首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present here the first evidence that granzyme B acts against Plasmodium falciparum (50% inhibitory concentration [IC50], 1,590 nM; 95% confidence interval [95% CI], 1,197 to 2,112 nM). We created a novel antimalarial fusion protein consisting of granzyme B fused to a merozoite surface protein 4 (MSP4)-specific single-chain Fv protein (scFv), which targets the enzyme to infected erythrocytes, with up to an 8-fold reduction in the IC50 (176 nM; 95% CI, 154 to 202 nM). This study confirms the therapeutic efficacies of recombinant antibody-mediated antimalarial immunotherapeutics based on granzyme B.  相似文献   

2.
Quinine and other cinchona-derived alkaloids, although recently supplanted by the artemisinins (ARTs), continue to be important for treatment of severe malaria. Quinine and quinidine have narrow therapeutic indices, and a safer quinine analog is desirable, particularly with the continued threat of antimalarial drug resistance. Hydroxyethylapoquinine (HEAQ), used at 8 g a day for dosing in humans in the 1930s and halving mortality from bacterial pneumonias, was shown to cure bird malaria in the 1940s and was also reported as treatment for human malaria cases. Here we describe synthesis of HEAQ and its novel stereoisomer hydroxyethylapoquinidine (HEAQD) along with two intermediates, hydroxyethylquinine (HEQ) and hydroxyethylquinidine (HEQD), and demonstrate comparable but elevated antimalarial 50% inhibitory concentrations (IC50) of 100 to 200 nM against Plasmodium falciparum quinine-sensitive strain 3D7 (IC50, 56 nM). Only HEAQD demonstrated activity against quinine-tolerant P. falciparum strains Dd2 and INDO with IC50s of 300 to 700 nM. HEQD had activity only against Dd2 with an IC50 of 313 nM. In the lethal mouse malaria model Plasmodium berghei ANKA, only HEQD had activity at 20 mg/kg of body weight comparable to that of the parent quinine or quinidine drugs measured by parasite inhibition and 30-day survival. In addition, HEQ, HEQD, and HEAQ (IC50 ≥ 90 μM) have little to no human ether-à-go-go-related gene (hERG) channel inhibition expressed in CHO cells compared to HEAQD, quinine, and quinidine (hERG IC50s of 27, 42, and 4 μM, respectively). HEQD more closely resembled quinine in vitro and in vivo for Plasmodium inhibition and demonstrated little hERG channel inhibition, suggesting that further optimization and preclinical studies are warranted for this molecule.  相似文献   

3.
Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation.  相似文献   

4.
The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P < 0.001). The IC50s of CQ and AS were higher in the isolates from mature Tfz (CQ, 39.3 nM versus 17 nM; AS, 1.4 nM versus 0.3 nM), and 10% of the isolates showed lower susceptibilities to one of the antimalarial drugs, 13.3% to two antimalarial drugs, and 3.3% to more than three antimalarial drugs. It should be highlighted that despite the extensive use of chloroquine in Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia.  相似文献   

5.
With increasing resistance to existing antimalarials, there is an urgent need to discover new drugs at affordable prices for countries in which malaria is endemic. One approach to the development of new antimalarial drugs is to improve upon existing antimalarial agents, such as the tetracyclines. Tetracyclines exhibit potent, albeit relatively slow, action against malaria parasites, and doxycycline is used for both treatment (with other agents) and prevention of malaria. We synthesized 18 novel 7-position modified tetracycline derivatives and screened them for activity against cultured malaria parasites. Compounds with potent in vitro activity and other favorable drug properties were further tested in a rodent malaria model. Ten compounds inhibited the development of cultured Plasmodium falciparum with a 50% inhibitory concentration (IC50) after 96 h of incubation of <30 nM, demonstrating activity markedly superior to that of doxycycline (IC50 at 96 h of 320 nM). Most compounds showed little mammalian cell cytotoxicity and no evidence of in vitro phototoxicity. In a murine Plasmodium berghei model, 13 compounds demonstrated improved activity relative to that of doxycycline. In summary, 7-position modified tetracyclines offer improved activity against malaria parasites compared to doxycycline. Optimized compounds may allow lower doses for treatment and chemoprophylaxis. If safety margins are adequate, dosing in children, the group at greatest risk for malaria in countries in which it is endemic, may be feasible.  相似文献   

6.
The apicoplast is an essential plastid organelle found in Plasmodium parasites which contains several clinically validated antimalarial-drug targets. A chemical rescue screen identified MMV-08138 from the “Malaria Box” library of growth-inhibitory antimalarial compounds as having specific activity against the apicoplast. MMV-08138 inhibition of blood-stage Plasmodium falciparum growth is stereospecific and potent, with the most active diastereomer demonstrating a 50% effective concentration (EC50) of 110 nM. Whole-genome sequencing of 3 drug-resistant parasite populations from two independent selections revealed E688Q and L244I mutations in P. falciparum IspD, an enzyme in the MEP (methyl-d-erythritol-4-phosphate) isoprenoid precursor biosynthesis pathway in the apicoplast. The active diastereomer of MMV-08138 directly inhibited PfIspD activity in vitro with a 50% inhibitory concentration (IC50) of 7.0 nM. MMV-08138 is the first PfIspD inhibitor to be identified and, together with heterologously expressed PfIspD, provides the foundation for further development of this promising antimalarial drug candidate lead. Furthermore, this report validates the use of the apicoplast chemical rescue screen coupled with target elucidation as a discovery tool to identify specific apicoplast-targeting compounds with new mechanisms of action.  相似文献   

7.
Doxycycline is widely used for malaria prophylaxis by international travelers. However, there is limited information on doxycycline efficacy in Kenya, and genetic polymorphisms associated with reduced efficacy are not well defined. In vitro doxycycline susceptibility profiles for 96 Plasmodium falciparum field isolates from Kenya were determined. Genetic polymorphisms were assessed in P. falciparum metabolite drug transporter (Pfmdt) and P. falciparum GTPase tetQ (PftetQ) genes. Copy number variation of the gene and the number of KYNNNN amino acid motif repeats within the protein encoded by PftetQ were determined. Reduced in vitro susceptibility to doxycycline was defined by 50% inhibitory concentrations (IC50s) of ≥35,000 nM. The odds ratio (OR) of having 2 PfTetQ KYNNNN amino acid repeats in isolates with IC50s of >35,000 nM relative to those with IC50s of <35,000 nM is 15 (95% confidence interval [CI], 3.0 to 74.3; P value of <0.0002). Isolates with 1 copy of the Pfmdt gene had a median IC50 of 6,971 nM, whereas those with a Pfmdt copy number of >1 had a median IC50 of 9,912 nM (P = 0.0245). Isolates with 1 copy of PftetQ had a median IC50 of 6,370 nM, whereas isolates with a PftetQ copy number of >1 had a median IC50 of 3,422 nM (P < 0.0007). Isolates with 2 PfTetQ KYNNNN motif repeats had a median IC50 of 26,165 nM, whereas isolates with 3 PfTetQ KYNNNN repeats had a median IC50 of 3,352 nM (P = 0.0023). PfTetQ sequence polymorphism is associated with a reduced doxycycline susceptibility phenotype in Kenyan isolates and is a potential marker for susceptibility testing.  相似文献   

8.
Chloroquine (CQ) has been the mainstay of malaria treatment for more than 60 years. However, the emergence and spread of CQ resistance now restrict its use to only a few areas where malaria is endemic. The aim of the present study was to investigate whether a novel combination of a CQ-like moiety and an imipramine-like pharmacophore can reverse CQ resistance ex vivo. Between March to October 2011 and January to September 2013, two “reversed chloroquine” (RCQ) compounds (PL69 and PL106) were tested against multidrug-resistant field isolates of Plasmodium falciparum (n = 41) and Plasmodium vivax (n = 45) in Papua, Indonesia, using a modified ex vivo schizont maturation assay. The RCQ compounds showed high efficacy against both CQ-resistant P. falciparum and P. vivax field isolates. For P. falciparum, the median 50% inhibitory concentrations (IC50s) were 23.2 nM for PL69 and 26.6 nM for PL106, compared to 79.4 nM for unmodified CQ (P < 0.001 and P = 0.036, respectively). The corresponding values for P. vivax were 19.0, 60.0, and 60.9 nM (P < 0.001 and P = 0.018, respectively). There was a significant correlation between IC50s of CQ and PL69 (Spearman''s rank correlation coefficient [rs] = 0.727, P < 0.001) and PL106 (rs = 0.830, P < 0.001) in P. vivax but not in P. falciparum. Both RCQs were equally active against the ring and trophozoite stages of P. falciparum, but in P. vivax, PL69 and PL106 showed less potent activity against trophozoite stages (median IC50s, 130.2 and 172.5 nM) compared to ring stages (median IC50s, 17.6 and 91.3 nM). RCQ compounds have enhanced ex vivo activity against CQ-resistant clinical isolates of P. falciparum and P. vivax, suggesting the potential use of reversal agents in antimalarial drug development. Interspecies differences in RCQ compound activity may indicate differences in CQ pharmacokinetics between the two Plasmodium species.  相似文献   

9.
Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.  相似文献   

10.
Plasmodium falciparum gametocytes are not associated with clinical symptoms, but they are responsible for transmitting the pathogen to mosquitoes. Therefore, gametocytocidal interventions are important for malaria control and resistance containment. Currently available drugs and vaccines are not well suited for that purpose. Several dyes have potent antimicrobial activity, but their use against gametocytes has not been investigated systematically. The gametocytocidal activity of nine synthetic dyes and four control compounds was tested against stage V gametocytes of the laboratory strain 3D7 and three clinical isolates of P. falciparum with a bioluminescence assay. Five of the fluorescent dyes had submicromolar 50% inhibitory concentration (IC50) values against mature gametocytes. Three mitochondrial dyes, MitoRed, dihexyloxacarbocyanine iodide (DiOC6), and rhodamine B, were highly active (IC50s < 200 nM). MitoRed showed the highest activity against gametocytes, with IC50s of 70 nM against 3D7 and 120 to 210 nM against clinical isolates. All compounds were more active against the laboratory strain 3D7 than against clinical isolates. In particular, the endoperoxides artesunate and dihydroartemisinin showed a 10-fold higher activity against 3D7 than against clinical isolates. In contrast to all clinically used antimalarials, several fluorescent dyes had surprisingly high in vitro activity against late-stage gametocytes. Since they also act against asexual blood stages, they shall be considered starting points for the development of new antimalarial lead compounds.  相似文献   

11.
PfCDPK1 is a Plasmodium falciparum calcium-dependent protein kinase, which has been identified as a potential target for novel antimalarial chemotherapeutics. In order to further investigate the role of PfCDPK1, we established a high-throughput in vitro biochemical assay and used it to screen a library of over 35,000 small molecules. Five chemical series of inhibitors were initially identified from the screen, from which series 1 and 2 were selected for chemical optimization. Indicative of their mechanism of action, enzyme inhibition by these compounds was found to be sensitive to both the ATP concentration and substitution of the amino acid residue present at the “gatekeeper” position at the ATP-binding site of the enzyme. Medicinal chemistry efforts led to a series of PfCDPK1 inhibitors with 50% inhibitory concentrations (IC50s) below 10 nM against PfCDPK1 in a biochemical assay and 50% effective concentrations (EC50s) less than 100 nM for inhibition of parasite growth in vitro. Potent inhibition was combined with acceptable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and equipotent inhibition of Plasmodium vivax CDPK1. However, we were unable to correlate biochemical inhibition with parasite growth inhibition for this series overall. Inhibition of Plasmodium berghei CDPK1 correlated well with PfCDPK1 inhibition, enabling progression of a set of compounds to in vivo evaluation in the P. berghei rodent model for malaria. These chemical series have potential for further development as inhibitors of CDPK1.  相似文献   

12.
The antimalarial activity and pharmacology of a series of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors (HDACIs) was evaluated. In in vitro growth inhibition assays approximately 50 analogs were evaluated against four drug resistant strains of Plasmodium falciparum. The range of 50% inhibitory concentrations (IC50s) was 0.0005 to >1 μM. Five analogs exhibited IC50s of <3 nM, and three of these exhibited selectivity indices of >600. The most potent compound, WR301801 (YC-2-88) was shown to cause hyperacetylation of P. falciparum histones, which is a marker for HDAC inhibition in eukaryotic cells. The compound also inhibited malarial and mammalian HDAC activity in functional assays at low nanomolar concentrations. WR301801 did not exhibit cures in P. berghei-infected mice at oral doses as high as 640 mg/kg/day for 3 days or in P. falciparum-infected Aotus lemurinus lemurinus monkeys at oral doses of 32 mg/kg/day for 3 days, despite high relative bioavailability. The failure of monotherapy in mice may be due to a short half-life, since the compound was rapidly hydrolyzed to an inactive acid metabolite by loss of its hydroxamate group in vitro (half-life of 11 min in mouse microsomes) and in vivo (half-life in mice of 3.5 h after a single oral dose of 50 mg/kg). However, WR301801 exhibited cures in P. berghei-infected mice when combined at doses of 52 mg/kg/day orally with subcurative doses of chloroquine. Next-generation HDACIs with greater metabolic stability than WR301801 may be useful as antimalarials if combined appropriately with conventional antimalarial drugs.  相似文献   

13.
Cambodia''s first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.  相似文献   

14.
T-2307, a novel arylamidine, has been shown to exhibit broad-spectrum antifungal activities against clinically significant pathogens. Here, we evaluated the in vitro and in vivo antimalarial activity of T-2307. The 50% inhibitory concentrations (IC50s) of T-2307 against Plasmodium falciparum FCR-3 and K-1 strains were 0.47 and 0.17 μM, respectively. T-2307 at 2.5 to 10 mg/kg of body weight/day exhibited activity against blood stage and liver stage parasites in rodent malaria models. In conclusion, T-2307 exhibited in vitro and in vivo antimalarial activity.  相似文献   

15.
A nearly complete reversal of chloroquine (CQ) resistance in the CQ-resistant Plasmodium falciparum K-1 strain, with a significant decrease in the mean ± standard deviation (SD) 50% inhibitory concentration (IC50) from 1,050 ± 95 nM to 14 ± 2 nM, was achieved in vitro by the simultaneous administration of 2-aminoethyl diphenylborinate (2-APB). The CQ resistance-reversing activity of 2-APB, which showed the same efficacy as verapamil, was also observed in an in vivo mouse infection model with the CQ-resistant Plasmodium chabaudi AS(30CQ) strain.  相似文献   

16.
Pantothenamides inhibit blood-stage Plasmodium falciparum with potencies (50% inhibitory concentration [IC50], ∼20 nM) similar to that of chloroquine. They target processes dependent on pantothenate, a precursor of the essential metabolic cofactor coenzyme A. However, their antiplasmodial activity is reduced due to degradation by serum pantetheinase. Minor modification of the pantothenamide structure led to the identification of α-methyl-N-phenethyl-pantothenamide, a pantothenamide resistant to degradation, with excellent antiplasmodial activity (IC50, 52 ± 6 nM), target specificity, and low toxicity.  相似文献   

17.
The 4-aminoquinoline naphthoquine (NQ) and the thiazine dye methylene blue (MB) have potent in vitro efficacies against Plasmodium falciparum, but susceptibility data for P. vivax are limited. The species- and stage-specific ex vivo activities of NQ and MB were assessed using a modified schizont maturation assay on clinical field isolates from Papua, Indonesia, where multidrug-resistant P. falciparum and P. vivax are prevalent. Both compounds were highly active against P. falciparum (median [range] 50% inhibitory concentration [IC50]: NQ, 8.0 nM [2.6 to 71.8 nM]; and MB, 1.6 nM [0.2 to 7.0 nM]) and P. vivax (NQ, 7.8 nM [1.5 to 34.2 nM]; and MB, 1.2 nM [0.4 to 4.3 nM]). Stage-specific drug susceptibility assays revealed significantly greater IC50s in parasites exposed at the trophozoite stage than at the ring stage for NQ in P. falciparum (26.5 versus 5.1 nM, P = 0.021) and P. vivax (341.6 versus 6.5 nM, P = 0.021) and for MB in P. vivax (10.1 versus 1.6 nM, P = 0.010). The excellent ex vivo activities of NQ and MB against both P. falciparum and P. vivax highlight their potential utility for the treatment of multidrug-resistant malaria in areas where both species are endemic.  相似文献   

18.
4-(tert-Butyl)-2-((tert-butylamino)methyl)-6-(6-(trifluoromethyl)pyridin-3-yl)-phenol (JPC-2997) is a new aminomethylphenol compound that is highly active in vitro against the chloroquine-sensitive D6, the chloroquine-resistant W2, and the multidrug-resistant TM90-C2B Plasmodium falciparum lines, with 50% inhibitory concentrations (IC50s) ranging from 7 nM to 34 nM. JPC-2997 is >2,500 times less cytotoxic (IC50s > 35 μM) to human (HepG2 and HEK293) and rodent (BHK) cell lines than the D6 parasite line. In comparison to the chemically related WR-194,965, a drug that had advanced to clinical studies, JPC-2997 was 2-fold more active in vitro against P. falciparum lines and 3-fold less cytotoxic. The compound possesses potent in vivo suppression activity against Plasmodium berghei, with a 50% effective dose (ED50) of 0.5 mg/kg of body weight/day following oral dosing in the Peters 4-day test. The radical curative dose of JPC-2997 was remarkably low, at a total dose of 24 mg/kg, using the modified Thompson test. JPC-2997 was effective in curing three Aotus monkeys infected with a chloroquine- and pyrimethamine-resistant strain of Plasmodium vivax at a dose of 20 mg/kg daily for 3 days. At the doses administered, JPC-2997 appeared to be well tolerated in mice and monkeys. Preliminary studies of JPC-2997 in mice show linear pharmacokinetics over the range 2.5 to 40 mg/kg, a low clearance of 0.22 liters/h/kg, a volume of distribution of 15.6 liters/kg, and an elimination half-life of 49.8 h. The high in vivo potency data and lengthy elimination half-life of JPC-2997 suggest that it is worthy of further preclinical assessment as a partner drug.  相似文献   

19.
Indomethacin-containing liposomes consisting of soybean phosphatidylcholine/cholesterol/stearylamine (SPC/Chol/SA) and egg yolk phosphatidylcholine/cholesterol/stearylamine (EPC/Chol/SA) in a molar ratio 10:5:1 were investigated and compared for their indomethacin latency after freezing, freeze-drying or storage at 4°C. Glucose solutions of 5% w/v and 10% w/v were used as cryoprotectant. When the liposomes were suspended in buffer alone and stored at 4°C for three months, the indomethacin loss from SPC/Chol/SA liposomes was higher than from EPC/Chol/SA liposomes. Freeze-drying in the presence of glucose also resulted in a better latency of indo-methacin in EPC/Chol/SA liposomes. The extent of indomethacin loss after a freeze-thaw cycle in the presence of 5% and 10% glucose was markedly different for these two liposome compositions. It is suggested that freezing or freeze-drying of indomethacin-containing EPC/Chol/SA liposomes in the presence of 10% glucose may prove to be useful for their long-term storage.  相似文献   

20.
Malaria is one of the major threats concerning world public health. Resistance to the current antimalarial drugs has led to searches for new antimalarial compounds. Acridinone derivatives have recently demonstrated to be active against malaria parasite. We focused our attention on synthesized new acridinone derivatives, some of them resulting with high antiviral and trypanocidal activity. In this study new derivatives of 10-alyl-, 10-(3-methyl-2-butenyl)- and 10-(1,2-propadienyl)-9(10H)-acridinone were evaluated for their antimalarial activity against Plasmodium falciparum. To assess the selectivity, cytotoxicity was assessed in parallel against human MRC-5 cells. Inhibition of β-hematin formation was determined using a spectrophotometric assay. Mitochondrial bc1 complexes were isolated from yeast and bovine heart cells to test acridinone inhibitory activity. This study resulted in the identification of three compounds with submicromolar efficacy against P. falciparum and without cytotoxic effects on human cellular line. One compound, IIa (1-fluoro-10-(3-methyl-2-butenyl)-9(10H)-acridinone), can be classified as hit for antimalarial drug development exhibiting IC50 less than 0.2 μg/mL with SI greater than 100. In molecular tests, no relevant inhibitory activity was obtained for our compounds. The mechanism of acridinones antimalarial action remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号