首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells can be expanded rapidly in vitro and differentiated into multiple mesodermal cell types. In addition, their differentiation into neuron-like cells expressing markers typical for mature neurons has been reported. We isolated human adipose tissue stromal cells (hATSCs) from human liposuction tissues and induced neural differentiation with azacytidine. Following neural induction, hATSCs changed toward neural morphology and displayed expression of MAP2 and GFAP. hATSCs, which were labeled with LacZ adenovirus, were injected into the lateral ventricle of the rat brain. Transplanted cells migrated to various parts of the brain, and ischemic brain injury by middle cerebral artery occlusion (MCAo) increased their migration to the injured cortex. Some of the transplanted cells expressed MAP2 and GFAP. Transplantation of hATSCs improved functional deficits in ischemic brain injury induced by MCAo. Intracerebral grafting of BDNF-transduced hATSCs significantly improved motor recovery of functional deficits in MCAo rats. These data indicate that transplanted hATSCs survive, migrate, and improve functional recovery after stroke and that genetically engineered hATSCs can express biologically active gene products and, therefore, can function as effective vehicles for therapeutic gene transfer to the brain.  相似文献   

2.
We previously reported that hepatocyte growth factor (HGF) promoted proliferation of neurospheres and neuronal differentiation of neural stem cells (NSCs) derived from mouse embryonic brain. In this study, spheres from mouse embryonic stem (ES) cells were generated by floating culture following co-culture on PA6 stromal cells. In contrast to the behavior of the neurospheres derived from embryonic brain, addition of HGF to the growth medium of the floating cultures decreased the number of spheres derived from ES cells. When spheres were stained using a MAP-2 antibody, more MAP-2-positive cells were observed in spheres cultured with HGF. When HGF was added to the growth and/or differentiation medium, more MAP-2-positive cells were also obtained. These results suggest that HGF promotes neuronal differentiation of NSCs derived from ES cells.  相似文献   

3.
The neurological deficits that are characteristic of Alzheimer's Disease (AD) are ultimately a result of neuronal loss in distinct anatomical regions of the brain. This neuronal loss is thought to be due, in large part to the presence of the neurotoxic beta-amyloid (Abeta) deposits, that are characteristic of the AD brain. Transplantation therapy, in which neural stem cells (NSCs) or neural progenitor cells (NPCs) are introduced into damaged regions of the brain and induced to differentiate into replacement neurons, has been proposed as a possible therapeutic approach to treat AD. However, in the AD brain Abeta plaques, which remain in the area of neuronal degeneration, may affect the viability or differentiation potential of transplanted NSCs. Currently there is contradictory evidence concerning the effect of Abeta on NSCs. To further investigate the effect of Abeta on NSCs, we compared the mitochondrial function, proliferation and cellular differentiation of two populations of hippocampal NSCs (embryonic and adult derived) after Abeta exposure. Our results highlight the heterogeneity between different populations of NSCs even when derived from the same brain region. Our data also demonstrate that while mitochondrial function of NSCs is affected by Abeta, their proliferation and differentiation are not significantly influenced. Considered with previous studies, our results suggest that while NSCs do respond to the presence of Abeta, proliferation and differentiation of certain populations are not affected. Further study of the differences between susceptible vs. resistant populations of NSCs may provide crucial clues for the development of effective therapies to combat AD.  相似文献   

4.
The neurogenic response to injury in the postnatal brain is limited and insufficient for restoration of function. Recent evidence suggests that transplantation of mesenchymal stem cells (MSCs) into the injured brain is associated with improved functional recovery, mediated in part through amplification in the endogenous neurogenic response to injury. In the current study we investigate the interactions between bone marrow-derived MSCs and embryonic neural stem cells (NSCs) plus their differentiated progeny using an in vitro co-culture system. Two populations of MSCs were used, MSCs induced to express neural antigens (nestin+, Tuj-1+, GFAP+) and neural antigen negative MSCs. Following co-culture of induced MSCs with differentiating NSC/progenitor cells a significant increase in Tuj-1+ neurons was detected compared to co-cultures of non-induced MSCs in which an increase in astrocyte (GFAP+) differentiation was observed. The effect was mediated by soluble interactions between the two cell populations and was independent of any effect on cell death and proliferation. Induced and non-induced MSCs also promoted the survival of Tuj-1+ cell progeny in long-term cultures and both promoted axonal growth, an effect also seen in differentiating neuroblastoma cells. Therefore, MSCs provide instructive signals that are able to direct the differentiation of NSCs and promote axonal development in neuronal progeny. The data indicates that the nature of MSC derived signals is dependent not only on their microenvironment but on the developmental status of the MSCs. Pre-manipulation of MSCs prior to transplantation in vivo may be an effective means of enhancing the endogenous neurogenic response to injury.  相似文献   

5.
目的探索从成人脑组织获取的神经干细胞(成人-hNSCs)在体外的增殖能力、分化特性、以及在裸鼠颅内的存活、迁移及分化情况。方法分别留取癫痫患者手术切除的颞叶脑组织和10W左右人类自然流产胎儿纹状体组织,体外分离成单细胞悬液,无血清培养基培养、传代并诱导分化。软琼脂糖集落形成实验检测NSCs的增殖能力。免疫荧光法检测NSCs标志物神经上皮巢蛋白(Nestin)和诱导分化后神经元标志物13.tubllin以及神经胶质细胞标志物胶质纤维酸性蛋白(GFAP)的表达;利用动物立体定向仪将体外悬浮培养2W的人NSCs移植入裸鼠颅内,检测NSCs在裸鼠脑组织局部的存活、迁移和分化状况。结果成人-hNSCs集落形成能力较胚胎脑组织来源的NSCs(胎儿-hNSCs)明显减弱,免疫荧光染色显示分离的NSCs呈Nestin阳性,诱导分化后可见(β-tubllin和GFAP阳性的神经细胞,其中80%的细胞为GFAP阳性的星形胶质细胞,20%左右为β-tubllin阳性细胞。分别将成人-hNSCs和胎儿.hNSCs移植入裸鼠纹状体,1个月后,冰冻切片,荧光显微镜观察到来源于成人脑组织来源的NSCs仅见沿针道的近距离迁移,免疫荧光染色在成人-hNSCs移植裸鼠颅内只检测到GFAP阳性的星形胶质细胞。而胎儿-hNSCs可穿过针道,沿大脑廉向脑实质广泛迁移,免疫荧光染色能检测到GFAP和少量(β-tubllin阳性细胞。结论成人脑组织和胚胎纹状体组织中均能成功分离到神经前体细胞,而与胎儿.hNSCs相比,成人-hNSCs体外增殖能力、多向分化潜能和体内迁移能力都明显减弱。  相似文献   

6.
Lou Sj  Gu P  Chen F  He C  Wang Mw  Lu Cl 《Brain research》2003,968(1):114-121
There are numerous parallels between the heamatolymphopoietic and nervous systems in terms of the mechanisms regulating their development. We proposed that neural stem cells (NSCs) may respond to the microenvironmental signals provided by bone marrow stromal cells (BMSCs) which regulate the differentiation and maturation of hematolymphopoietic stem cells. First, we isolated and proliferated BMSCs from the femur and tibia, and NSCs from the midbrain of Sprague-Dawley (SD) rats, and then investigated the effects of BMSCs on the differentiation of NSCs into neurons, astrocytes and oligodendrocytes by directly plating neurospheres on BMSC monolayers in serum-free conditions. The results confirmed that BMSCs induced NSCs to differentiate selectively into neurons. The percentage of neurons significantly increased in 7 days in vitro co-cultures of NSCs and BMSCs as compared to NSCs cultures alone. When the duration of the cultures was extended to 12 days in vitro, BMSCs enhanced the survival of neurons derived from these NSCs; our investigation then focused on the underlying mechanism for this effect of BMSCs. NSCs were cultured with BMSC conditioned-medium and co-cultured with membrane fragments of live BMSCs or paraformaldehyde fixed BMSCs, the inducing activity of BMSCs was solely detectable in BMSC conditioned-medium, indicating that soluble factors secreted by BMSCs were responsible for its effect on the neuronal differentiation of NSCs. Therefore, BMSCs may provide a powerful tool for therapeutic neurological applications.  相似文献   

7.
The transplantation of cells capable of neuronal differentiation has great potential for the treatment of neurological conditions. I examined whether human adipose tissue stromal cells (hATSCs) can be induced to undergo neuronal differentiation. I isolated hATSCs from human liposuction tissue and induced neuronal differentiation using azacytidine. After neuronal induction, the hATSCs adopted a more neuronal morphology. These hATSCs were injected into the lateral ventricle of the rat brain, after which they migrated to various parts of the brain. After ischemic brain injury induced by middle cerebral artery occlusion (MCAO), a large number of cells migrated to the injured cortex. Intracerebral grafting of hATSCs significantly enhanced the recovery of functional motor deficits in MCAO rats. These data indicate that transplanted hATSCs survive, migrate and differentiate in the ischemic microenvironment and improve neurological recovery after stroke in rats.  相似文献   

8.
目的 观察体外血性脑脊液培养对神经干细胞增殖和分化的影响,以期为临床治疗这类患者提供依据.方法 提取终止妊娠的16周人胚胎脑细胞,冻存于液氮中.组织复苏后,在DMEM/F12培养基(含EGF、bFGF、B27和N2)中培养14 d可获得形态完好的神经球(神经干细胞).从颅脑外伤患者和非外伤患者分别留取血性脑脊液和正常脑脊液.将制备的胚胎神经干细胞分为两组,分别用血性脑脊液和正常脑脊液培养.动态观察神经干细胞在两组脑脊液中生长、增殖和分化的情况.用免疫细胞化学技术对两组脑脊液中神经干细胞的分化进行标记和鉴定.结果 神经干细胞在两组脑脊液中均能存活、增殖和分化.但神经干细胞在血性脑脊液中分化速度较快,分化比例也较高.在血性脑脊液中,神经干细胞更倾向于向胶质细胞分化;而在正常脑脊液中,神经干细胞更倾向于向神经元分化.结论 血性脑脊液可能会影响神经干细胞的分化速度和分化方向.这一结果对采用神经干细胞治疗颅脑外伤和蛛网膜下腔出血等疾病有一定提示作用.  相似文献   

9.
In response to stroke, subpopulations of cortical reactive astrocytes proliferate and express proteins commonly associated with neural stem/progenitor cells such as glial fibrillary acidic protein (GFAP) and Nestin. To examine the stem cell-related properties of cortical reactive astrocytes after injury, we generated GFAP-CreER(TM);tdRFP mice to permanently label reactive astrocytes. We isolated cells from the cortical peri-infarct area 3 d after stroke, and cultured them in neural stem cell medium containing epidermal growth factor and basic fibroblast growth factor. We observed tdRFP-positive neural spheres in culture, suggestive of tdRFP-positive reactive astrocyte-derived neural stem/progenitor cells (Rad-NSCs). Cultured Rad-NSCs self-renewed and differentiated into neurons, astrocytes, and oligodendrocytes. Pharmacological inhibition and conditional knock-out mouse studies showed that Presenilin 1 and Notch 1 controlled neural sphere formation by Rad-NSCs after stroke. To examine the self-renewal and differentiation potential of Rad-NSCs in vivo, Rad-NSCs were transplanted into embryonic, neonatal, and adult mouse brains. Transplanted Rad-NSCs were observed to persist in the subventricular zone and secondary Rad-NSCs were isolated from the host brain 28 d after transplantation. In contrast with neurogenic postnatal day 4 NSCs and adult NSCs from the subventricular zone, transplanted Rad-NSCs differentiated into astrocytes and oligodendrocytes, but not neurons, demonstrating that Rad-NSCs had restricted differentiation in vivo. Our results indicate that Rad-NSCs are unlikely to be suitable for neuronal replacement in the absence of genetic or epigenetic modification.  相似文献   

10.
目的 观察嗅鞘细胞(OECs)对神经干细胞(NSCs)增殖、分化的影响.方法 新生大鼠脑OECs和NSCs原代培养,采用免疫荧光及免疫细胞化学方法鉴定相关细胞.取原代OECs分为2组,实验组去除培养孔的间隔,使OECs和NSCs共用一培养液体系;对照组不破坏培养孔的间隔,单独培养NSCs,其余同实验组.观察2组细胞增殖、分化情况.结果 原代培养的OECs表达神经生长因子受体(P75NGFR);原代培养的神经球表达巢蛋白(nestin),神经球分化的细胞表达神经丝200(NF200)和胶质纤维酸性蛋白(GFAP).增殖实验中,实验组NSCs数量较对照组明显增多,差异有统计学意义(P<0.05).诱导分化实验中,实验组4d、7d时NF200阳性细胞率较对照组明显升高,差异有统计学意义(P<0.05),说明2种细胞共液培养时,OECs提高了NSCs向NF200阳性细胞分化率.结论 OECs可促进NSCs增殖,并提高了NSCs向神经元分化的效率.  相似文献   

11.
胚胎大鼠嗅神经干细胞的培养及分化特性   总被引:3,自引:3,他引:0  
目的建立胚胎大鼠嗅神经干细胞(NSCs)体外培养方法,研究其增殖和分化特性.方法采用添加丝裂原的无血清培养基分离、培养胚胎14 d(E14)大鼠嗅球NSCs,应用免疫细胞化学方法鉴定培养的NSCs及自然分化为特异性神经细胞的类型,测定NSCs的生长曲线.结果从E14大鼠嗅球分离、培养出表达nestin,并能分化为神经元、星形胶质细胞和少突胶质细胞的NSCs.嗅NSCs的增殖依赖表皮生长因子(EGF)和碱性成纤维细胞生长因子(bFGF),其中EGF的促分裂增殖作用明显优于bFGF.结论从E14大鼠嗅球培养出具有自我增殖和多向分化潜能的NSCs.  相似文献   

12.
目的研究脂肪干细胞(ADSCs)体外诱导神经干细胞(NSCs)分化的作用。方法从新生BALB/c小鼠中分别分离获得ADSCs及NSCs,进行体外培养和传代。构建ADSCs与NSCs共培养体系,以单纯NSCs组为对照,进行ADSCs诱导分化研究。共培养4、8、12d后行神经元特异性神经丝200免疫组化鉴定,统计NSCs分化为神经元的百分率。结果共培养后8—12d,可见大量成熟神经元,大多为多极神经元,少部分为双极神经元或假单极神经元,带有较长的轴突。共培养组NSCs分化为神经元的百分率大约为21%,而单纯NSCs培养组约为4%。共培养组神经元的转化率与单纯NSCs培养组神经元的转化率之间有显著性差异(P〈0.05)。结论ADSCs在体外能够促进NSCs向神经元转化。  相似文献   

13.
神经干细胞移植治疗大鼠脑缺血再灌注损伤实验研究   总被引:6,自引:3,他引:3  
目的探讨大鼠胚胎神经干细胞移植治疗局灶性脑缺血再灌注损伤的可行性。方法孕龄8~10d的大鼠神经干细胞在体外扩增后,用免疫组织化学方法分别检测神经干细胞及其分化后代的特异性标志蛋白nestin、胶质纤维酸性蛋白(GFAP)和神经元特异性烯醇化酶(NSE)的表达。分别于缺血后不同时间窗将神经干细胞移植到局灶性脑缺血大鼠模型的缺血半暗带和梗塞中心,移植4w后比较不同移植部位神经干细胞存活、增殖和迁移的差异。结果从胎鼠中成功培养出悬浮生长的可表达nestin的神经球,其在含血清条件下可分化为表达GFAP的胶质细胞和表达NSE的神经元。神经干细胞移植4w后可见所有移植动物的细胞都存活,梗塞中心移植的细胞存活、增殖水平明显低于半暗带移植的细胞。结论大鼠胚胎神经干细胞移植到局灶性脑缺血再灌注损伤大鼠梗塞中心和半暗带均可长期存活,其增殖能力与移植部位密切相关。  相似文献   

14.
This study describes a new accessible source of neuronal stem cells that can be used in Parkinson's disease cell transplant. The human olfactory bulb contains neural stem cells (NSCs) that are responsible for neurogenesis in the brain and the replacement of damaged cellular components throughout life. NSCs are capable of differentiating into neuronal and glial cells. We isolated NSCs from the olfactory bulb of brain‐death donors and differentiated them into dopaminergic neurons. The olfactory bulb tissues obtained were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F12, B27 supplemented with basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor. The NSCs and proliferation markers were assessed. The multipotentiality of olfactory bulb NSCs was demonstrated by their capacity to differentiate into neurons, oligodendrocytes and astrocytes. To generate dopaminergic neurons, olfactory bulb NSCs were differentiated in neurobasal medium, supplemented with B27, and treated with sonic hedgehog, fibroblast growth factor 8 and glial cell‐derived neurotrophic factor from the 7th to the 21st day, followed by detection of dopaminergic neuronal markers including tyrosine hydroxylase and aromatic l ‐amino acid decarboxylase. The cells were expanded, established in continuous cell lines and differentiated into the two classical neuronal phenotypes. The percentage of co‐positive cells (microtubule‐associated protein 2 and tyrosine hydroxylase; aromatic l‐amino acid decarboxylase and tyrosine hydroxylase) in the treated cells was significantly higher than in the untreated cells. These results illustrate the existence of multipotent NSCs in the adult human olfactory bulb that are capable of differentiating toward putative dopaminergic neurons in the presence of trophic factors. Taken together, our data encourage further investigations of the possible use of olfactory bulb NSCs as a promising cell‐based therapeutic strategy for Parkinson's disease.  相似文献   

15.
The purpose was to study the effect of human cerebrospinal fluid (CSF) on differentiation of rat neural stem cells (NSCs), and thus explore the feasibility of transplanting stem cells via lumbar puncture clinically. Rat NSCs derived from fetal brain were divided into two groups, and cultured in DMEM/F12 supplemented with 10 % FBS and human CSF, respectively. Cellular growth was observed with an inverted microscope, and immunostaining was used to analyze differentiation of NSCs in both groups. Cells of fetal brain showed shapes of spindle or star with minor sprouts at fifth day post-culture, and stained with nestin. NSCs in the control group differentiated into neurons, with positive staining to NSE, when cultured further in DMEM/F12 supplemented with 10 % FBS. While NSCs in the experiment group, cultured in CSF, differentiated into astroglia on eighth day, with positive immunostaining to GFAP. The new neurons dissolved rapidly when they were cultured in CSF. Human CSF cannot promote NSCs to differentiation toward neuron, nor support newborn neurons survival. It seems an inappropriate approach to transplant stem cells through CSF.  相似文献   

16.
维甲酸对神经干细胞的增殖和分化效应   总被引:4,自引:1,他引:3  
目的 探讨不同浓度维甲酸对神经干细胞的增殖和分化的效应。方法 分离、培养胎龄14d的Wistar孕鼠的神经干细胞,通过与碱性成纤维细胞生长因子(bFGF对比观察维甲酸的促增殖效应;运用神经微丝200(NF-200)和神经胶质酸性纤维蛋白(GFAP)对维甲酸诱导分化的细胞进行组化染色,通过4’,6-二脒基-2-苯基吲哚(DAPI)染胞核,计数各种分化细胞的比例,并对分化的神经元进行胆碱能表型鉴定。结果 维甲酸的增殖效应明显弱于bFGF,但其具有明显的促神经元生成的分化效应,并表达递质,在分化第24天,500nmol/L的浓度使分化的神经元占分化的总细胞数的90.80%。结论 维甲酸具有显著的促神经干细胞分化成神经元的效应。  相似文献   

17.
食蟹猴骨髓源性神经干细胞自体脑内移植的研究   总被引:2,自引:1,他引:2  
目的探讨食蟹猴自体骨髓基质细胞诱导分化成神经干细胞后移植到脑内的生长情况.方法对6只食蟹猴进行骨髓基质干细胞体外培养、诱导分化成神经干细胞,经BrdU标记后进行自体脑移植.动物分为即时移植组和延迟移植组,采用立体定向多点注射的方法将神经干细胞悬液移植到猴皮层创伤灶.结果HE染色显示即时移植和延迟移植的创伤区细胞数量都明显多于假移植治疗对照;免疫组织化学染色显示两组动物在干细胞移植后1~6个月脑皮层创伤灶内均有BrdU阳性表达细胞,移植后半年的动物在移植区邻近的脑白质内也可观察到有BrdU阳性表达的细胞,而创伤对照动物、假移植治疗动物和正常脑组织中则未见BrdU阳性表达. 结论BMSCs体外培养得到的神经干细胞经过自体移植能在脑皮层内存活,并且能增殖、分化和迁移,可成为神经干细胞的替代细胞或来源细胞;干细胞移植到陈旧性的脑皮层损伤灶也具有成活、增殖和迁移能力.  相似文献   

18.
Summary Recent clinical neuroimaging studies have suggested that morphological brain changes occur and progress in the course of schizophrenia. Although the neurogenetic and neurotrophic effects of antipsychotics are considered to contribute to the prevention of reduction in brain volume, the cellular molecular mechanisms of action of antipsychotics have not yet been elucidated. We examined the effects of antipsychotics on the endoplasmic reticulum (ER) stress-induced damages of neurons and neural stem cells (NSCs) using cultured cells. In the neuronal cultures, the atypical antipsychotic olanzapine protected neurons from thapsigargin (1 μM)-induced injury. It was observed that a low concentration of thapsigargin (10 nM) that did not affect the neuronal survival could reduce neuronal differentiation of cultured NSCs, suggesting a role of ER stress in the differentiation function of NSCs. Treatment with olanzapine increased the neuronal differentiation suppressed by the exposure to thapsigargin (10 nM). The thapsigargin-induced ER chaperones, GRP78, which indicate the ER stress condition of the cell, were decreased by the treatment with the atypical antipsychotics olanzapine and quetiapine but not by the typical antipsychotic haloperidol. These results indicate that the amelioration of ER-stress might be involved in the cellular mechanisms of atypical antipsychotics to produce neuroprotective and neurogenetic actions in neurons and NSCs, suggesting potential roles of these drugs for treatment of schizophrenia.  相似文献   

19.
目的将体外标记的骨髓基质源神经干细胞经单细胞悬液微移植后观察其在兔纹状体的存活、迁移、分化和整合情况,为细胞移植治疗疾病奠定基础。方法分离兔骨髓基质细胞,利用神经干细胞培养基、白血病抑止因子和碱性成纤维母细胞生长因子进行细胞扩增并诱导成骨髓基质源神经干细胞,再经菲立磁和活细胞荧光染料PKH67标记后.采用微移植的方法,通过脑立体定位仪,用微玻璃针将干细胞分别植入兔脑纹状体内。存活1、4、8周后处死动物,组织切片,利用光镜和电镜观察标记细胞在脑内的形态学情况。结果菲立磁标记的兔骨髓基质源神经干细胞经微移植后可在兔脑内纹状体区域存活,移植的干细胞可向周围的脑实质内迁移和整合,迁移细胞沿特定的纹状体结构分布。少量菲立磁标记的干细胞可以分化成神经元。结论骨髓基质源神经干细胞移植后.可在脑实质内存活、迁移、分化和整合,这种细胞可能成为中枢神经系统自体移植的细胞来源。  相似文献   

20.
The implementation of cell replacement therapies for Huntington's disease using multipotent neural stem cells (NSCs) requires the specific differentiation into gamma-aminobutyric acid (GABA) neuronal subtype before transplantation. Here we present an efficient culture procedure that induces stable GABAergic neurons from the immortalized striatal neural stem cell line ST14A. This process requires sequential retinoic acid treatment and KCl depolarization. Initial addition of 10 microM retinoic acid increased cell survival and promoted neuronal differentiation. Subsequent stimulation with 40 mM KCl induced specific differentiation into GABAergic neurons, yielding 74% of total cultured cells. KCl-evoked Ca(2+) influx reduced cell proliferation and nestin expression, and induced neurite outgrowth and GABAergic markers as well as GABA contents, release, and uptake. Characterization of the integration, survival, and phenotype of these predifferentiated GABAergic neurons following transplantation into the adult brain in a model of Huntington's disease revealed long-term survival in quinolinate-lesioned striata. Under these conditions, cells maintained their GABAergic phenotype and elaborated neurite processes with synaptic contacts with endogenous neurons. In conclusion, we have generated a homogeneous population of functional GABAergic neurons from a neural stem cell line, which survive and maintain their acquired fate in vivo. These data may lend support to the possibility of cell replacement therapies for Huntington's disease using neural stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号