首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T A Linkhart  M J Keffer 《Endocrinology》1991,128(3):1511-1518
In a previous study we found that PTH stimulated bone resorption and release of insulin-like growth factor-I (IGF-I) and IGF-II from cultured neonatal mouse calvaria. Since IGF-I and IGF-II stimulate osteoblast proliferation and collagen synthesis, these results suggested that increased release of IGFs during resorption could mediate in part coupling of bone formation to bone resorption. In the present study two other osteolytic agents, transforming growth factor-beta (TGF beta) and 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3 were examined for effects on IGF release from neonatal mouse calvaria. Like PTH, TGF beta stimulated resorption and increased release of IGF-I and IGF-II. 1,25-(OH)2D3, however, stimulated resorption and IGF-II release comparable to PTH, but inhibited release of IGF-I. 1,25-(OH)2D3 (0.1-100 nM) inhibited basal release of IGF-I, and 10 nM 1,25-(OH)2D3 inhibited release of IGF-I induced by PTH or TGF beta. The effects of 1,25-(OH)2D3 were specific to this vitamin D metabolite and did not occur with 25-hydroxyvitamin D3 or 24,25-(OH)2D3 at the same concentration. Calcitonin (50 mU/ml) decreased 1,25-(OH)2D3 stimulation of resorption, but did not affect 1,25-(OH)2D3 stimulation of IGF-II release and inhibition of IGF-I release. This evidence that effects of 1,25-(OH)2D3 on release of the IGFs were independent of bone resorption supports the conclusion that 1,25-(OH)2D3 modulated the production and secretion of IGF-I and IGF-II in calvarial cells. The results of this and the previous study suggest that PTH, TGF beta, and 1,25-(OH)2D3 differentially regulate mouse calvarial cell IGF-I and IGF-II production.  相似文献   

3.
Skeletal resistance to 1,25-dihydroxyvitamin D3 in osteopetrotic rats   总被引:1,自引:0,他引:1  
The osteopetrotic (op/op) rat mutation is a lethal mutation in which decreased osteoclast function (bone resorption) coexists with markedly elevated serum levels of 1 ,25-dihydroxyvitamin D3[1,25(OH)2D3]. Increased circulating levels of 1,25(OH)2D3 have been reported in other osteopetrotic animal mutations and in some osteopetrotic children. This study examined the effects of 1,25(OH)2D3 infusions on serum and skeletal parameters in normal and mutant rats of op stock. We also examined vitamin D receptor expression and binding in bone cells from op normal and mutant animals. Four-week-old normal and mutant rats were infused either with propylene glycol (used as controls) or with 12.5-125 ng of 1,25(OH)2D3/d using osmotic minipumps implanted subcutaneously for 1 wk. Sera were analyzed for calcium, phosphorus, and 1,25(OH)2D3 levels. Histomorphometric analyses of proximal tibiae from treated normal (50 ng/d) and op mutant (125 ng/d) rats and their vehicle-infused controls were performed. Normal animals infused with 1,25(OH)2D3 exhibited a dose-dependent increase in serum calcium levels. Histomorphometric analyses of metaphyseal bone within the primary spongiosae region showed that 1,25(OH)2D3 increased osteoclast number with a reduction in osteoblast surface associated with a decrease in growth plate cartilage thickness. However, similar analyses on secondary spongiosae showed a decrease in osteoclast number and surface associated with an anabolic response. Op mutants infused with 1,25(OH)2D3 did not exhibit any change in serum calcium levels or histomorphometric parameters related to growth plate cartilage and metaphyseal bone compared with mutant controls. Vitamin D mRNA and protein levels were increased twoto threefold in op mutants compared to age-matched normal rats. However, binding affinity of 1,25(OH)2D3 to its receptor was similar between op mutant and normal animals. High dose calcitriol therapy, under the conditions and period of treatment used in this study, failed to stimulate bone turnover in op rats, suggesting that they are resistant to the skeletal effects of 1,25(OH)2D3. The failure of osteoclast activation in response to 1,25(OH)2D3 treatment may be associated with osteoblast incompetence in this mutation.  相似文献   

4.
5.
1 alpha,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the active metabolite of the steroid hormone vitamin D, is a potent regulator of macrophage and osteoclast differentiation. The mature osteoclast, unlike the circulating monocyte or the tissue macrophage, expresses high levels of carbonic anhydrase II (CAII). This enzyme generates protons and bicarbonate from water and carbon dioxide and is involved in bone resorption and acid-base regulation. To test whether 1,25(OH)2D3 could induce the differentiation of myelomonocytic precursors toward osteoclasts rather than macrophages, we analyzed its effects on the expression of CAII in bone marrow cultures containing precursors common to both cell types. The expression of CAII was markedly increased by 1,25(OH)2D3 in a dose- and time-dependent manner. In bone marrow, this increase occurred at the mRNA and protein levels and was detectable as early as 24 hr after stimulation. 1,25(OH)2D3 was also found to induce CAII expression in a transformed myelomonocytic avian cell line. These results suggest that 1,25(OH)2D3 regulates the level at which myelomonocytic precursors express CAII, an enzyme that is involved in the function of the mature osteoclast.  相似文献   

6.
OBJECTIVE: Rheumatoid arthritis (RA) is often complicated by generalized osteopenia due to increased bone resorption by osteoclasts. We analysed a number of cellular and humoral factors that influence osteoclast formation from circulating precursors in RA patients. METHODS: Monocytes isolated from RA patients and normal controls were cultured with macrophage colony-stimulating factor (M-CSF) and nuclear factor-kappaB ligand (RANKL), or with RANKL-expressing UMR106 cells and 1,25 dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Osteoclast differentiation was assessed by expression of tartrate-resistant acid phosphatase (TRAP) and vitronectin receptors (VNR) and lacunar resorption. RESULTS: Osteoclasts formed from RA patients exhibited increased resorptive activity but there was no difference in the relative proportion of circulating osteoclast precursors between RA patients and normal controls. Osteoclast precursors in RA patients were not more sensitive to the osteoclastogenic effects of 1,25(OH)(2)D(3), M-CSF or RANKL. Dexamethasone, but not interleukin (IL) 1beta, tumour necrosis factor alpha and IL-6, increased osteoclast formation and lacunar resorption. CONCLUSION: There is an increase in the extent of lacunar resorption carried out by osteoclasts formed from circulating precursors in RA patients. This is not due to an increase in the number of circulating precursors or increased sensitivity to the osteoclastogenic effects of 1,25(OH)(2)D(3), M-CSF, RANKL or inflammatory cytokines. Our findings suggest that increased osteoclast functional activity rather than osteoclast formation is more likely to play a role in the generalized bone loss that occurs in RA, and that corticosteroids stimulate osteoclast formation and resorption.  相似文献   

7.
The osteoclast is the cell that resorbs bone. It is known to derive from hemopoietic precursors, but analysis of lineage and regulation of differentiation has been hampered by lack of a specific marker that enables identification of cells of osteoclastic phenotype. Previously used markers, such as multinuclearity, that are specific for osteoclasts in bone become less specific in culture. Uniquely among bone and bone marrow cells, osteoclasts possess abundant calcitonin (CT) receptors. We therefore tested the correlation between the generation of bone-resorptive function and the formation of CT receptor-positive cells from hemopoietic tissue in vitro. Without 1,25-dihydroxy-vitamin D3 [1,25-(OH)2D3], a hormone that induces osteoclastic differentiation in vitro, bone marrow cultures showed very little bone resorption, and only small numbers of CT receptor-positive cells developed. When 1,25-(OH)2D3 was added to the cultures, CT receptor-positive cells developed within 1 day and reached a peak after 7 days. Bone resorption commenced within 2 days of hormone addition. There was a strong parallelism between the cumulative number of CT receptor-positive cells and the extent of bone resorption. The capacity of cultures to generate bone-resorptive activity and CT receptor-positive cells declined progressively when 1,25-(OH)2D3 was added to hemopoietic tissue after a 7- to 21-day hormone-free incubation period. The number of CT receptor-positive cells in these cultures correlated strongly (r = 0.96) with bone resorption. The behavior of these cultures suggests that 1,25-(OH)2D3 acts to induce terminal differentiation of osteoclast precursors present in the cultures, and that precursor cell numbers decreased with increasing time in vitro. All of the CT receptor-positive cells in control cultures and all of those seen shortly after 1,25-(OH)2D3 addition were mononuclear, despite considerable bone resorption; the majority of CT receptor-positive cells remained mononuclear throughout the incubation period. This suggests that mononuclear cells with characteristics of osteoclasts exist that are able to excavate bone. CT receptor-positive cells slightly preceded the development of bone-resorptive function, implying that CT receptors develop before the acquisition of bone-resorptive capacity by osteoclasts. Peritoneal macrophages, blood mononuclear cells, and cells of the J774 macrophage cell line failed to either resorb bone or express CT receptors, even after incubation with 1,25-(OH)2D3 for 14 days. These results show a strong and specific correlation between the generation of bone-resorptive cells and CT receptor-positive cells, and suggest that CT receptor express  相似文献   

8.
9.
Thiazolidinediones (TZDs) are antidiabetic insulin-sensitizing agents that bind to peroxisome proliferator-activated receptor gamma (PPARgamma) and have potent adipogenic effects on 3T3-L1 preadipocytes. In fully differentiated 3T3-L1 adipocytes, TZDs markedly decreased PPARgamma mRNA levels without reducing the expression of genes that are positively regulated by PPARgamma, such as adipocyte lipid-binding protein 2 (aP2) or lipoprotein lipase-(LPL). PPARgamma mRNA levels were also downregulated by tumor necrosis factor alpha (TNFalpha), an antiadipogenic cytokine. We propose that the downregulation of PPARgamma is not the common denominator of the metabolic effects of TZDs and TNFalpha on mature adipocytes.  相似文献   

10.
Human mesenchymal stem cells (hMSCs) are multipotent cells present in bone marrow, which differentiate into osteoblasts and adipocytes, among other lineages. Oestrogens play a critical role in bone metabolism; its action may affect the adipocyte to osteoblast ratio in the bone marrow. In hMSCs, oestrogens are synthesized from C19 steroids by the enzyme aromatase cytochrome P450. In this study, we assessed whether aromatase enzymatic activity varied through early osteogenic (OS) and adipogenic (AD) differentiation. Also, we studied the effect of leptin and 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) on aromatase cell activity. Finally, we analysed whether conditions that modify oestrogen generation by cells affected hMSCs differentiation. For these purposes, hMSCs derived from post-menopausal women (65-86 years old) were cultured under basal, OS or AD conditions, in the presence or the absence of leptin and 1,25(OH)2D3. Aromatase activity was measured by the tritiated water release assay and by direct measurement of steroids synthesized from 3H-labelled androstenedione or testosterone. Our results showed that different OS and AD patterns of aromatase activity developed during the first period of differentiation (up to 7 days). A massive and sharp surge of aromatase activity at 24 h characterized early OS differentiation, while increased but constant aromatase activity was increased through adipogenesis. Both leptin and vitamin D increased aromatase activity during osteogenesis, but not during adipogenesis; finally, we showed that favourable aromatase substrates concentration restrained MSCs adipogenesis but improved osteogenesis. Thus, it could be inferred that a high and early increase of local oestrogen concentration in hMSCs affects their commitment either restraining AD or facilitating OS differentiation, or both.  相似文献   

11.
In the present study, we investigated the role of the phytoestrogen genistein and 17beta-estradiol in human bone marrow stromal cells, undergoing induced osteogenic or adipogenic differentiation. Profiling of estrogen receptors (ERs)-alpha, -beta1, -beta2, -beta3, -beta4, -beta5, and aromatase mRNAs revealed lineage-dependent expression patterns. During osteogenic differentiation, the osteoblast-determining core binding factor-alpha1 showed a progressive increase, whereas the adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARgamma) was sequentially decreased. This temporal regulation of lineage-determining marker genes was strongly enhanced by genistein during the early osteogenic phase. Moreover, genistein increased alkaline phosphatase mRNA levels and activity, the osteoprotegerin:receptor activator of nuclear factor-kappaB ligand gene expression ratio, and the expression of TGFbeta1. During adipogenic differentiation, down-regulation in the mRNA levels of PPARgamma and CCAAT/enhancer-binding protein-alpha at d 3 and decreased lipoprotein lipase and adipsin mRNA levels at d 21 were observed after genistein treatment. This led to a lower number of adipocytes and a reduction in the size of their lipid droplets. At d 3 of adipogenesis, TGFbeta1 was strongly up-regulated by genistein in an ER-dependent manner. Blocking the TGFbeta1 pathway abolished the effects of genistein on PPARgamma protein levels and led to a reduction in the proliferation rate of precursor cells. Overall, genistein enhanced the commitment and differentiation of bone marrow stromal cells to the osteoblast lineage but did not influence the late osteogenic maturation markers. Adipogenic differentiation and maturation, on the other hand, were reduced by genistein (and 17beta-estradiol) via an ER-dependent mechanism involving autocrine or paracrine TGFbeta1 signaling.  相似文献   

12.
The one or more molecular mechanisms that determine the obligatory sequence of resorption followed by formation during bone remodeling is unclear. RANK ligand (RANK-L) is an essential requirement for osteoclastogenesis, and its activity is neutralized by binding to the soluble decoy receptor, osteoprotegerin (OPG). Because both molecules are produced by osteoblast lineage cells, we studied their developmental regulation in a conditionally immortalized human marrow stromal (hMS[2-15]) cell line. These cells can simulate the complete developmental sequence from undifferentiated precursor(s) to cells with the complete osteoblast phenotype that are capable of forming mineralized nodules. During osteoblast differentiation, RANK-L messenger RNA levels decreased by 5-fold, whereas OPG messenger RNA levels increased by 7-fold, resulting in a 35-fold change in the RANK-L/OPG ratio. OPG protein also increased by 6-fold. Mouse bone marrow cells generated osteoclast-like cells in coculture with undifferentiated hMS(2-15) cells, but did not when cocultured with hMS(2-15) cells in varying stages of differentiation, unless an excess of RANK-L was added. Thus, undifferentiated marrow stromal cells with a high RANK-L/OPG ratio can initiate and support osteoclastogenesis, but after differentiation to the mature osteoblast phenotype, they cannot. We speculate that the developmental regulation of OPG and RANK-L production by stromal/osteoblast cells contributes to the coordinated sequence of osteoclast and osteoblast differentiation during the bone remodeling cycle.  相似文献   

13.
Thiazolidinediones (TZDs) increase peripheral tissue insulin sensitivity in patients with type 2 diabetes mellitus by activating the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma). In bone marrow stromal cell cultures and in vivo, activation of PPARgamma by high doses (20 mg/kg/day) of TZDs has been reported to alter stem cell differentiation by promoting commitment of progenitor cells to the adipocytic lineage while inhibiting osteoblastogenesis. Here, we have examined the in vivo effects of low-dose rosiglitazone (3 mg/kg/day) on bone, administered to mice by gavage for 90 days. Rosiglitazone-treated mice had increased weight when compared with controls, with no significant alterations in serum levels of glucose, calcium or parathyroid hormone (PTH). Bone mineral density (BMD) at the lumbar vertebrae (L1-L4), ilium/sacrum, and total body was diminished by rosiglitazone treatment. Histologically, bone was characterized by decreased trabecular bone volume and increased marrow space with no significant change in bone marrow adipocity. Decreased osteoblast number and activity due to increased apoptotic death of osteoblasts and osteocytes was apparent while osteoclast parameters and serum levels of osteocalcin, alkaline phosphatase activity, and leptin were unaltered by rosiglitazone treatment. Therefore, the imbalance in bone remodeling that follows rosiglitazone administration arises from increased apoptotic death of osteogenic cells and diminished bone formation leading to the observed decrease in trabecular bone volume and BMD. These novel in vivo effects of TZDs on bone are of clinical relevance as patients with type 2 diabetes mellitus and other insulin resistant states treated with these agents may potentially be at increased risk of osteoporosis.  相似文献   

14.
OBJECTIVE: An imbalance between bone formation and bone resorption is thought to underlie the pathogenesis of reduced bone mass in osteoporosis. Bone resorption is carried out by osteoclasts. which are formed from marrow-derived cells that circulate in the monocyte fraction. The aim of this study was to determine the role of osteoclast formation in the pathogenesis of bone loss in osteoporosis. METHODS: The proportion of circulating osteoclast precursors and their relative sensitivity to the osteoclastogenic effects of M-CSF. 1,25(OH)2D3 and RANKL were assessed in primary osteoporosis patients and normal controls. RESULTS: Although there was no difference in the number of circulating osteoclast precursors in osteoporosis patients and normal controls. osteoclasts formed from osteoporosis patients exhibited substantially increased resorptive activity relative to normal controls. Although no increased sensitivity to the osteoclastogenic effects of 1,25(OH)D3 or M-CSF was noted, increased bone resorption was found in osteoporosis peripheral blood mononuclear cell (PBMC) cultures to which these factors were added. CONCLUSION: Our findings suggest that osteoclast functional activity rather than formation is increased in primary involutional osteoporosis and that dexamethasone acts to increase osteoclast formation.  相似文献   

15.
Vitamin D plays an indispensable role in the dual processes of bone formation (mediated by osteoblasts) and bone resorption (mediated by osteoclasts). More recently, researchers have confirmed the existence of a vitamin D endocrine system, which is responsible for describing the "sphere of biological influence" of vitamin D3. In that system, the kidney serves as the endocrine gland that produces 1,25-dihydroxyvitamin D3. This hormonally active form of vitamin D3 generates many, if not all, of the biologic responses attributed to the parent vitamin D3, including its role in bone formation and bone resorption. In addition, 1,25-dihydroxyvitamin D3 is able to generate biologic responses via both genomic and nongenomic pathways. The classic nuclear receptor for 1,25-dihydroxyvitamin D3 is present in more than 30 target tissues. This paper reviews evidence for the critical role of 1,25-dihydroxyvitamin D3 in cell differentiation, particularly of hematopoietic cells, as well as in the generation of the bone resorptive cell--the osteoclast. In the past year, much evidence has been accumulated supporting the claim that 1,25-dihydroxyvitamin D3 tightly regulates differentiation of osteoclast progenitors into osteoclasts. Osteoclast progenitors are believed to be derived from the monocyte-macrophage lineage. However, the generation of new osteoclasts is modulated by osteoblastic stromal cells, which are one of the target cells for the nuclear actions of 1,25-dihydroxyvitamin D3.  相似文献   

16.
1,25 Dihydroxy vitamin D3 (1,25(OH)2D3), prostaglandin (PG) E2 and parathyroid hormone (PTH) induce osteoclast formation in cell cultures. Previously, we have shown that SC-19220, an antagonist of the EP1 subtype of PGE receptors, inhibited tartrate-resistant acid phosphatase (TRAP)-positive cell formation by PGE2 and PTH in adherent cell cultures taken from neonatal rats. Since 1,25(OH)2D3 has been shown to induce osteoclast formation through PGE2 synthesis, in this study we have examined the effect of SC-19220 on osteoclast formation induced by 1,25(OH)2D3 in cell cultures by measuring bone resorption as well as TRAP-positive cell formation. SC-19220 inhibited osteoclast formation by 1,25(OH)2D3 as well as by PGE2 in cell cultures. The addition of SC-19220 to the later half but not to the earlier half of the culture inhibited 1,25(OH)2D3-induced formation. In the culture in which hydroxyurea was added in the later half period, SC-19220 inhibited osteoclast formation by 1, 25(OH)2D3. Under these conditions, 17-phenyl PGE1, an EP1 agonist, induced osteoclast formation. Thus, SC-19220 inhibits certain reactions in the later processes of osteoclast formation induced by 1,25(OH)2D3. In addition, SC-19220 also inhibited osteoclast formation induced by interleukin (IL)-11 and IL-6 as well as by PTH. It is suggested that the SC-19220 inhibiting reactions are shared by all the inducers including 1,25(OH)2D3 and are essential for osteoclast formation.  相似文献   

17.
18.
In order to determine the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on bone matrix appositional rate (Ma AR) and bone mineral appositional rate (Mi AR), three doses (0.06, 0.13 and 0.20 microgram/kg/d) of 1,25(OH)2D3 were continuously infused for seven days in young mice. Histologic parameters of bone formation and resorption were evaluated by morphometric and autoradiographic methods. All doses of 1,25(OH)2D3 increased serum calcium and produced a dose-related increase in the metaphyseal osteoclastic surface and in the number of acid phosphatase-stained osteoclasts. The Mi AR evaluated by double tetracycline labeling was enhanced at all dosage levels. By contrast the Ma AR evaluated by double 3H-proline labeling was decreased at the two highest doses of 1,25(OH)2D3 which also produced growth impairment. We concluded that the continuous administration of 1,25(OH)2D3 in the mouse produces contrasting effects on bone matrix synthesis and calcification, resulting in a dose-related reduction in the amount of osteoid.  相似文献   

19.
Xue Y  Karaplis AC  Hendy GN  Goltzman D  Miao D 《Endocrinology》2006,147(10):4801-4810
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and PTH each modulate calcium and skeletal homeostasis. To identify 1,25(OH)(2)D(3)-mediated skeletal and mineral ion actions independent of PTH, double-knockout mice, which are homozygous for both the 1alpha-hydroxylase and PTH null alleles, were treated with 1,25(OH)(2)D(3), sc, from d 4 to 14 and compared with vehicle-treated animals. Serum calcium rose in 1,25(OH)(2)D(3)-treated double-knockout mice, and messenger RNA and protein levels of the renal calcium transporters TRPV5, calbindin-D(28K), calbindin-D(9K), and Na(+)/Ca(2+) exchanger 1 were up-regulated. Parameters of endochondral bone formation, including long bone length, epiphyseal volume, chondrocyte proliferation and differentiation, and cartilage matrix mineralization, were all increased by 1,25(OH)(2)D(3), Exogenous 1,25(OH)(2)D(3) also increased both trabecular and cortical bone; augmented both osteoblast number and type I collagen deposition in bone matrix; and up-regulated expression levels of the osteoblastic genes alkaline phosphatase, type I collagen, and osteocalcin. Furthermore, in 1,25(OH)(2)D(3)-treated double mutants, osteoclastic bone resorption appeared to decline. The results indicate that administered 1,25(OH)(2)D(3) used intestinal and renal but not skeletal mechanisms to elevate serum calcium and that this sterol can promote endochondral and appositional bone increases independent of endogenous PTH.  相似文献   

20.
Leptin, the ob gene product secreted by adipocytes, controls overall energy balance. We investigated leptin effects on bone metabolism using male leptin-deficient obese (ob/ob) mice, which had lower bone mineral density (BMD) and shorter femurs than lean (?/+) controls. Serum concentrations of calcium, phosphate, tartrate-resistant acid phosphatase (a bone resorption marker) and alkaline phosphatase, and urinary calcium and phosphate excretion were significantly elevated in ob/ob mice, whereas urinary concentrations of deoxypyridinoline did not differed between ob/ob and control mice. Because ob/ob mice develop severe hypogonadism, testosterone was administered to these mice for 10 wk (5 mg/kg, sc, twice weekly); this did not affect femoral BMD. Control and ob/ob mice showed similar vitamin D-receptor densities in bone and kidney; the obese mice had marked increases in serum 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] and in mRNA expression and activities of renal 25-hydroxyvitamin D(3)-1 alpha-hydroxylase (CYP27B1) and -24-hydroxylase (CYP24) compared with control mice. Leptin administration to ob/ob mice (4 mg/kg body weight, ip, every 12 h for 2 d) greatly reduced mRNAs and activities of 1 alpha-hydroxylase and 24-hydroxylase. Elevated concentrations of serum calcium, phosphate, and 1,25-(OH)(2)D(3) were normalized by leptin treatment. Thus, leptin suppresses renal gene overexpression for 1 alpha-hydroxylase and 24-hydroxylase and corrects increased serum concentrations of calcium and phosphate in ob/ob mice. Therefore, low BMD in leptin-deficient mice appears to be related to stimulation of bone resorption by 1,25-(OH)(2)D(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号