced A375-S2 cell apoptosis.  相似文献   

6.
The Bcl-2 family proteins consist of both antiapoptosis and pro-apoptosis members that regulate apoptosis typically at the mitochondrial level, mainly by controlling the release of cytochrome c and other mitochondrial apoptotic events. However, death signals mediated by Fas/TNF-R1 receptors can usually activate caspases directly, bypassing the need for mitochondria and escaping the regulation by Bcl-2 family proteins. Bid is a novel pro-apoptosis Bcl-2 family protein that is activated by Caspase 8 in response to Fas/TNF-R1 death receptor activation. Activated Bid is translocated to mitochondria and induces cytochrome c release, which in turn activates the downstream caspases. This Bid-mediated pathway is critical in hepatocyte apoptosis induced by Fas/TNF-R1 engagement, where direct activation of cytosolic caspase cascade seems inefficient. The dependence on Bid, and thus on the mitochondrial cytochrome c release, of hepatocyte apoptosis induced by the death receptors also renders it sensitive to the inhibitory regulation by the anti-apoptosis members of the Bcl-2 family proteins, such as Bcl-2 and Bcl-xL. Moreover, the revealing of this death pathway in hepatocytes is important to the understanding of the pathogenesis of a number of hepatic diseases such as hepatitis or endotoxemia-related hepatic failure.  相似文献   

7.
Apoptosis in response to granzyme B involves activation of caspase-dependent target cell death pathways. Herein, we show that granzyme B initiates caspase processing but cannot fully process procaspase-3 in intact Jurkat T leukemia or NT2 neuronal cells. Rather, the release from mitochondria of proapoptotic mediators cytochrome c, Smac/Diablo, and HtrA2/Omi facilitates full activation of caspases that results from autoprocessing. Bcl-2 overexpression in mitochondria suppresses the release of these proapoptotic molecules, resulting in cell survival despite partial procaspase processing by granzyme B. We propose that binding of inhibitor of apoptosis (IAP) proteins to partially processed procaspases inhibits cell death unless mitochondrial disruption also occurs in response to granzyme B or activated BH3-domain proteins such as truncated Bid.  相似文献   

8.
Photodynamic therapy (PDT) is under investigation for the treatment of intimal hyperplastia in conditions such as atherosclerosis and restenosis. Although smooth muscle cells (SMCs) may be a key target for treatment, the effects of PDT on these cells are poorly characterized. In the present study, apoptosis was induced in primary human aortic SMCs by the combination of the photosensitizer verteporfin and visible light. After PDT, an increase in mitochondrial cytochrome c (cyt c) and apoptosis-inducing factor (AIF) levels were detected in the cytosol immediately and their levels increased steadily up to 2 hours. Cytosolic levels of the pro-apoptotic Bcl-2 family member Bax decreased reciprocally throughout this period, but this change did not occur before cyt c release. Confocal microscopy revealed a diffuse staining pattern of cyt c within apoptotic cells as compared to a distinct mitochondrial staining in normal cells. AIF translocated from mitochondria to the nucleus during the progression of apoptosis. After cyt c release, caspase-9 and caspase-3 processing was visible by 1 hour and caspase-6, -7, and -8 processing was apparent by 2 hours after PDT. In summary, these results demonstrate for the first time the cellular redistribution of mitochondrial AIF during SMC apoptosis, as well as the early release of cyt c and the subsequent activation of multiple caspases during PDT-induced SMC apoptosis.  相似文献   

9.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is one of the latest members of the TNF superfamily known to induce apoptosis in a wide variety of tumor cells. Some cell types, however, are quite resistant to TRAIL. We investigated the effect of ectopic expression of Bcl-2 and Bcl-xL on TRAIL-induced apoptosis in human acute myelogenous leukemia HL-60 cells. We found that HL-60 cells, which express TRAIL receptors (also called death receptor, DR) DR4, DR5, and Dc (decoy) R2, are highly sensitive to TRAIL-induced cytotoxicity. Greater than 90% killing occurred within 24 h of TRAIL treatment. The expression of Bcl-2 and Bcl-xL, however, completely abolished the TRAIL-induced cytotoxic effects. Treatment of HL-60 cells with TRAIL induced caspase-8 activation within 2-4 h, but no activation could be seen in Bcl-2-expressing or Bcl-xL-expressing cells. TRAIL also induced cleavage of BID, which was also abolished by Bcl-2 and Bcl-xL. Similarly, TRAIL activated caspase-3 and caspase-7 in control cells but not in cells expressing Bcl-2 or Bcl-xL. Cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (PARP), was abrogated by ectopic expression of Bcl-2 and Bcl-xL. Inhibition of caspases by the pan-caspase inhibitor, benzyloxycarbonyl-valine-alanine-aspartate-fluoromethylketone (zVAD-fmk) abolished the TRAIL-induced apoptosis. Overall, these results indicate that TRAIL-induced apoptosis involves activation of caspase-8, caspase-7, caspase-3, and BID cleavage, and Bcl-2 and Bcl-xL prevents TRAIL-induced apoptosis by abrogating caspase activation and BID cleavage.  相似文献   

10.
Cytochrome c was detected by immunoblotting in the cytosolic fraction 3 h after 5-min ischemia in the non-ischemia-tolerant CA1 region in which about 96% of neurons had developed delayed neuronal death, while less cytosolic cytochrome c was detected in the ischemia-tolerance-induced CA1 region where many more neurons survived. In the immunohistochemical study using anti-non-native cytochrome c monoclonal antibody, immunoreactivity was observed throughout the cytoplasm in the non-ischemia-tolerant CA1 neurons, but not in the normal and ischemia-tolerant CA1 neurons. Then we determined whether Bcl-2, Bax, Bcl-xL and Bcl-xS, which regulate the release of cytochrome c from mitochondria, were altered in the ischemia-tolerant CA1 region. Bcl-2 and Bax were up-regulated in the ischemia-tolerant group, but Bcl-xL and Bcl-xS showed no apparent difference in their expression. These results suggest that cytochrome c release is prevented in CA1 neurons in gerbils in which ischemia-tolerance had been induced and that the altered ratio of Bcl-2 to Bax may play a part in this mechanism.  相似文献   

11.
目的:从天然药物中筛选出抑制紫外线照射诱导人黑色素瘤细胞A375-S2凋亡的有效单体。 方法: MTT法测定细胞生长抑制率;形态学观察,DNA凝胶电泳及LDH法;用半胱天冬酶活力检测试剂盒测定半胱天冬酶活力;用免疫印记法检测Bcl-2家族成员(Bcl-2, Bcl-xL和Bax)的表达。 结果: 紫外线照射(2.4 J/cm2, 5 min) 能显著诱导A375-S2细胞发生凋亡,其作用呈明显时间依赖性。形态学观察可见凋亡小体的形成,琼脂糖凝胶电泳可见凋亡典型的DNA梯带;水飞蓟素具有抑制紫外线照射 (2.4 J/cm2, 5 min) 诱导A375-S2细胞凋亡的作用,水飞蓟素作用于紫外线照射 (2.4 J/cm2, 5 min)的A375-S2细胞,培养12 h,使紫外线照射诱导的半胱天冬酶-9、半胱天冬酶-3的活力降低;免疫印记法检测发现水飞蓟素作用的A375-S2细胞 (紫外线照射) 中Bcl-2 蛋白和Bcl-xL蛋白的表达增加。 结论: 水飞蓟素明显抑制紫外线照射诱导的A375-S2细胞的凋亡,其抑制凋亡作用与半胱天冬酶途径和线粒体途径相关。  相似文献   

12.
Francisella tularensis is a facultative intracellular bacterium capable of inducing apoptosis in murine macrophages. Here we analyzed the pathway leading to apoptosis in the murine macrophage-like cell line J774A.1 after infection with F. tularensis strain LVS (named LVS for live vaccine strain). We obtained evidence that the infection affected the mitochondria of the macrophages, since it induced release of the mitochondrial molecule cytochrome c into the cytosol and changed the potential over the mitochondrial membrane. Moreover, activation of caspase 9 and the executioner caspase 3 was also observed in the LVS-infected J774A.1 macrophages. The activated caspase 3 degraded poly(ADP-ribose) polymerase (PARP). All of these events were observed within 9 to 12 h after the initiation of infection, and maximum degradation of a synthetic caspase 3 substrate occurred at 18 h. The internucleosomal fragmentation and PARP degradation resulting from activation of this apoptotic pathway was prevented by the caspase 3 inhibitor Z-DEVD-fmk. No involvement of caspase 1, caspase 8, Bcl-2, or Bid was observed. Thus, the F. tularensis infection induces macrophage apoptosis through a pathway partly resembling the intrinsic apoptotic pathway.  相似文献   

13.
Apoptosis is a conserved and essential feature of homeostasis. We have found that expression of the short form of integral membrane protein 2B (ITM2B(S)) in IL-2-stimulated T cells, as well as in COS-7 cells, induces apoptosis. Biochemical and confocal studies demonstrate that association of ITM2B(S) with mitochondria correlates with loss of mitochondrial membrane potential, release of cytochrome c to the cytosol and, as a final consequence, induction of apoptosis in IL-2-stimulated cells. Moreover, the apoptosis-inducing activity of ITM2B(S) correlates with caspase 9 and caspase 3 activation. Taken together, our results demonstrate that ITM2B(S) induces apoptosis via a caspase-dependent mitochondrial pathway.  相似文献   

14.
Summary. Vero cells transfected with either neo- or bcl-2-plasmid were infected with SARS-CoV at a high multiplicity of infection. Apoptosis appeared after the onset of CPE and completion of virus replication, and could be prevented by Bcl-2 expression. Apoptosis is likely mediated by the mitochondrial pathway, as demonstrated by its inhibition using Bcl-2, and by the activation of the caspase cascade, resulting in PARP cleavage. Prevention of apoptosis did not affect susceptibility to infection, kinetics and extent of viral replication and release, thus implying that apoptosis is not involved in facilitating release and/or dissemination of SARS-CoV in Vero cells.  相似文献   

15.
目的:研究BARF1表达下调对EBV阳性胃癌细胞凋亡的影响,以及BARF1基因沉默介导细胞凋亡的分子机制。方法:siRNA和NCsiRNA分别转染NUGC3和SNU719细胞,运用Western blot测定细胞中BARF1、Bcl-2、Bax、细胞色素C、caspase 3和caspase 9的蛋白表达;RT-PCR测定BARF1、Bcl-2和Bax mRNA的表达;台盼蓝染色法测定细胞存活率;Annexin V-FITC/PI染色法和流式细胞仪测定细胞凋亡;细胞凋亡因子抗体芯片分析细胞中凋亡相关蛋白的表达;线粒体膜电位检测试剂盒测定线粒体膜电位;免疫共沉淀检测细胞中Apaf-1和caspase 9的相互作用。结果:与空白对照组和阴性对照组相比,BARF1基因沉默显著诱导NUGC3和SNU719细胞凋亡,而线粒体膜电位显著降低。BARF1沉默基因能促进促凋亡蛋白的表达并抑制抗凋亡蛋白的表达,Bcl-2/Bax比例显著降低;而caspase抑制剂能抑制由BARF1基因沉默介导的细胞凋亡。在siRNA转染的细胞中,caspase 3和caspase 9蛋白发生裂解,细胞色素C的浓度显著高于阴性对照组,Apaf-1蛋白与caspase 9蛋白在细胞质中能够发生相互作用。结论:BARF1基因沉默通过线粒体途径调节Bcl-2和Bax蛋白的表达进而诱导NUGC3和SNU719细胞凋亡,并呈caspase通路依赖关系。  相似文献   

16.
脑卒中导致的脑神经元凋亡过程中,存在着大量正性和负性的可调控相关因子,这些可调控因子可作为治疗脑卒中的潜在靶点。研究表明,脑卒中神经元细胞凋亡主要是由Caspase的级联反应所调控,细胞凋亡的主要途径之一是线粒体凋亡通路,Bcl-2家族蛋白主要调节Caspase的激活。线粒体释放的与凋亡相关的因子也对Caspase的激活有调节作用,而这些与凋亡相关的因子又受Bcl-2蛋白所调节。对脑卒中神经元凋亡过程中线粒体途径调控相关因子的研究是寻找和开发治疗脑卒中药物的重要理论基础。  相似文献   

17.
Alpinetin is a novel plant flavonoid derived from Alpinia katsumadai Hayata, found to possess strong anticancer effects. However, the antitumor effect of alpinetin on pancreatic cancer cells and the detailed mechanism remain unclear. The aim of this study was to investigate alpinetin's beneficial effect on pancreatic cancer and the possible molecular mechanism involved. Pancreatic cancer cell lines were treated with alpinetin at various doses and for different times, and the effect of alpinetin on cell growth inhibition, apoptosis and the cell cycle was determined. The expression of Bcl-2, Bcl-xL, XIAP and Bax, the activity of caspases and the levels of cytochrome?c released were measured. The results showed that alpinetin inhibited the viability of three pancreatic cancer cell lines and induced apoptosis of BxPC-3 cells in a dose- and time-dependent manner. This was accompanied by regulation of the expression of Bcl-2, Bcl-xL, Bax and XIAP. Furthermore, alpinetin treatment led to the release of cytochrome?c and activation of caspases-3, -8 and -9 proteins. Taken together, our studies indicate that alpinetin inhibited the proliferation of pancreatic cancer cells possibly through the regulation of the Bcl-2 family and XIAP expression, release of cytochrome?c and the activation of caspases. Alpinetin may serve as a potential agent for the development of pancreatic cancer cell therapies.  相似文献   

18.
目的:探讨高糖应激对脂肪变性肝细胞凋亡的作用及其可能机制。方法:C57BL/6J小鼠饲喂高脂饲料6周后,采用肝脏原位灌注技术分离得到脂肪变性原代肝细胞,在含有35 mmol/L葡萄糖的高糖DMEM培养基中孵育12 h,以正常DMEM培养基(添加30 mmol/L甘露醇)孵育的细胞作为对照,观察高糖处理对脂肪变性肝细胞活力、线粒体膜电位、凋亡蛋白酶caspase活性及凋亡相关信号通路的影响。结果:高糖应激使脂肪变性肝细胞活力下降,凋亡显著增加,而等渗甘露醇处理的对照细胞没有明显变化。高糖组细胞出现较为严重的线粒体去极化,导致线粒体膜电位降低,细胞色素C释放增多。线粒体介导凋亡关键酶caspase-9和caspase-3活性在高糖组有显著升高,抑制凋亡因子Bcl-2和Bcl-x L表达量明显降低,促凋亡蛋白Bax水平显著升高,而感受外源性凋亡信号的caspase-8的活性没有明显变化。结论:高糖应激会导致脂肪变性肝细胞线粒体膜电位下降,启动线粒体介导的内源性凋亡途径,引起肝细胞凋亡。这可能是高血糖加速非酒精性脂肪性肝病病程进展的一个重要原因。  相似文献   

19.
Qu M  Zhou Z  Chen C  Li M  Pei L  Yang J  Wang Y  Li L  Liu C  Zhang G  Yu Z  Wang D 《Neuroscience research》2012,72(1):94-102
Mortalin (mtHsp70) is a mitochondrial heat shock protein critical for maintaining the functional integrity of mitochondrial proteins. Our previous study demonstrated that mortalin overexpression protected against Aβ-induced neurotoxicity through a mitochondria-dependent mechanism, but the molecular details remained unclear. Recent biochemical studies implicate opening of the mitochondrial permeability transition pore (mPTP) in Aβ-mediated mitochondrial dysfunction. The present study investigated the effect of mortalin overexpression on Aβ-induced mPTP activation and ensuing neuronal apoptosis. Mortalin overexpression inhibited mPTP activation and protected SH-SY5Y neurons against Aβ-induced apoptosis. Compared to controls, neurons overexpressing mortalin also demonstrated superior intracellular free calcium regulation, lower mitochondrial reactive oxygen species generation, and decreased Bax/Bcl-2 ratios in response to Aβ treatment. Mortalin overexpression suppressed activation of the mitochondrial apoptotic cascade as demonstrated by inhibition of cytochrome c release and caspase-3 activation. Our results indicate that the cytoprotective efficacy of mortalin under Aβ-induced stress is mediated, at least in part, by inhibition of mPTP opening. Demonstration of the neuroprotective action of mortalin provides additional insights into the pathogenic mechanisms of Aβ toxicity and defines possible molecular targets for therapeutic intervention.  相似文献   

20.
In thymocytes, dexamethasone initiates cytochrome c-dependent processing of caspase-9 and the activation of caspase-3 to trigger apoptotic damage. Using murine thymocytes or a thymocyte cell line WEHI 7.1, we show that this pathway is inhibited by dominant-negative caspase-9, the anti-apoptotic protein Bcl-2, or by blocking components of the mitochondrial permeability transition pore complex (PTPC). We use DIDS (dithiocyanatostilbene-2,2-disulfonic acid), a pharmacological modifier of VDAC (voltage-dependent anion channel) function or ectopic expression of hexokinase-II, to examine the role of the VDAC--a mitochondrial outer membrane protein--in this apoptotic pathway. This approach implicated the VDAC in dexamethasone-mediated cytochrome c release, processing of caspase-9 and caspase-3, the loss of mitochondrial transmembrane potential (Deltapsim), nuclear damage and cell lysis. Inhibiting the adenine nucleotide transporter (ANT), a protein on the mitochondrial inner membrane, also blocks dexamethasone-induced apoptosis, but the ANT regulates caspase-3 processing and nuclear damage but not the mitochondrial efflux of cytochrome c. Collectively, the data identify two separable, but connected events in dexamethasone-induced mitochondrial damage in thymocytes. The first event is an increase in permeability of the mitochondrial outer membrane leading to VDAC-regulated efflux of cytochrome c and initial processing of caspase-9 followed by ANT-dependent caspase-3 processing and apoptotic damage to cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号