首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plailly J  d'Amato T  Saoud M  Royet JP 《NeuroImage》2006,29(1):302-313
Impairments of olfactory processing in patients with schizophrenia (SZ) have been reported in various olfactory tasks such as detection, discrimination, recognition memory, identification, and naming. The purpose of our study was to determine whether impairments in odor familiarity and hedonicity judgments observed in SZ patients during a previous behavioral study are associated with modifications of the activation patterns in olfactory areas. Twelve SZ patients, and 12 healthy comparison (HC) subjects, were tested using the H2(15)O-PET technique and 48 different odorants delivered during 8 scans. In addition to an odorless baseline condition, they had either to detect odor, or to judge odor familiarity or hedonicity, giving their responses by pressing a button. Regional cerebral blood flows during olfactory conditions were compared with those for baseline condition. Between-group analyses were then performed, and completed by regions of interest analyses. Both groups had equivalent ability for the detection of suprathreshold odorants, but patients found odors less familiar, and pleasant odors less pleasant than HC subjects. These behavioral results were related to functional abnormalities in temporo-limbic and orbital olfactory regions lateralized in the left hemisphere: the posterior part of the piriform cortex and orbital regions for familiarity judgments, the insular gyrus for hedonicity judgments, and the left inferior frontal gyrus and anterior piriform cortex/putamen region for the three olfactory tasks. They mainly resulted from a lack of activation during task conditions in the SZ patients. These data could explain olfactory disturbances and other clinical features of schizophrenia such as anhedonia.  相似文献   

2.
Involvement of right piriform cortex in olfactory familiarity judgments   总被引:2,自引:0,他引:2  
Previous studies have shown activation of right orbitofrontal cortex during judgments of odor familiarity. In the present study, we sought to extend our knowledge about the neural circuits involved in such a task by exploring the involvement of the right prefrontal areas and limbic/primary olfactory structures. Fourteen right-handed male subjects were tested using fMRI with a single functional run of two olfactory conditions (odor detection and familiarity judgments). Each condition included three epochs. During the familiarity condition, subjects rated whether odors were familiar or unfamiliar. During the detection condition, participants decided if odors were present. When contrasting the familiarity with the detection conditions, activated areas were found mainly in the right piriform cortex (PC) and hippocampus, the left inferior frontal gyrus and amygdala, and bilaterally in the mid-fusiform gyrus. Further analyses demonstrated that the right PC was more strongly activated than the left PC. This result supports the notion that the right PC is preferentially involved in judgments of odor familiarity.  相似文献   

3.
Functional neuroimaging of odor imagery   总被引:5,自引:0,他引:5  
We used positron emission tomography (PET) to investigate brain regions associated with odor imagery. Changes in regional cerebral blood flow (CBF) during odor imagery were compared with changes during nonspecific expectation of olfactory stimuli and with those during odor perception. Sixty-seven healthy volunteers were screened for their odor imagery (with a paradigm developed in a previous study), and 12 of them, assessed to be "good odor imagers," participated in the neuroimaging part of the study. Imagination of odors was associated with increased activation in several olfactory regions in the brain: the left primary olfactory cortical (POC) region including piriform cortex, the left secondary olfactory cortex or posterior orbitofrontal cortex (OFC), and the rostral insula bilaterally. Furthermore, blood flow in two regions within the right orbitofrontal cortex correlated significantly with the behavioral measure of odor imagery during scanning. Overall, the findings indicated that neural networks engaged during odor perception and imagery overlap partially.  相似文献   

4.
Walla P  Mayer D  Deecke L  Lang W 《NeuroImage》2005,24(1):111-117
Magnetic field changes related to face encoding were recorded in 20 healthy young participants. Faces had to be deeply encoded under four kinds of simultaneous nasal chemical stimulation. Neutral room air, phenyl ethyl alcohol (PEA, rose flavor), carbon dioxide (CO2, pain), and hydrogen sulfide (H2S, rotten eggs flavor) were used as chemical stimuli. PEA and H2S represented odor stimuli, whereas CO2 was used for trigeminal stimulation (pain sensation). After the encoding of faces, the respective recognition performances were tested focusing on recognition effects related to specific chemical stimulation during encoding. The number of correctly recognized faces (hits) varied between chemical conditions. PEA stimulation during face encoding significantly increased the number of hits compared to the control condition. H2S also led to an increased mean number of hits, whereas simultaneous CO2 administration during face encoding resulted in a reduction. Analysis of the physiological data revealed two latency regions of interest. Compared to the control condition, both olfactory stimulus conditions resulted in reduced activity components peaking at about 260 ms after stimulus onset, whereas CO2 produced a strongly pronounced enhanced activity component peaking at about 700 ms after stimulus onset. Both olfactory conditions elicited only weak enhanced activities at about 700 ms, and CO2 did not show any difference activity at 260 ms after stimulus onset compared to the control condition. It is concluded that the early activity differences represent subconscious olfactory information processing leading to enhanced memory performances irrespective of the hedonic value, at least if they are only subconsciously processed. The later activity is suggested to reflect conscious CO2 perception negatively affecting face encoding and therefore leading to reduced subsequent face recognition. We interpret that conscious processing of nasal chemical stimulation competes with deep face encoding with respect to cortical resources, whereas subconscious processing of nasal chemical stimulation does not.  相似文献   

5.
Previous positron emission tomography studies of right-handed individuals show that the left orbitofrontal cortex is dominant during emotional processing of odors. We collected functional magnetic resonance imaging data from 28 subjects to study this network as a function of odor hedonic valence (pleasant vs. unpleasant), active hedonic judgments versus passive sensation of hedonically charged odors, handedness, and gender. Two functional runs were performed, with pleasant and unpleasant odors presented in different epochs. In the first run, subjects passively smelled odorants, whereas in the second run they rated degree of odor pleasantness or unpleasantness by using a "finger-span" technique that simulated a visual rating scale. Electrodermal and plethysmography responses were simultaneously recorded to control for covert, physiological manifestations of the emotional response. The piriform-amygdala area and ventral insula were activated more for unpleasant than pleasant odors. More extreme ratings were also associated with higher electrodermal amplitude, suggesting that activation stemmed more from emotional or hedonic intensity than valence, and that unpleasant odors induced more arousal than pleasant odors. Unpleasant odors activated the left ventral insula in right-handers and the right ventral insula in left-handers, suggesting lateralized processing of emotional odors as a function of handedness. Active decisions about odor pleasantness induced specific left orbitofrontal cortex activation, implicating the role of this area in the conscious assessment of the emotional quality of odors. Finally, left orbitofrontal cortex was more active in women than men, potentially in relation to women's well-documented advantage in odor identification.  相似文献   

6.
7.
Olfaction and depth of word processing: a magnetoencephalographic study   总被引:2,自引:0,他引:2  
Using a whole-cortex magnetoencephalograph, magnetic field changes were recorded to describe brain activities related to simultaneous visual and olfactory processing and to detect odor-related influences on verbal information processing. Words had to be either shallowly (nonsemantic) or deeply (semantic) encoded by healthy young subjects, each of these tasks under two different kinds of olfactory stimulation. After each encoding phase, word recognition performance was tested. First, the odor was randomly associated with some of the study words (simultaneous stimulation; same duration as for words) for both depths of word processing conditions, and second, continuous olfactory stimulation (permanent stimulation) was provided during the whole study phases of both depths of word processing conditions. The statistical analysis of the physiological data revealed evidence of a specific odor-induced effect depending on depth of word processing and kind of olfactory stimulation. Brain activity between about 250 and 450 ms as well as between about 650 and 1000 ms after stimulus onset was found to vary as a function of odor delivery and depth of word processing. In addition, a significant effect of odor stimulation on subsequent word recognition performance occurred in case of simultaneous odor stimulation and semantic word encoding. It is interpreted that in this case, word recognition performance significantly decreased because of the presence of the odor during prior word encoding. Such a behavioral effect was missing in all other conditions. The present psychological and physiological findings support the idea that semantic word encoding is specifically affected by simultaneous olfactory information processing. It is concluded that this phenomenon is due to a competition with cortical regions related to language and olfactory information processing, as suggested by T. S. Lorig (1999, Neurosci. Biobehav. Rev. 23, 391-398).  相似文献   

8.
Positron emission tomography (PET) was used to determine the effect of working memory and speed of sentence processing on regional cerebral blood flow (rCBF) during syntactic processing in sentence comprehension. PET activity associated with making plausibility judgments about syntactically more complex subject-object (SO) sentences (e.g., The juice that the child spilled stained the rug) was compared to that associated with making judgments about synonymous syntactically simpler object-subject (OS) sentences (e.g., The child spilled the juice that stained the rug). Two groups of nine subjects differing in working memory and matched for speed of sentence processing both showed increases in rCBF in lateral posteroinferior frontal lobe bilaterally. The subjects were reclassified to form two groups of eight subjects who were matched for working memory but who differed in speed of sentence processing. Fast-performing subjects activated lateral posteroinferior frontal lobe bilaterally and slow-performing subjects showed activation of left superior temporal lobe. The results indicate that rCBF responses to syntactic comprehension tasks vary as a function of speed of sentence processing but not as a function of working memory.  相似文献   

9.
Neural correlates of artificial grammar learning   总被引:2,自引:0,他引:2  
Artificial grammar learning (AGL) is a form of nondeclarative memory that involves the nonconscious acquisition of abstract rules. While data from amnesic patients indicate that AGL does not depend on the medial temporal lobe, the neural basis of this type of memory is unknown and was therefore examined using event-related fMRI. Prior to scanning, participants studied letter strings constructed according to an artificial grammar. Participants then made grammaticality judgments about novel grammatical and nongrammatical strings while fMRI data were collected. The participants successfully acquired knowledge of the grammar, as evidenced by correct identification of the grammatical letter strings (57.4% correct; SE 1.9). During grammaticality judgments, widespread increases in activity were observed throughout the occipital, posterior temporal, parietal, and prefrontal cortical areas, reflecting the cognitive demands of the task. More specific analyses contrasting grammatical and nongrammatical strings identified greater activity in left superior occipital cortex and the right fusiform gyrus for grammatical stimuli. Increased activity was also observed in the left superior occipital and left angular gyrus for correct responses compared to incorrect. Comparing activity during grammaticality judgments versus a matched recognition control task again identified greater activation in the left angular gyrus. The network of areas exhibiting increased activity for grammatical stimuli appears to have more in common with studies examining word-form processing or mental calculation than the fluency effects previously reported for nondeclarative memory tasks such as priming and visual categorization. These results suggest that a novel nondeclarative memory mechanism supporting AGL exists in the left superior occipital and inferior parietal cortex.  相似文献   

10.
In humans, the pleasantness of odors is a major contributor to social relationships and food intake. Smells evoke attraction and repulsion responses, reflecting the hedonic value of the odorant. While olfactory preferences are known to be strongly modulated by experience and learning, it has been recently suggested that, in humans, the pleasantness of odors may be partly explained by the physicochemical properties of the odorant molecules themselves. If odor hedonic value is indeed predetermined by odorant structure, then it could be hypothesized that other species will show similar odor preferences to humans. Combining behavioral and psychophysical approaches, we here show that odorants rated as pleasant by humans were also those which, behaviorally, mice investigated longer and human subjects sniffed longer, thereby revealing for the first time a component of olfactory hedonic perception conserved across species. Consistent with this, we further show that odor pleasantness rating in humans and investigation time in mice were both correlated with the physicochemical properties of the molecules, suggesting that olfactory preferences are indeed partly engraved in the physicochemical structure of the odorant. That odor preferences are shared between mammal species and are guided by physicochemical features of odorant stimuli strengthens the view that odor preference is partially predetermined. These findings open up new perspectives for the study of the neural mechanisms of hedonic perception.  相似文献   

11.
Cocaine abusers demonstrate faulty decision-making as manifested by their inability to discontinue self-destructive drug-seeking behaviors. The orbitofrontal cortex (OFC) plays an important role in decision-making. In this preliminary study we tested whether 25-day-abstinent cocaine abusers show alterations in normalized cerebral blood flow (rCBF) in the OFC using PET with (15)O during the Iowa Gambling Task (a decision-making task). This task measures the ability to weigh short-term rewards against long-term losses. A control task matched the sensorimotor aspects of the task but did not require decision-making. Cocaine abusers (N = 13) showed greater activation during performance of the Iowa Gambling Task in the right OFC and less activation in the right dorsolateral prefrontal cortex (DLPFC) and left medial prefrontal cortex (MPFC) compared to a control group (N = 13). Better Iowa Gambling Task performance was associated with greater activation in the right OFC in both groups. Also, the amount of cocaine used (grams/week) prior to the 25 days of enforced abstinence was negatively correlated with activation in the left OFC. Greater activation in the OFC in cocaine abusers compared to a control group may reflect differences in the anticipation of reward while less activation in the DLPFC and MPFC may reflect differences in planning and working memory. These findings suggest that cocaine abusers show persistent functional abnormalities in prefrontal neural networks involved in decision-making and these effects are related to cocaine abuse. Compromised decision-making could contribute to the development of addiction and undermine attempts at abstinence.  相似文献   

12.
Recent studies have shown that motivational stimulus information is represented in the brain even in situations where the individual is not actively engaged in stimulus evaluation. However, it has remained unclear whether neural representations of such implicit motivational information reflect the motivational value or motivational salience of stimuli. While motivational values correspond to the desirability of stimuli, motivational salience is related to the arousal elicited by the stimulus. Here we aimed at disentangling the neural representation of both motivational dimensions. In the first part, participants learned the association of face stimuli with monetary reward and punishment. The same face stimuli were presented in a subsequent fMRI experiment, during which participants either performed a gender discrimination task on the faces or an orientation discrimination task on two simultaneously presented bars. Importantly, faces only differed regarding their implicit motivational information as acquired in the previous learning task, as participants neither received monetary reinforcement during the fMRI experiment nor were they asked to explicitly judge their face preferences. We found that neural responses in lateral OFC were modulated by implicit motivational value, whereas the faces' implicit motivational salience was coded in medial OFC. While the value-related responses in lateral OFC decreased over time, the salience-related modulation of medial OFC activity remained stable over the duration of the fMRI experiment. Neural responses to both motivational dimensions were observed independent of whether participants' attention was directed to the faces or to the surrounding bars, suggesting an automatic processing of implicit motivational value and salience. The functional dissociation within the OFC suggests that this region is critically involved in distinct motivation-related processes: In medial OFC, a representation of salient items may be maintained in order to facilitate responses towards behaviourally relevant stimuli in the future; in contrast the temporary value effect in lateral OFC might reflect decreasing stimulus valuation in the absence of explicit motivational stimulus differences.  相似文献   

13.
Olfactory hypersensitivity (OHS) may occur during migraine attacks and seems to be very specific to this form of headache. OHS is also observed during migraine-free periods and is associated with the presence of odour-triggered attacks. Yet the pathophysiology of OHS remains unknown. The aim of our study was to evaluate olfactory processing in migraineurs with OHS and to investigate whether regional cerebral blood flow (rCBF) associated with olfactory stimulation is modified in these patients compared with controls. Eleven migraineurs with OHS and 12 controls participated in a H(2)(15)O-positron emission tomography study, including three scans in which odours were delivered and three scans where only odourless air was delivered. rCBF during olfactory condition was compared with that for the odourless baseline condition. Between-group analyses were performed using voxel-based and region-of-interest analyses. During both olfactory and non-olfactory conditions, we observed higher rCBF in the left piriform cortex and antero-superior temporal gyrus in migraineurs compared with controls. During odour stimulation, migraineurs also showed significantly higher activation than controls in the left temporal pole and significantly lower activation in the frontal (left inferior as well as left and right middle frontal gyri) and temporo-parietal (left and right angular, and right posterior superior temporal gyri) regions, posterior cingulate gyrus and right locus coeruleus. These results could reflect a particular role of both the piriform cortex and antero-superior temporal gyrus in OHS and odour-triggered migraine. Whether these rCBF changes are the cause or a consequence of odour-triggered migraines and interictal OHS remains unknown. Further comparisons between migraineurs with and without OHS are warranted to address this issue. The abnormal cerebral activation patterns during olfactory stimulation might reflect altered cerebrovascular response to olfactory stimulation due to the migraine disease, or an abnormal top-down regulation process related to OHS.  相似文献   

14.
Acute stress elicits multiple responses in autonomic, endocrine, and immune systems. Cognitive appraisal is believed to be one important modulator of such stress responses. To investigate brain substrates of crosstalks between the homeostasis-maintaining systems accompanying appraisal of stressor controllability, we simultaneously recorded regional cerebral blood flow (rCBF) using 15O-water positron emission tomography, cardiovascular indices (heart rate (HR) and blood pressure (BP)), neuroendocrine indices (concentrations of epinephrine, norepinephrine, and adrenocorticotropic hormone (ACTH) in blood), and immune indices (proportions of subsets of lymphocytes (NK cells, helper T cells, cytotoxic T cells, and B cells) in blood), in 11 male subjects who performed a mental arithmetic task with either high controllability (HC) and low controllability (LC). The LC task resulted in less sense of control in subjects than the HC task. Significant increases of rCBF in the medial and lateral orbitofrontal cortices (OFC), and in the medial and lateral prefrontal cortices (MPFC, LPFC) were observed by subtracting the HC task from the LC task. More importantly, significant positive correlations between rCBF and HR, BP, and NK cells were commonly found in the OFC and MPFC during the LC tasks, but not during the HC tasks. The present results showed for the first time that the prefrontal neural network including the OFC and MPFC might be one pivotal region for bi-directional functional association between the brain and peripheral autonomic and immune activities accompanying appraisal of an acute stressor.  相似文献   

15.
Lamar M  Yousem DM  Resnick SM 《NeuroImage》2004,21(4):1368-1376
Several investigations have suggested that the orbitofrontal cortex (OFC) may be particularly vulnerable to the effects of age-related changes. We recently reported behavioral data indicating greater age differences in orbitofrontal tasks when directly compared to tasks tapping dorsolateral prefrontal functions. The present study was designed to investigate the neural underpinnings of age differences in OFC functioning. Event-related functional magnetic resonance imaging (fMRI) was performed during delayed match and nonmatch to sample tasks, previously shown to differentially activate medial and lateral OFC in young adults. Sixteen healthy younger [age = 26.7(5.6)] and 16 healthy older individuals [age = 69.1 + 5.6] with similar levels of education and general cognitive functioning participated in the experiment. Participants chose the stimulus from a pair of stimuli matching a previously viewed target (match to sample) or chose the nontarget item (nonmatch to sample) depending upon a trial-specific instruction word. Consistent with previous studies, SPM99 analyses of the younger age group revealed activation for medial OFC regions during the match task compared to the nonmatch task and lateral OFC activation during the nonmatch task compared to the match task. In contrast, older adults showed prefrontal activation only during the match relative to the nonmatch task and posterior temporal and limbic involvement during the nonmatch relative to the match task. Between-group analyses confirmed within-group results suggesting differential age-related recruitment of prefrontal regions when performing match and nonmatch tasks. Results suggest that OFC recruitment during these cognitive tasks changes with age and should be evaluated within the context of other prefrontal subregions to further define differential age effects on frontal functions.  相似文献   

16.
Neuroimaging and in particular functional magnetic resonance imaging (fMRI) of olfactory function relies on the ability to model the time course of brain responses elicited by odor stimuli. In this study we compared two templates of olfactory brain activation by comparing levels of correlation in regions critical to olfactory processing with either a stimulation-based template or a perception-based template, derived from perception profiles acquired off-line during a simulated fMRI session. fMRI signal was more correlated with the perception-based template than with the stimulation-based template in all regions. This effect was not observed when comparing correlations obtained with the exact same templates shifted in time by 12 s. Therefore, the improvement due to the use of the perception-based template was not only caused by a difference of shape between the stimulation-based and the perception-based template but was specifically related to the olfactory stimulation performed. These results suggest that the perception-based template better represents brain activity in response to olfactory stimulation and might help improve data processing of fMRI studies investigating olfactory function.  相似文献   

17.
Kupers RC  Svensson P  Jensen TS 《Pain》2004,108(3):284-293
Functional neuroimaging studies of the human brain have revealed a network of brain regions involved in the processing of nociceptive information. However, little is known of the cerebral processing of pain originating from muscles. The aim of this study was to investigate the cerebral activation pattern evoked by experimental jaw-muscle pain and its interference by simultaneous mechanical stimuli, which has been shown to evoke hyperesthesia. Ten healthy subjects participated in a PET study and jaw-muscle pain was induced by bolus injections of 5% hypertonic saline into the right masseter muscle. Repeated von Frey hair stimulation (0.5 Hz) of the skin above the masseter muscle was used as the mechanical stimulus. Hypertonic saline injections caused strong muscle pain spreading to adjacent areas. von Frey stimulation was rated as non-painful but produced hyperesthesia during jaw-muscle pain. Jaw-muscle pain was associated with significant increases in regional cerebral blood flow (rCBF) in the dorsal-posterior insula (bilaterally), anterior cingulate and prefrontal cortices, right posterior parietal cortex, brainstem, cavernous sinus and cerebellum. No rCBF changes occurred in primary or secondary somatosensory cortices. In contrast, von Frey stimulation produced a significant rCBF increase in the contralateral SI face representation. Mechanical hyperesthesia was associated with significant rCBF increases in the subgenual cingulate and the ventroposteromedial and dorsomedial thalamus. These results suggest that the cerebral processing of jaw-muscle pain may differ from the processing of cutaneous pain and that mechanical hyperesthesia, which often is encountered in clinical cases, has a unique representation in the brain.  相似文献   

18.
Schon K  Tinaz S  Somers DC  Stern CE 《NeuroImage》2008,39(2):857-872
Recent delayed matching studies have demonstrated that maintaining trial-unique stimuli in working memory modulates activity in temporal lobe structures. In contrast, most previous studies that focused on the role of the prefrontal cortex (PFC) used familiar stimuli. We combined fMRI with a delayed-match-to-sample (DMS) task in humans that allowed us to manipulate stimulus pre-exposure (trial-unique vs. familiar objects) and stimulus domain (object vs. location). A visually guided saccade task was used to localize the frontal eye fields (FEF). We addressed two questions: First, we examined whether delay-period activity within PFC regions was more strongly engaged when stimuli were familiar (pre-exposed) than when they were not seen previously (trial-unique). Second, we examined the role of regions within the PFC in object vs. location working memory. Subjects were instructed to remember one stimulus domain while ignoring the other over an 8-s delay period. Object-specific delay-period activity was greatest in the posterior orbitofrontal cortex (OFC) bilaterally, and was stronger for familiar than trial-unique objects. In addition, consistent with previous findings, right posterior superior frontal sulcus, and the FEF were specifically active during the delay period of the location DMS task. These activations outside FEF were not related to saccadic eye movements. In contrast to previous reports, object-specific delay activity was more prominent in the posterior OFC than in the ventrolateral PFC, and was found to be greater for familiar than for trial-unique objects. These results suggest a critical role for the orbitofrontal cortex for maintaining object information in working memory.  相似文献   

19.
The visual what for area: words and pictures in the left fusiform gyrus   总被引:3,自引:0,他引:3  
Starrfelt R  Gerlach C 《NeuroImage》2007,35(1):334-342
  相似文献   

20.
The present research examines whether cognitive load can modulate the processing of negative emotional stimuli, even after negative stimuli have already activated emotional centers of the brain. In a functional magnetic resonance imaging (fMRI) study, participants viewed neutral and negative stimuli that were followed by an attention-demanding arithmetic task. As expected, exposure to negative stimuli led to increased activation in emotional regions (the amygdalae and the right insula). Subsequently induced task load led to increased activation in cognitive regions (right dorsolateral frontal cortex, right superior parietal cortex). Importantly, task load down-regulated the brain's response to negative stimuli in emotional regions. Task load also reduced subjectively experienced negative emotion in response to negative stimuli. Finally, coactivation analyses suggest that during task performance, activity in right dorsolateral frontal cortex was related to activity in the amygdalae and the right insula. Together, these findings indicate that cognitive load is capable of tuning down the emotional brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号