首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new magnetic resonance imaging method, line scan echo planar spectroscopic imaging (LSEPSI), is shown capable of providing rapid, internally referenced temperature monitoring from water and fat chemical shifts. METHODS: Orthogonal 90 degrees and 180 degrees slice selective RF pulses inclined by 45 degrees from the image plane solicit a spin echo from a tissue column. The echo is read by asymmetric sampling of 32 gradient echoes spaced 1.4-1.8 ms apart. Sixty-four adjacent columns are sequentially sampled in 4.2-6.4 s with 4,096 voxels sampled with voxel volumes of 0.08-0.13 cm3. Mixed mayonnaise/water phantoms were used to correlate LSEPSI-derived chemical shifts and thermocouple-based temperature measurements from 23 to 60 degrees C with a 1.5 T scanner. Measurement artifacts unrelated to temperature were investigated with the phantom, as was the feasibility of applying the sequence in human breast in vivo. RESULTS: The correlation between LSEPSI and thermocouple-based temperature measurements in the phantom was excellent (r2>0.99). Field drifts affecting the temperature measurements using the water peak alone were corrected by using the water/lipid peak difference. The sequence had an average temperature resolution of 1.4 degrees C in the phantom. The frequency difference measurement reduced the sensitivity to artifacts related to temperature. Both water and lipid peaks were detectable throughout many locations in the breast, suggesting the applicability of LSEPSI in this organ. DISCUSSION: T1-saturation losses occur in conventional and echo-planar based 2D CSI sequences using phase encoding methods with short TR periods. These losses are eliminated when individual columns are sampled in snapshot fashion with LSEPSI since the effective TR becomes the time between scans rather than excitations. T1 saturation can make small spectral peaks difficult to detect at high temperatures and generally lowers the signal-to-noise ratio of the spectra. The rapid acquisition and insensitivity to T1 saturation effects make LSEPSI an attractive technique for monitoring thermal therapies in breast using the internally referenced fat/water frequency separation.  相似文献   

2.
A volume-displacement counterpulsation device (CPD) intended for chronic implantation via a superficial surgical approach is proposed. The CPD is a pneumatically driven sac that fills during native heart systole and empties during diastole through a single, valveless cannula anastomosed to the subclavian artery. Computer simulation was performed to predict and compare the physiological responses of the CPD to the intraaortic balloon pump (IABP) in a clinically relevant model of early stage heart failure. The effect of device stroke volume (0-50 ml) and control modes (timing, duration, morphology) on landmark hemodynamic parameters and the LV pressure-volume relationship were investigated. Simulation results predicted that the CPD would provide hemodynamic benefits comparable to an IABP as evidenced by up to 25% augmentation of peak diastolic aortic pressure, which increases diastolic coronary perfusion by up to 34%. The CPD may also provide up to 34% reduction in LV end-diastolic pressure and 12% reduction in peak systolic aortic pressure, lowering LV workload by up to 26% and increasing cardiac output by up to 10%. This study demonstrated that the superficial CPD technique may be used acutely to achieve similar improvements in hemodynamic function as the IABP in early stage heart failure patients.  相似文献   

3.
The purpose of this study is to develop a non-contact method to evaluate the heart and respiratory rates simultaneously using a single optical sensor which can be used without the removal of clothes before a decontamination procedure in biochemical hazards. We measured the heart and respiratory rates with and without clothes to assess the vital sign monitoring before decontamination. In order to monitor the heart and respiratory rates of rabbits simultaneously, the respiratory and cardiac peaks were separated using fast Fourier transform from a 5 mW helium-neon laser (wavelength 632.8 nm) reflected off the chest walls of rabbits. A cloth (50 mm &#50 50 mm, 2 mm thick) was placed on the chest of the rabbits to simulate the vital sign monitoring with clothes. The heart rate measured using this method agreed with the rate derived from an electrocardiogram ( r = 0.82, p <0.05). The respiratory rate correlated with the manually measured respirator rate ( r = 0.93, p <0.05). This method appears promising as a non-contact method for monitoring the heart and respiratory rates of patients under biochemically hazardous conditions.  相似文献   

4.
The time course of RK-13 cell growth on a microcarrier DEAE-sephadex A-50 treated by different methods was studied. Treatment of the microcarrier according to the modified method was shown to provide the best conditions for cell attachment and growth. Herpes virus type I in monolayer cultures reached maximum titers at 2--3 days depending on the multiplicity of infection (6.5--7.83 lg CPD50). In cell cultures on the microcarrier at a high multiplicity of infection the virus titer reached maximum values (9.5 lg CPD50) as early as 24 hours postinfection.  相似文献   

5.
The purpose of this work is to assess a fast technique that measures tissue stiffness and temperature during focused ultrasound thermal therapy (FUS). A one-dimensional (1D) MR elastography (MRE) pulse sequence was evaluated for the purpose of obtaining rapid measurements of thermally induced changes in tissue stiffness and temperature for monitoring FUS treatments. The accuracy of the 1D measurement was studied by comparing tissue displacements measured by 1D MRE with those measured by the well-established 2D MRE pulse sequence. The reproducibility of the 1D MRE measurement was assessed, in gel phantoms and ex vivo porcine tissue, for varied FUS intensity levels (31.5-199.9 W cm(-2)) and over a range of displacements at the focus (0.1-1 microm). Temperature elevations in agarose gel phantoms were measured using 1D MRE and calibrated using fiberoptic-thermometer-based measurements. The 1D MRE displacement measurements are highly correlated with those obtained with the 2D technique (R(2) = 0.88-0.93), indicating that 1D MRE can successfully measure tissue displacement. Ten repeated trials at each FUS power level yielded a minimum detectable displacement change of 0.2 microm in phantoms and 0.4 microm in tissue (at 95% confidence level). The 1D MRE temperature measurements correlated well with temperature changes measured simultaneously with fiberoptic thermometers (R(2) = 0.97). The 1D MRE technique is capable of detecting tissue displacements as low as 0.4 microm, which is an order of magnitude smaller than 5 microm displacements expected during FUS therapy (Le et al 2005 AIP Conf. Proc.: Ther. Ultrasound 829 186-90). Additionally, 1D MRE was shown to provide adequate measurements of temperature elevations in tissue. These findings indicate that 1D MRE may be an effective tool for monitoring FUS treatments.  相似文献   

6.
The purpose of this study is to develop a non-contact method to evaluate the heart and respiratory rates simultaneously using a single optical sensor which can be used without the removal of clothes before a decontamination procedure in biochemical hazards. We measured the heart and respiratory rates with and without clothes to assess the vital sign monitoring before decontamination. In order to monitor the heart and respiratory rates of rabbits simultaneously, the respiratory and cardiac peaks were separated using fast Fourier transform from a 5 mW helium-neon laser (wavelength 632.8 nm) reflected off the chest walls of rabbits. A cloth (50 mm x 50 mm, 2 mm thick) was placed on the chest of the rabbits to simulate the vital sign monitoring with clothes. The heart rate measured using this method agreed with the rate derived from an electrocardiogram (r = 0.82, p<0.05). The respiratory rate correlated with the manually measured respirator rate (r = 0.93, p<0.05). This method appears promising as a non-contact method for monitoring the heart and respiratory rates of patients under biochemically hazardous conditions.  相似文献   

7.
Laser coagulation is a treatment method for many retinal diseases. Due to variations in fundus pigmentation and light scattering inside the eye globe, different lesion strengths are often achieved. The aim of this work is to realize an automatic feedback algorithm to generate desired lesion strengths by controlling the retinal temperature increase with the irradiation time. Optoacoustics afford non-invasive retinal temperature monitoring during laser treatment. A 75 ns/523 nm Q-switched Nd:YLF laser was used to excite the temperature-dependent pressure amplitudes, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. A 532 nm continuous wave Nd:YAG laser served for photocoagulation. The ED50 temperatures, for which the probability of ophthalmoscopically visible lesions after one hour in vivo in rabbits was 50%, varied from 63°C for 20 ms to 49°C for 400 ms. Arrhenius parameters were extracted as ΔE=273 J mol(-1) and A=3 x 10(44) s(-1). Control algorithms for mild and strong lesions were developed, which led to average lesion diameters of 162 ± 34 μm and 189 ± 34 μm, respectively. It could be demonstrated that the sizes of the automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.  相似文献   

8.
Continuous recirculating peritoneal dialysis (CRPD) was introduced to enhance solute removal efficiency in conventional peritoneal dialysis (PD) therapies such as continuous ambulatory peritoneal dialysis (CAPD). In CRPD, a portion of the dwell dialysate in the patient's peritoneal cavity is drained through a double-lumen catheter and purified by an extracorporeal dialyzer. In this study, solute removal characteristics and safety of CRPD are examined in ex vivo and clinical studies. Recirculation dialysis experiments using nine dogs (13.6 +/- 2.5 kg of body weight) were carried out for 240 min in the ex vivo study, whereas another seven dogs (12.1 +/- 2.8 kg) received conventional peritoneal dialysis (CPD) (120 min dwelling x 2) and six additional dogs (11.9 +/- 2.7 kg) received a Tidal PD (20 min dwelling x 12; 50% of tidal volume ratio) as controls. The ex vivo study revealed that CRPD has a higher efficiency for solute removal than CPD and is equivalent to Tidal PD. In the BUN reduction rate, the 19.4 +/- 5.5% in 240 min CRPD (n = 9) was significantly higher (p < 0.05) than the 3.5 +/- 3.6% in 240 min CPD (n = 7) and equivalent to the 17.3 +/- 4.7% in 240 min Tidal PD (n = 6). Continuous recirculating peritoneal dialysis maintained a low UN level in the peritoneal cavity due to dialysis with an extracorporeal dialyzer. This tendency was also seen in creatinine removal. In the clinical study, CRPD (n = 10) and CPD (n = 5) treatments were used in three renal failure patients. Higher solute removal efficiency was shown in CRPD than in CPD treatments, and the urea peritoneal clearance was 14.1 +/- 4.4 ml/min in CRPD (n = 10), significantly higher (p < 0.05) than the 7.3 +/- 2.1 ml/min in CPD (n = 5). No fibrin formation occurred during CRPD treatments.  相似文献   

9.
We demonstrate the application of an infrared (IR) imaging technique for non-contact determination of thermal diffusivity in biological materials. The proposed method utilizes pulsed laser excitation to produce an initial three-dimensional temperature distribution in tissue, and records IR images of subsequent heat diffusion. The theoretical model assumes that the time-dependent temperature increase following pulsed laser exposure is due to independent heat diffusion in longitudinal and lateral directions. A nonlinear least-squares algorithm is used to compute the lateral thermal point spread function from a pair of recorded IR images and to determine the thermal diffusivity of a test specimen. The recorded time-sequence of IR images is used to compute thermal diffusivity as a function of increasing time interval between two IR emission images. Experimental application of the method was demonstrated using tissue phantoms, ex vivo samples of hydrated cartilage and in vivo epidermis.  相似文献   

10.
A short-echo spectroscopic imaging sequence extended with a frequency-selective multiple-quantum- coherence technique (Sel-MQC) is presented. The method enables acquisition of a complete water-suppressed proton spectrum with a short echo time and filtering of the J-coupling metabolite, lactate, from co-resonant lipids in one scan. The purpose of the study was to validate this combined pulse sequence in vitro and in vivo. Measurements on phantoms confirmed the feasibility of the method, and, for a practical in vivo application, experiments were carried out on eight tumors from two different tumor models [UT-SCC-8 (n = 4) and SAS (n = 4)]. T(1)- and T(2)-weighted metabolite and lipid ratios were calculated, and the tumors showed different values in the central and outer regions. The ratio of the lipid methylene peak area (1.30 ppm) to choline peak area (3.20 ppm) was significantly (p < 0.01) different in the central tumor area between the two models, and lactate was detected in only three out of four tumors in the SAS tumor line. The present approach of combining short-echo spectroscopic imaging and lactate editing allows the characterization of tumor-specific metabolites such as choline, lipid methylene and methyl resonances as well as lactate in a single scan.  相似文献   

11.
Flow fields are one of the key factors associated with the life threatening formation of thrombi in artificial organs. Therefore, knowledge of flow field is crucial for the design and optimization of a long-term blood pump performance. The blood chamber flow of a novel counterpulsation heart assist device (CPD) has been investigated using laser Doppler velocimetry (LDV), particle image velocimetry (PIV), and near-wall PIV (wall-PIV). The wall-PIV is an in-house developed technique assessing wall shear rates (WSR). These experimental techniques analyzed complex transient three-dimensional (3D) flow fields including major and secondary structures during the whole CPD cycle (ejection, filling, and hold time). PIV measurements in the central plane investigated an evolution (development and destruction) of the blood chamber fully filling vortex as the major CPD flow structure. The wall-PIV measurements identified areas of blood stagnation (vortex center and jet impingements) and quantified WSR at the front housing. Maximal mean WSR of 2,045 ± 605 s(-1) were found at the end of the filling. The LDV, which identified helical flow structure at the outer region of the pump, was used to complete 3D flow analysis and to combine PIV and wall-PIV results. The results suggest good washing behavior of the CPD regarding thrombus formation.  相似文献   

12.
An indirect method for in vivo T2 mapping of 13C–labeled metabolites using T2 and T2* information of water protons obtained a priori is proposed. The T2 values of 13C metabolites are inferred using the relationship to T2′ of coexisting 1H and the T2* of 13C metabolites, which is measured using routine hyperpolarized 13C CSI data. The concept is verified with phantom studies. Simulations were performed to evaluate the extent of T2 estimation accuracy due to errors in the other measurements. Also, bias in the 13C T2* estimation from the 13C CSI data was studied. In vivo experiments were performed from the brains of normal rats and a rat with C6 glioma. Simulation results indicate that the proposed method provides accurate and unbiased 13C T2 values within typical experimental settings. The in vivo studies found that the estimated T2 of [1‐13C] pyruvate using the indirect method was longer in tumor than in normal tissues and gave values similar to previous reports. This method can estimate localized T2 relaxation times from multiple voxels using conventional hyperpolarized 13C CSI and can potentially be used with time resolved fast CSI.  相似文献   

13.
The cephalic phase of digestion (CPD) has been extensively investigated in terms of digestion and metabolism. Nevertheless, microcirculatory changes required to prepare peripheral tissues in order to dispose nutrients have never been assessed. In this study, microvascular function has been evaluated to determine its behavior and potential association to hormonal secretions during CPD. Thirty-nine healthy male subjects, 23.4 ± 0.5 years (mean ± SD) and BMI of 23.3 ± 2.3 kg/m(2), were randomized into receiving cognitive-sensorial stimuli to elicit CPD (CPD group, n=20) or not (control group, n=19), after a 12-h overnight fast. Main outcomes were differences in resting and peak functional capillary density (FCD, cap/mm(2)); resting red blood cell velocity (RBCV), peak RBCV (RBCV(max)) and time taken to reach it (TRBCV(max)); peak flow and vasomotion, before and after CPD and their associations with insulin and/or pancreatic polypeptide (PP). In the CPD group, basal FCD (24.9 ± 7.6 to 28.3 ± 8.1, p=0.005), peak FCD (27.8 ± 6.3 to 32.6 ± 7.1, p=0.002), RBCV (0.306 ± 0.031 to 0.330 ± 0.027 mm/s, p=0.005), RBCV(max) (0.336 ± 0.029 to 0.398 ± 0.292 mm/s, p=0.005) and peak flow (23.5 ± 14.3 to 26.9 ± 15.8 PU, p<0.01) increased while TRBCV(max) decreased (4.9 ± 1.5 to 3.5 ± 1.2s, p=0.01). No significant changes could be detected in the control group. Groups have not presented differences for insulin, but PP significantly increased in the CPD group and was positively associated to basal FCD increase (rho=0.527, p=0.03). In conclusion, neurally-mediated anticipatory responses of digestion elicited functional capillary recruitment associated to PP in healthy men, suggesting a precocious role for microcirculation in the physiology of digestion and nutrient homeostasis.  相似文献   

14.
Poly(anhydride-esters), based on carboxyphenoxydecanoate (CPD), are biocompatible polymers that hydrolytically degrade. The mechanical properties of the poly(anhydride-esters) can be altered by copolymerization with para-carboxyphenoxyhexane (pCPH). Mechanical properties of three CPD:pCPH compositions (30:70, 40:60, and 50:50) are reported as a function of hydrolytic degradation. The mechanical characteristics evaluated were tensile modulus at 1% strain (E(1%)), tensile strength (sigma(B)), ultimate elongation (epsilon(B)), and toughness (E(r)). The 30:70 CPD:pCPH fibers maintained higher values for tensile modulus at all time points than the two other fiber compositions. In addition, the 30:70 CPD:pCPH fibers maintained lower values for both tensile strength and toughness than the two other fiber compositions. These phenomena resulted from the brittle nature of pCPH, the major component of the 30:70 CPD:pCPH fibers; increasing the pCPH concentration in the polymer lowers both tensile strength and toughness of the polymer by decreasing ductility. With increasing amounts of pCPH, the hydrolytic degradation occurred more slowly, as reflected in the copolymers' improved ability to retain their mechanical properties. Therefore, copolymerization is useful for controlling the mechanical properties of the fibers as well as the polymer degradation rate, which ultimately determines the rate at which physically or chemically encapsulated drugs can be released.  相似文献   

15.
In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature.  相似文献   

16.
This study demonstrates a novel approach to test associations between highly heterogeneous genetic loci and complex phenotypes. Previous investigations of the relationship between Cytochrome P450 2A6 (CYP2A6) genotype and smoking phenotypes made comparisons by dividing subjects into broad categories based on assumptions that simplify the range of function of different CYP2A6 alleles, their numerous possible diplotype combinations and non-additive allele effects. A predictive model that translates CYP2A6 diplotype into a single continuous variable was previously derived from an in vivo metabolism experiment in 189 European Americans. Here, we apply this model to assess associations between genotype, inferred nicotine metabolism and smoking behaviors in larger samples without direct nicotine metabolism measurements. CYP2A6 genotype is not associated with nicotine dependence, as defined by the Fagerstr?m Test of Nicotine Dependence, demonstrating that cigarettes smoked per day (CPD) and nicotine dependence have distinct genetic correlates. The predicted metric is significantly associated with CPD among African Americans and European American dependent smokers. Individual slow metabolizing genotypes are associated with lower CPD, but the predicted metric is the best predictor of CPD. Furthermore, optimizing the predictive model by including additional CYP2A6 alleles improves the fit of the model in an independent data set and provides a novel method of predicting the functional impact of alleles without direct metabolism measurements. Lastly, comprehensive genotyping and in vivo metabolism data are used to demonstrate that genome-wide significant associations between CPD and single nucleotide polymorphisms are the result of synthetic associations.  相似文献   

17.
The objective of the paper is to compare the performance of conventional FFT-based and modern parametric methods when extracting, from aortic closing sounds produced by lonescu-Shiley bioprosthetic heart valves, three features used in diagnosing valve dysfunction. Eight algorithms were tested by adding random noise and truncating 15 simulated aortic closing sounds. The performance of each algorithm was evaluated by computing the absolute error between the parameters obtained from the reference spectra of the simulated sounds and those obtained from the estimated spectra. Results show that the fast Fourier transform with rectangular window (FFTR) can locate the dominant spectral peak of the valve sound with an average accuracy of 10 Hz. Pole-zero modelling using the Steiglitz-McBride method with maximum entropy (SMME) is the best technique for estimating the frequency of the second dominant spectral peak and the bandwidth at ?30 dB of the spectrum, with an average accuracy of 50 Hz and 27 Hz, respectively. In addition to this analysis, the accuracy of the frequency distribution of the estimated spectra was evaluated. Results show that the Steiglitz-mcBride method with extrapolation to zero and FFTR are the best algorithms to estimate the distribution of the reference spectra in the 20–200 Hz frequency bands. In the 200–500 Hz and 500–1000 Hz frequency bands, SMME gives the best results.  相似文献   

18.
Thermal wave imaging of discrete subsurface chromophores in biological materials is reported using a phase sensitive coherent detection technique applied to recorded infrared (IR) images. We demonstrate that utilization of a periodically modulated laser source for thermal wave excitation and coherent detection applied to each pixel may be used to compute images of thermal wave amplitude and phase at the laser modulation frequency. In comparison to recorded IR images, the narrow-band detection technique significantly improves the quality of thermal wave amplitude images of subsurface chromophores in biological materials. Additionally, the technique provides phase information, which may be used to estimate chromophore depth in tissue. Application of the technique is demonstrated using tissue phantoms and in vivo biological models. We present a theoretical analysis and computer simulations that demonstrate the effect of tissue optical and thermal properties on thermal wave amplitude and phase. In comparison to the pulsed photothermal technique, coherent thermal wave imaging of subsurface chromophores in tissue for diagnostic applications allows reduction of peak incident laser fluence by as much as four orders of magnitude and is safer and more amenable to in vivo imaging.  相似文献   

19.
Cryptosporidiosis caused by Cryptosporidium spp. is an important diarrhoeal disease observed in farm animals and humans, especially in young or immunocompromised individuals. A novel cell culture assay for testing extracts and pure compounds against Cryptosporidium parvum in 96-well microplate format was established and evaluated. It is based on previously described indirect fluorescent antibody techniques and was optimised for higher sample throughput. Rapid assessment of minimal inhibitory concentrations (MICs) was done by checking each well microscopically for the presence or absence of parasite stages. As a novelty, parasite development was quantified by enumeration of clusters of secondary infection (CSI), which typically appeared upon infection with a distinct parasite inoculum after a defined incubation time. Host cell (HCT-8) viability was measured by an integrated non-destructive water-soluble tetrazolium salt assay (WST-1), which facilitated discrimination of antiparasitic activity from possible cytotoxic effects of a test compound against the host cells. Host cell viability was regarded unimpaired when cultures had 75% or more viability when compared to control cultures without test substance. In this study, a maximum density of distinguishable CSI was obtained when cultures were infected with 2.5 × 10(3) oocysts and incubated for 48 h. The applicable inoculum has to be optimised for each batch of oocysts and before each experimental series. Parasite development was inhibited completely by monensin at 134 nM and silymarin at 50 mg/mL. These concentrations were non-toxic to the host cells and comparable to literature data. The percentages of parasite inhibition were determined for monensin and a 50% inhibitory concentration (IC(50)) of 36.6 nM (27.4-45.5) and a 90% inhibitory concentration of 65.9 nM (54.8-90.2) were calculated. The introduced assay is economic because relatively low parasite numbers may be used. If MICs are determined, evaluation is fast, as each well is viewed only briefly under the fluorescence microscope for presence or absence of CSI. Furthermore it is highly critical because only full parasite inhibition is assessed. Counting of CSI is more laborious and time-consuming, but it allows calculation of parasite inhibition rates and parameters like the half maximal inhibitory concentration (IC(50)). This assay shall be used to assess anticryptosporidial activities of various plant waste materials and by-products from the food and the pharmaceutical industries in the course of the EU project SAFEWASTES. Comparison with in vivo models should be performed to further corroborate the results. Automated evaluation by flow cytometry might facilitate higher sample throughput and reduce operator bias.  相似文献   

20.
For quantitative peak velocity determination, a technique was developed that uses Fourier velocity encoding (FVE) for the fast acquisition of images of velocity with no spatial encoding other than slice selection. The technique produces images of velocity versus temporal frequency. In applications where the quantity of interest is the peak velocity and in-plane spatial localization is not required, high SNR images are produced with reduced sensitivity to errors due to slice thickness and motion. The technique was validated using steady and pulsatile flow in a straight tube, and compared to both phase contrast measurements and numerical models using steady flow in a 50% and a 75% cosinusoidal stenosis phantom. Results show that for slices as large as 2 cm and/or undergoing periodic motion, FVE can accurately measure the peak velocity in cases where a distribution of velocities exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号