首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiolabelled tumour receptor-binding peptides can be used for in vivo scintigraphic imaging. Recently, the somatostatin analogue [Tyr3]octreotide (d-Phe-c(Cys-Tyr-d-Trp-Lys-Thr-Cys)-Thr(ol)) was derivatized with the chelator DOTA (tetra-azacyclododecane-tetra-acetic acid), enabling stable radiolabelling with both the high-energy beta particle-emitter yttrium-90 and the Auger electron-emitter indium-111. The thus produced radiolabelled compounds are promising for peptide receptor radionuclide therapy. Our previous in vitro and in vivo (rat) experiments with these radiolabelled compounds showed favourable binding and biodistribution characteristics with high uptake and retention in the target organs. We also demonstrated receptor-specific, time- and temperature-dependent internalization of radiolabelled [DOTA0,Tyr3]octreotide in somatostatin receptor subtype 2 (sst2)-positive rat pancreatic tumour cell lines. In this study we have investigated the effects of differences in the amount of injected peptide on tissue distribution of 111In-labelled [DOTA0,Tyr3]octreotide in normal, i.e. non-tumour-bearing, and CA20948 tumour-bearing rats. This was done in order to find the amount of peptide at which the highest uptake in target tissues is achieved, and thereby to increase the potential of radionuclide therapy while simultaneously ensuring the lowest possible radiotoxicity in normal organs. Uptake of radiolabelled [DOTA0,Tyr3]octreotide in sst2-positive organs showed different bell-shaped functions of the amount of injected peptide, being highest at 0.05 (adrenals), 0.05–0.1 (pituitary and stomach) and 0.25 (pancreas) μg. Uptake in the tumour was highest at 0.5 μg injected peptide. The highest uptake was found at peptide amounts that were lower than those reported for [111In-DTPA0]octreotide ((d-Phe-c(Cys-Phe-d-Trp-Lys-Thr-Cys)-Thr(ol), DTPA = diethylene-triamine-penta-acetic acid), consistent with the higher receptor affinity of the first compound. Our observations of mass-dependent differences in uptake of radiolabelled [DOTA0, Tyr3]octreotide, being the resultant of a positive effect of increasing amounts of peptide on, for example, receptor clustering and a negative effect of receptor saturation, are of consequence for rat radionuclide therapy studies with radiolabelled peptides and may also be of consequence for human radionuclide therapy studies with this compound. Received 6 January and in revised form 16 February 1999  相似文献   

2.
In vitro octreotide receptor binding of [111In-DOTA0,d-Phe1,Tyr3]octreotide (111In-DOTATOC) and the in vivo metabolism of90Y or111In-labelled DOTATOC were investigated in rats in comparison with [111In-DTPA0]octreotide [111In-DTPAOC).111In-DOTATOC was found to have an affinity similar to octreotide itself for the octreotide receptor in rat cerebral cortex microsomes. Twenty-four hours after injection of90Y or111In-labelled DOTATOC, uptake of radioactivity in the octreotide receptor-expressing tissues pancreas, pituitary, adrenals and tumour was a factor of 2–6 that after injection of111In-DTPAOC. Uptake of labelled DOTATOC in pituitary, pancreas, adrenals and tumour was almost completely blocked by pretreatment with 0.5 mg unlabelled octreotide, indicating specific binding to the octreotide receptors. These findings strongly indicate that90Y-DOTATOC is a promising radiopharmaceutical for radiotherapy and that111In-DOTATOC is of potential value for diagnosis of patients with octreotide receptor-positive lesions, such as most neuroendocrine tumours.  相似文献   

3.
4.
We have evaluated the potential usefulness of indium-111 labelled [DTPA-D-Phe1]RC-160, derived from the octapeptide somatostatin analogue RC-160, as a radiopharmaceutical for the in vivo detection of somatostatin receptor-positive tumours. For this purpose 111In-and 111In-labelled [DTPA-D-Phe1]RC-160 was tested for its biological activity, and applied for somatostatin receptor scintigraphy in vivo to rats bearing the transplantable rat pancreatic tumour CA20948, which expresses somatostatin receptors. We previously described the development of the 111In-labelled somatostatin analogue [DTPA-D-Phe1]octreotide and its use in the in vivo visualization of somatostatin receptor-positive tumours in rats and in humans. Like [111In-DTPA-D-Phe1]octreotide, [111In-DTPA-D-Phe1]RC-160 showed uptake in and specific binding in vivo to somatostatin receptor-positive organs and tumours, and the tumours were clearly visualized by gamma camera scintigraphy. However, as compared to [111In-DTPA-D-Phe1]octreotide, blood radioactivity (background) was higher, resulting in a lower tumour to blood (background) ratio. Using this animal model we therefore conclude that [111In-DTPA-DPhe1]RC-160 has no advantage over [111In-DTPA-DPhe1]octreotide as a radiopharmaceutical in the visualization of somatostatin receptors which bind both analogues. However, recent reports suggest the existence of different somatostatin receptor subtypes on some human cancers, which differentially bind RC-160 and not octreotide. These tumours include cancers of the breast, ovary, exocrine pancreas, prostate and colon. [111In-DTPA-D-Phe1]RC-160 might be of interest for future use in such cancer patients as a radiopharmaceutical for imaging somatostatin receptor-positive tumours, which do not bind octreotide.  相似文献   

5.
Medical treatment and chemotherapy are seldom successful in achieving objective tumour reduction in patients with metastatic neuroendocrine tumours. Treatment with the radiolabelled somatostatin analogue [(90)Y-DOTA(0),Tyr(3)]octreotide may result in partial remissions in 10-25% of patients. The newer analogue [DOTA(0),Tyr(3)]octreotate (octreotate) has a ninefold higher affinity for the somatostatin receptor subtype 2 as compared with [DOTA(0),Tyr(3)]octreotide. Also, labelled with the beta- and gamma-emitting radionuclide (177)Lu, it has proved very successful in achieving tumour regression in animal models. The effects of (177)Lu-octreotate therapy were studied in 35 patients with neuroendocrine gastro-entero-pancreatic (GEP) tumours who underwent follow-up for 3-6 months after receiving their final dose. Patients were treated with doses of 100, 150 or 200 mCi (177)Lu-octreotate, to a final cumulative dose of 600-800 mCi, with treatment intervals of 6-9 weeks. Nausea and vomiting within the first 24 h after administration were present in 30% and 14% of the administrations, respectively. WHO toxicity grade 3 anaemia, leucocytopenia and thrombocytopenia occurred after 0%, 1% and 1% of the administrations, respectively. Serum creatinine and creatinine clearance did not change significantly. The effects of the therapy on tumour size were evaluable in 34 patients. Three months after the final administration, complete remission was found in one patient (3%), partial remission in 12 (35%), stable disease in 14 (41%) and progressive disease in seven (21%), including three patients who died during the treatment period. Tumour response was positively correlated with a high uptake on the octreoscan, limited hepatic tumour mass and a high Karnofsky Performance Score. Because of the limited efficacy of alternative therapies, many physicians currently adopt an expectant attitude when dealing with patients with metastatic GEP tumours. However, in view of the high success rate of therapy with (177)Lu-octreotate and the absence of serious side-effects, we advocate its use in patients with GEP tumours without waiting for tumour progression.  相似文献   

6.
Radiolabeled somatostatin analogs are important tools for the in vivo localization and targeted radionuclide therapy of somatostatin receptor-positive tumors. The aim of this study was to compare 3 somatostatin analogs designed for the labeling with (99m)Tc (where HYNIC is 6-hydrazinopyridine-3-carboxylic acid): 6-hydrazinopyridine-3-carboxylic acid(0)-octreotide (HYNIC-OC/(99m)Tc-(1)), [HYNIC(0),Tyr(3)]octreotide (HYNIC-TOC/(99m)Tc-(2)), and [HYNIC(0),Tyr(3),Thr(8)]octreotide (HYNIC-TATE/(99m)Tc-(3)), using ethylenediamine-N,N'-diacetic acid (EDDA) as a coligand. In addition, we compared the (99m)Tc-labeled peptides [(111)In-diethylenetriaminepentaacetic acid(0)]octreotide ([(111)In-DTPA]-OC) and [(111)In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(0),Tyr(3),Thr(8)]octreotide ([(111)In-DOTA]-TATE) with regard to the rate of internalization and the biodistribution in AR4-2J (expressing the somatostatin receptor subtype 2) tumor-bearing rats. The main attention was directed toward a potential correlation between the rate of internalization and the tumor or pancreas uptake. METHODS: Synthesis was performed on solid phase using a standard Fmoc strategy. Internalization was studied in cell culture (AR4-2J) and biodistribution was studied using a Lewis rat tumor model (AR4-2J). RESULTS: The 5 radiopeptides showed a specific internalization into AR4-2J cells in culture (as shown by blocking experiments). The rate of internalization of the 5 radiopeptides differed significantly according to the following order: (99m)Tc-(1) approximately = [(111)In-DTPA]-OC < (99m)Tc-(2) < (99m)Tc-(3) approximately = [(111)In-DOTA]-TATE. All radiopeptides displayed a rapid blood clearance and a fast clearance from all somatostatin receptor-negative tissues predominantly via the kidneys. A receptor-specific uptake of radioactivity was observed for all compounds in somatostatin receptor-positive organs such as the pancreas, the adrenals, and the stomach. After 4 h, the uptake in the AR4-2J tumor was comparable for (99m)Tc-(2) (3.85 +/- 1.0 injected dose per gram tissue (%ID/g)), (99m)Tc-(3) (3.99 +/- 0.58%ID/g), and [(111)In-DOTA]-TATE (4.12 +/- 0.74%ID/g) but much lower for [(111)In-DTPA]-OC (0.99 +/- 0.08%ID/g) and (99m)Tc-(1) (0.70 +/- 0.13%ID/g). The specificity was determined by blocking experiments using a large excess of [Tyr(3)]octreotide. (99m)Tc-(3) displayed the highest tumor-to-kidney ratio (2.5:1), followed by (99m)Tc(2) (1.9:1) and [(111)In-DOTA]-TATE (1.7:1). CONCLUSION: These data show that the 5 radiopeptides are specific radioligands for the somatostatin receptor subtype 2. The rate of internalization correlates with the uptake in the tumor (R(2) = 0.75; P = 0.026) and pancreas (R(2) = 0.98; P = 7.4.10(-5)). [Tyr(3),Thr(8)]octreotide derivatives show superiority over the corresponding octreotide and [Tyr(3)]octreotide derivatives, indicating that [(111)In-DOTA]-TATE and [(99m)Tc/EDDA/HYNIC]-TATE are suitable candidates for clinical studies.  相似文献   

7.
8.
The somatostatin analogue [DOTA0,Tyr3]octreotate has a nine-fold higher affinity for the somatostatin receptor subtype 2 as compared with [DOTA0,Tyr3]octreotide. Also, labelled with the beta- and gamma-emitting radionuclide lutetium-177, this compound has been shown to have a very favourable impact on tumour regression and animal survival in a rat model. Because of these reported advantages over the analogues currently used for somatostatin receptor-mediated radiotherapy, we decided to compare [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate) with [111In-DTPA0]octreotide (111In-octreotide) in six patients with somatostatin receptor-positive tumours. Plasma radioactivity after 177Lu-octreotate expressed as a percentage of the injected dose was comparable with that after 111In-octreotide. Urinary excretion of radioactivity was significantly lower than after 111In-octreotide, averaging 64% after 24 h. The uptake after 24 h, expressed as a percentage of the injected dose of 177Lu-octreotate, was comparable to that after 111In-octreotide for kidneys, spleen and liver, but was three- to fourfold higher for four of five tumours. The spleen and kidneys received the highest absorbed doses. The doses to the kidneys were reduced by a mean of 47% after co-infusion of amino acids. It is concluded that in comparison with the radionuclide-coupled somatostatin analogues that are currently available for somatostatin receptor-mediated radiotherapy, 177Lu-octreotate potentially represents an important improvement. Higher absorbed doses can be achieved to most tumours, with about equal doses to potentially dose-limiting organs; furthermore, the lower tissue penetration range of 177Lu as compared with 90Y may be especially important for small tumours.  相似文献   

9.
We have evaluated the potential usefulness of the radioiodinated octapeptide RC-160, a somatostatin analogue, which might serve as a radiopharmaceutical for the in vivo detection of somatostatin receptor-positive tumours. For this purpose, iodine-123 and iodine-125 labelled RC-160 was tested for biological activity and applied in vivo in rats bearing the transplantable rat pancreatic tumour CA20948, which expresses somatostatin receptors. Our group has recently described the in vivo visualization of such tumours in rats and in humans with the radioiodinated somatostatin analogue [Tyr3]octreotide. Like [123I-Tyr3]octreotide, 123I-RC-160 showed uptake in and specific binding in vivo to somatostatin receptor-positive organs and tumours. However, blood radioactivity (background) was higher, resulting in a lower tumour to blood (background) ratio. We therefore conclude that in this animal model 123I-RC-160 has no advantage over [123I-Tyr3]octreotide as a radiopharmaceutical for the in vivo use as a somatostatin receptor imager, although, like [123I-Tyr3]octreotide, 123I-RC-160 shows specific binding to different somatostatin receptor-positive organs. Recently differences were reported in affinity between somatostatin and its analogues for somatostatin receptors expressed in different human cancers, like those of the breast, ovary, exocrine pancreas, prostate and colon. Therefore 123I-RC-160 might be of interest for future use in humans as a radiopharmaceutical for imaging octreotide receptor-negative tumours. Correspondence to: W.A.P. Breeman, Department of Nuclear Medicine, University Hospital Dijkzigt, Dr. Molewaterplein 40, NL-3015 GD Rotterdam, The NetherlandsThe authors wish to thank Dr. Wil Kort, Ineke Hekking-Weyma, Reno Mekes, Marcello Harms and Ina Loeve for their expert assistance during the experiments.  相似文献   

10.
Purpose Scintigraphy with maltotriose-[123I]Tyr3-octreotate ([123I]Mtr-TOCA) is compared with [111In]DTPA-Phe1-octreotide ([111In]OC) to assess the differences in pharmacokinetics and imaging properties as well as to estimate the therapeutic potential of the corresponding [131I]Mtr-TOCA.Methods Six patients with somatostatin receptor (sstr)-positive tumours were assessed using a dual-head gamma camera. After injection of 137±28 MBq [123I]Mtr-TOCA, dynamic data acquisition of the upper abdomen (30 min) was performed followed by whole-body scans at 0.5 h, 1 h, 3 h and 20 h as well as by SPECT imaging (tumour) at 2 h. [111In]OC scintigraphy was performed by acquiring whole-body scans (4 h, 24 h) and SPECT (24 h). Using a region of interest (ROI) method, tissue and tumour bound activity was assessed and dosimetry performed.Results [123I]Mtr-TOCA shows rapid tumour uptake. Up to 4 h, tumour/organ (tu/org) ratios are stable and generally higher than with [111In]OC. From 3 h to 20 h, tu/org ratios increase for spleen, remain stable for liver and decrease significantly for all other tissues. In contrast, with [111In]OC, tu/org ratios decrease slightly between 4 h and 24 h for liver, spleen and kidney and increase for all other tissues. On [123I]Mtr-TOCA scintigraphy, a total of 27 lesions are detected, whereas 33 lesions are detected on [111In]OC scintigraphy (p=0.50). Effective patient absorbed dose is 1.9±0.9 mSv per 100 MBq [123I]Mtr-TOCA.Conclusion Compared with [111In]OC, [123I]Mtr-TOCA enables faster imaging of sstr-positive tumours with a lower radiation burden to the patient. [123I]Mtr-TOCA and [111In]OC allow for tumour imaging with almost identical contrast and diagnostic yield. As regards peptide receptor radionuclide therapy, radioiodinated Mtr-TOCA is hampered by limited intratumoural activity retention.  相似文献   

11.
Because the role of chemotherapy, interferon, or somatostatin analogs as antiproliferative agents is uncertain, currently few treatment options exist for patients with metastatic or inoperable gastroenteropancreatic neuroendocrine tumors (GEP-NET). Fifty-eight patients with somatostatin receptor-positive GEP-NET were treated in a phase I dose-escalating study with cumulative doses of 47 mCi to 886 mCi of the radiolabeled somatostatin analog [(90)Y-DOTA(0),Tyr(3)]-octreotide. At baseline, 47 patients had progressive disease, and 36 were symptomatic. The extent of disease was: 4 patients without liver metastases and 52 patients with liver metastases, including 16 patients with very advanced disease, qualified as "end-stage," and 2 end-stage patients without liver metastases. The objective responses were 5 partial response (PR), 7 minor response (MR), 29 stable disease (SD), and 17 PD. Overall, 33 patients (57%) experienced some improvement in their disease status, including conversion from PD into SD and improvement from SD into MR. Accordingly, 21 of 36 patients (58%) had improvement in Karnofsky performance score or symptoms. The median overall survival (OS) was 36.7 months (95% confidence interval [CI] 19.4-54.1 months). The median progression-free survival in 41 patients who had at least stable disease at the end of the treatment period was 29.3 months (95% CI 19.3-39.3 months). Patients who had SD at baseline had a significantly better OS than patients who had PD at baseline. The extent of disease at baseline also was a significant predictive factor for OS. The OS after therapy with [(90)Y-DOTA(0),Tyr(3)]-octreotide was significantly better than in a historic control group of 32 comparable patients with GEP-NET who had been treated with another radiolabeled somatostatin analog, [(111)In-DTPA(0)]-octreotide (median OS 12.0 months, 95% CI 6.2-17.8 months). The difference in OS for both therapies remained highly significant in a multivariate Cox proportional hazard model including progression status and extent of disease at baseline as covariates. Although the objective response after therapy with [(90)Y-DOTA(0),Tyr(3)]-octreotide by standard criteria seems modest, the significantly longer OS compared with historic controls is most encouraging.  相似文献   

12.
The high renal uptake of radiolabeled somatostatin analogs is dose limiting. Lowering this uptake permits higher radioactivity doses and, thus, tumor doses to be administered. We tested the effects of the microtubule drug colchicine on renal uptake of [(111)In-DTPA(0)]octreotide. Also, the effects of fructose were tested. METHODS: Organ radioactivity 24 h after injection of [(111)In-DTPA(0)]octreotide was determined in rats. RESULTS: Coinjection of 1 mg of colchicine per kilogram did not influence renal uptake of [(111)In-DTPA(0)]octreotide, whereas this dose administered 5 h before [(111)In-DTPA(0)]octreotide resulted in significant renal uptake reduction (63%). D-Lysine plus colchicine reduced the uptake by 76% (P < 0.01 vs. D-lysine alone). Liver and blood radioactivity levels were significantly elevated by colchicine. Fructose did not affect the biodistribution of [(111)In-DTPA(0)]octreotide. CONCLUSION: Renal uptake of [(111)In-DTPA(0)]octreotide is dependent on microtubule function in rats. The addition of colchicine to amino acid protocols may permit administration of higher doses, improving the therapeutic window of peptide receptor radionuclide therapy.  相似文献   

13.
The imaging of the pancreas with [75Se]selenomethionine has a low rate of reliability. This study was carried out in order to elucidate some factors that may be important in affecting the degree of uptake of the tracer by the pancreas. Studies were carried out in animals to observe the effects of growth-hormone (GH), somotostatin (SRIF), L-DOPA, and apomorphine administration on the distribution of [75Se]selenomethionine. Intravenously administered GH significantly depressed pancreatic uptake of Se-75 in mice and dogs and depressed the pancreas-to-liver concentration ratio (P/L). The effect of i.p. GH in mice was to decrease the P/L ratio, but the decrease in pancreatic uptake was not statistically significant. There was also a greater effect of GH in dogs than in mice, with pancreatic uptake decreasing from 5.60 +/- 2.17% to 1.24 +/- 0.96% and the P/L from 4.78 +/- 1.85 to 0.97 +/- 0.73. L-DOPA and apomorphine produced effects similar to GH in mice. SRIF in small doses had little effect, but in larger doses it enhanced pancreatic uptake, although not affecting P/L. The results indicate that hypothalamic factors may be important in affecting the function of the exocrine pancreas. Both L-DOPA and apomorphine are known to stimulate GH production through hypothalamic-pituitary pathways. In addition to suppressing GH release, SRIF may have direct effects on the exocrine pancreas.  相似文献   

14.
15.
Purpose  Adequate dosimetry is mandatory for effective and safe peptide receptor radionuclide therapy (PRRT). Besides the kidneys, the bone marrow is a potentially dose-limiting organ. The radiation dose to the bone marrow is usually calculated according to the MIRD scheme, where the accumulated activity in the bone marrow is calculated from the accumulated radioactivity of the radiopharmaceutical in the blood. This may underestimate the absorbed dose since stem cells express somatostatin receptors. We verified the blood-based method by comparing the activity in the blood with the radioactivity in bone marrow aspirates. Also, we evaluated the absorbed cross-dose from the source organs (liver, spleen, kidneys and blood), tumours and the so-called “remainder of the body” to the bone marrow. Methods  Bone marrow aspirates were drawn in 15 patients after treatment with [177Lu-DOTA0,Tyr3]octreotate. Radioactivity in the bone marrow was compared with radioactivity in the blood drawn simultaneously. The nucleated cell fraction was isolated from the bone marrow aspirate and radioactivity was measured. The absorbed dose to the bone marrow was calculated. The results were correlated to the change in platelet counts 6 weeks after treatment. Results  A strong linear correlation and high agreement between the measured radioactivities in the bone marrow aspirates and in the blood was found (r=0.914, p<0.001). No correlation between the calculated absorbed dose in the bone marrow and the change in platelets was found. There was a considerable contribution from other organs and the remainder of the body to the bone marrow absorbed dose. Conclusion  (1) After PRRT with [177Lu-DOTA0,Tyr3]octreotate, the radioactivity concentration in the bone marrow is identical to that in the blood; (2) There is no significant binding of the radiopharmaceutical to bone marrow precursor stem cells; (3) The contribution of the cross dose from source organs and tumours to the bone marrow dose is significant; and (4) There is considerable variation in bone marrow absorbed dose between patients. These findings imply that for individual dose optimization, individual calculation of the bone marrow absorbed dose is necessary.  相似文献   

16.
Somatostatin receptor-expressing tumours are potential targets for therapy with radiolabelled somatostatin analogues. We have synthesized a number of such analogues in the past and identified [DOTA-dPhe1, Tyr3]octreotide (SMT 487) as the most promising candidate molecule because of its advantageous properties in cellular and in vivo tumour models. In the current paper we describe the radiotherapeutic effect of yttrium-90 labelled SMT 487 in Lewis rats bearing the somatostatin receptor-positive rat pancreatic tumour CA 20948. SMT 487 binds with nanomolar affinity to both the human and the rat somatostatin receptor subtype 2 (sst2) (human sst2 IC50=0.9 nM, rat sst2 IC50=0.5 nM). In vivo, 90Y-SMT 487 distributed rapidly to the sst2 expressing CA 20948 rat pancreatic tumour, with a tumour-to-blood ratio of 49.15 at 24 h post injection. A single intravenous administration of 10 mCi/kg 90Y-SMT 487 resulted in a complete remission of the tumours in five out of seven CA 20948 tumour-bearing Lewis rats. No regrowth of the tumours occurred 8 months post injection. Control animals that were treated with 30 μg/kg of unlabelled SMT 487 had to be sacrificed 10 days post injection due to excessive growth or necrotic areas on the tumour surface. Upon re-inoculation of tumour cells into those rats that had shown complete remission, the tumours disappeared after 3–4 weeks of moderate growth without any further treatment. The present study shows for the first time the curative potential of 90Y-SMT 487-based radiotherapy for somatostatin receptor-expressing tumours. Clinical phase I studies with yttrium-labelled SMT 487 have started in September 1997. Received 14 January and in revised form 16 March 1998  相似文献   

17.
18.
Fifty patients with somatostatin receptor-positive tumors were treated with multiple doses of [(111)In-diethylenetriamine pentaacetic acid(0)]octreotide. Forty patients were evaluable after cumulative doses of at least 20 GBq up to 160 GBq. Therapeutic effects were seen in 21 patients: partial remission in 1 patient, minor remissions in 6 patients, and stabilization of previously progressive tumors in 14 patients. Our results thus underscore the therapeutic potential of Auger-emitting radiolabelled peptides. The toxicity was generally mild bone marrow toxicity, but 3 of the 6 patients who received more than 100 GBq developed a myelodysplastic syndrome or leukemia. Therefore, we consider 100 GBq as the maximal tolerable dose. With a renal radiation dose of 0.45 mGy/MBq (based on previous studies) a cumulative dose of 100 GBq [(111)In-DTPA(0)]octreotide will lead to 45Gy on the kidneys, twice the accepted limit for external beam radiation. However, no development of hypertension, proteinuria, or significant changes in serum creatinine or creatinine clearance were observed in our patients including 2 patients who received 106 and 113 GBq [(111)In-DTPA(0)]octreotide without protection with amino acids, over a follow-up period of respectively 3 and 2 years. These findings show that the radiation of the short-range (maximal 10 microns) Auger electrons originating from the cells of the proximal tubules is not harmful for the renal function. The decrease in serum inhibin B and concomitant increase of serum FSH levels in men indicate that the spermatogenesis was impaired.  相似文献   

19.
3'-Radiohalogenated (36Cl, 82Br and 123I) "arabino" pyrimidine nucleosides were evaluated as potential tumor diagnostic agents in tumor bearing animals. No preferential tissue uptake was observed. The compounds were excreted mainly unchanged in the urine. The 3'-[36Cl]- and 3'-[82Br]-3'-deoxyarabino nucleosides exhibited biliary uptake. The low uptake of injected radioactivity by the tumor was probably due to the combined effects of the lack of a C-3' hydroxyl group in the "ribo" configuration, the presence of a halogen, the structural rigidity imposed by the presence of a halogen and the short biological half-lives of the compounds.  相似文献   

20.
INTRODUCTION: Clinical studies of patients treated with somatostatin-receptor (sstr)-targeted [DOTA(0)-Tyr(3)]-octreotide (DOTATOC) labeled with (177)Lu and (90)Y have shown overall response rates in the range of 9-33%. This study evaluates the potential for combination therapy with gemcitabine in an effort to improve clinical outcomes. METHODS: Human pancreatic adenocarcinoma Capan-2, rat pancreatic cancer AR42J and human small cell lung cancer NCI-H69 cells were each treated with 1 microg/ml gemcitabine for 4 days followed by replacement of the medium alone for four additional days. Cell cycle and direct receptor-uptake studies were performed with (177)Lu-DOTATOC after the total 8-day treatment as described. Cell viability and apoptosis experiments were performed to study the effects of gemcitabine pretreatment and (177)Lu-DOTATOC radionuclide therapy. Parallel control studies were performed with receptor-non-targeted (177)Lu-DOTA and DOTATOC. RESULTS: Cells treated with gemcitabine for 4 days showed a down-regulation of sstr expression as determined by (177)Lu-DOTATOC uptake. However, after 4 days of additional growth in absence of gemcitabine, the uptake of (177)Lu-DOTATOC was 1.5-3 times greater than that of the untreated control cells. In gemcitabine-pretreated Capan-2 cells, 84% of the cell population was in the G(2)M phase of the cell cycle. Due to sstr up-regulation and cell cycle modulations, synergistic effects of gemcitabine pretreatment were observed in cell viability and apoptosis assays. (177)Lu-DOTATOC resulted in two to three times greater apoptosis in gemcitabine-pretreated Capan-2 cells compared to the untreated cells. CONCLUSION: Gemcitabine pretreatment up-regulates sstr expression and acts as a radiosensitizer through cell cycle modulation. The rational combination of gemcitabine and sstr-targeted radiopharmaceuticals represents a promising chemoradiation therapeutic tool with great potential to improve clinical outcomes and, thus, merits further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号