首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Pancreatic acini secrete Na+, Cland H2O in response to secretagogues such as acetylcholine. Clchannels in the luminal membrane are a prerequisite for this secretion. The properties of the corresponding conductance have previously been examined using whole-cell recordings. The present study attempts to examine the properties of the single channels in cell-attached and cell-free excised patches from the luminal membrane. To this end the pipettes were filled with an N-methyl-D-glucamine (NMDG+) chloride/gluconate solution. The voltage-clamp range was chosen to be pipette positive (cell negative, –60 to –130 mV) in order to increase the driving force for outward Clcurrents. Under resting conditions cell attached luminal patches had very few single-channel currents (12 out of 45 experiments). Their incidence was sharply increased by carbachol (CCH, 1 μmol/l) in 41 out of 45 experiments. The single-channel conductance of these channels was 1.97 ± 0.05 pS. The properties of these channels in excised patches were examined further: their single-channel conductance was 2.2 ± 0.07 pS (n = 59) and their conductance selectivity was I > Br > Cl >> gluconate. None of the typical Clchannel blockers (DIDS, NPPB, glibenclamide 100 μmol/l) blocked these channels. It is concluded that the luminal membrane of the rat pancreatic acinus possesses Clchannels with very low conductance which are activated by carbachol. Received: 31 January 1997 / Received after revision: 26 February 1997 / Accepted: 5 March 1997  相似文献   

2.
Recently, it has been shown that intermediate conductance outwardly rectifying chloride channels (ICOR) are blocked by cytosolic inhibitor (C. I.) found in the cytosol of human placenta and epithelial cells. C. I. also reduced the baseline current in excised membrane patches of HT29 cells. In the present study, this effect of C. I. was characterized further. Heat treated human placental cytosol was extracted in organic solvents and dissolved in different electrolyte solutions. It is shown that the reduction of baseline conductance (g o) is caused by inhibition of small non-resolvable channels, which are impermeable to Na+ and SO4 2–, but permeable to Cl. The regulation of these small Cl-conducting channels (g o) and of ICOR was examined further. First, no activating effects of protein kinase A (PKA) on the open probability (P o) of the ICOR or on the go) were observed. The Po of the ICOR was reduced by 22% in a Ca2+-free solution. g o was insensitive to changes in the Ca2+ activity. The effects of C. I. from a cystic fibrosis (CF) placenta and the CF pancreatic duct cell line CFPAC-1 were compared with the effects of corresponding control cytosols, and no significant differences between CF and control cytosols were found. We conclude that the excised patches of HT29 cells contain ICOR and small non-resolvable Cl-conducting channels which are similarly inhibited by C. I. Apart from a weak effect of Ca2+ on the ICOR, g o and the ICOR do not seem to be directly controlled by Ca2+ or PKA. C. I. of normal and CF epithelia have a similar inhibitory potency on Cl channels.  相似文献   

3.
Basolateral membranes of microdissected collagenase-treated fragments of renal tubules from the mouse were examined using the cell-attached and the cell-free variants of the patch-clamp technique. With a K+-rich solution in the pipette, a highly active, inwardly rectifying K+ channel was observed on intact cells of the cortical collecting tubule (CCT). The mean inward and outward conductances were 38.5±3.1 pS and 17.3±1.8 pS, respectively (n=4). In contrast, cell-attached patches were usually inactive when a Na+-rich solution filled the patch pipette. However, another type of channel with a conductance of 20–30 pS exhibited a sparse activity in 4/20 CCT. In excised, inside-out patches, the most frequent channel in CCT had an ohmic unit conductance of 27.1±1.2 pS (n=17), excluded anions (P Cl /P Na=0.09), discriminated little between NH4 +, K+ and Na+ (P NH4 /P Na=1.5;P K /P Na=0.9), and was much less permeable to Ca2+ and Ba2+ than to Na+ (P Ca /P Na=0.09;P Ba /P Na≈0). The cation channel was moderately voltagedependent, showing a decreased open probability (P o) at negative voltages. It was activated by internal calcium (threshold: 1 μmol/l–0.1 mmol/l calcium), and inhibited by the adenine nucleotides ATP, ADP and AMP with half-maximal inhibition ofP o at 1.2 umol/l AMP. As in other cell models, 3′,5′-dichlorodiphenylamine-2-carboxylic acid blocked channel activity when added to the internal surface of the membrane patch. Extending our study to other parts of the renal tubule, we found that the basolateral membranes of the proximal (pars recta), distal convoluted, connecting and outer medullary collecting tubules, the thin descending limb and the medullary thick ascending limb all contained a similar Ca- and ATP-sensitive cation channel. The calcium sensitivity varied from one part to another.  相似文献   

4.
Two types of K+ channels have been identified in patches of plasma membrane of metathoracic extensor tibiae muscle fibres of adult locust, Schistocerca gregaria. One channel had a maximum conductance of 170 pS, fast open-closed kinetics, and a linear current/ voltage relationship. In inside-out patches it was activated by ‘‘internally applied’’ Ca2+, but at unexpectedly low levels (between 10−10 and 10−9M). The other channel had a maximum conductance of 35 pS, slower open-closed kinetics, and was not activated by Ca2+. In cell-attached patches, its channel conductance measured in symmetrical salines was about three times greater for hyperpolarisations than for depolarisations. This inward rectification was proved to be due to block by intracellular Mg2+. For both channels, open probability (P o) and mean open time increased during depolarisations and decreased during hyperpolarisations, resulting in outward rectifications in terms of net current (I n , product of the single-channel current and P o). For both channels, the K+ conductance was 10 times greater than that for Na+. Internally applied tetraethylammonium or tetramethylammonium ions blocked both channels. Received: 12 June 1995/Received after revision and accepted: 30 January 1996  相似文献   

5.
 It has previously been shown in studies of a renal epithelial cell line that nonselective cation (NSC) channels are activated by exposure to hypertonic solution. We have also found such channels in excised patches of colonic crypt cells. They require high Ca2+ activities on the cytosolic side and a low ATP concentration for their activation and have not been recorded from cell-attached patches of colonic crypts. We examine here whether this type of channel is activated by hypertonic cell shrinkage. Bath osmolality was increased by addition of 25, 50 or 100 mmol/l mannitol. Cell-attached and whole-cell patch recordings were obtained from rat base and mid-crypt cells. In whole-cell recordings we found that addition of 50 or 100 mmol/l mannitol depolarized these cells significantly from –78±2.0 to –66±3.8 mV (n=22) and from –78±1.3 to –56±2.6 mV (n=61), respectively, and reduced the whole-cell conductance from 20±8.0 to 14±6.6 nS (n=7) and from 20±3.0 to 9.8±1.6 nS (n=19), respectively. In cell-attached patches K+ channels with a single-channel conductance of ≈16 pS were found in most recordings. The activity of these channels (N×P o, N=number, P o=open channel probability) was reduced from 2.08±0.37 to 0.98±0.23 (n=15) by the addition of 50 mmol/l mannitol and from 1.75±0.26 to 0.77±0.20 (n=12) by 100 mmol/l mannitol. No NSC channel activity was apparent in any of these recordings. Previously we have shown that the 16-pS K+ channel is controlled by cytosolic Ca2+ ([Ca2+]i). Therefore we measured [Ca2+]i by the fura-2 method and found that hypertonic solution reduced [Ca2+]i significantly (n=16). These data indicate that exposure of rat colonic crypts to hypertonic solutions does not activate NSC channels; [Ca2+]i falls in hypertonic solution leading to a reduction in the value of K+ channel N×Po, a reduced whole-cell conductance and depolarization of mid-crypt cells. These processes probably assist volume regulation inasmuch as they reduce KCl losses from the cell. Received: 21 July 1997 / Received after revision: 24 November 1997 / Accepted: 15 December 1997  相似文献   

6.
 Patch-clamp studies have been performed to elucidate single ion channels in rat hepatocytes. In rat hepatocytes two types of ion channel have been identified: an inwardly rectifying K+ channel with a mean inward conductance of 55 ± 6.5 pS (n = 20) and a mean outward conductance of 25 ± 3.2 pS (n = 20) in the inside-out configuration with 145 mmol/l KCl on either side of the patch as well as an outwardly rectifying Cl channel with a mean outward conductance of 30 ± 4.5 pS (n = 8) and a mean inward conductance of 10 ± 2.3 pS (n = 6) in the inside-out configuration with symmetrical 145 mmol/l KCl. The open probability of these channels is virtually insensitive to Ca2+ activity on the intracellular side. Accordingly, the Ca2+ ionophore ionomycin had no effect on cell membrane potential. Dibutyryl-cAMP (db-cAMP) hyperpolarizes the cell membrane and increases the activity of the 55-pS inwardly rectifying K+ channel by reducing the duration of closure between bursts. Forskolin similarly hyperpolarizes the cell membrane. The inwardly rectifying K+ channel is inhibited by progesterone, while the outwardly rectifying Cl channel is insensitive to progesterone. Received: 21 May 1997 / Received after revision: 7 August 1997 / Accepted: 19 August 1997  相似文献   

7.
We have shown previously that secretagogues acting via the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP) activate, besides their marked effect on the luminal Cl conductance, a K+ conductance in the basolateral membrane of colonic crypt cells. This conductance is blocked by the chromanol 293B. This K+ conductance is examined here in more detail in cell-attached (c.a.) and cell-excised (c.e.) patch- clamp studies. Addition of forskolin (5 μmol/l) to the bath led to the activation of very small-conductance (probably < 3 pS) K+ channels in c.a. patches (n = 54). These channels were reversibly inhibited by the addition of 0.1 mmol/l of 293B to the bath (n = 21). Noise analysis revealed that these channels had fast kinetics and produced a Lorentzian noise component with a corner frequency ( f c) of 308 ± 10 Hz (n = 30). The current/voltage curves of this noise indicated that the underlying ion channels were K+ selective. 293B reduced the power density of the noise (S o) to 46 ± 8.7% of its control value and shifted f c from 291 ± 26 to 468 ± 54 Hz (n = 8). In c.e. patches from cells previously stimulated by forskolin, the same type of current persisted in 3 out of 18 experiments when the bath solution was a cytosolic-type solution without adenosine 5′-triphosphate (ATP) (CYT). In 15 experiments the addition of ATP (1 mmol/l) to CYT solution was necessary to induce or augment channel activity. In six experiments excision was performed into CYT + ATP solution and channel activity persisted. 293B exerted a reversible inhibitory effect. The channel activity was reduced by 5 mmol/l Ba2+ and was completely absent when K+ in the bath was replaced by Na+. These data suggest that forskolin activates a K+ channel of very small conductance which can be inhibited directly and reversibly by 293B. Received: 1 October 1995/Received after revision: 28 December 1995/Accepted: 28 December 1995  相似文献   

8.
 Small (SKCa) Ca2+-activated K+ channels were identified in membrane patches excised from cultured CA1-CA3 pyramidal neurones of the neonatal rat hippocampus. When recorded in low-K+ extracellular solution ([K+]o=2.5 mM), SKCa channels had a low conductance (@3 pS at 0 mV), were activated by ≥175 nM Ca2+ (P o=0.54 at 500 nM Ca2+) and there were two open-time components (2.1 and @70 ms) to their activity. These properties of single SKCa channels are similar to those of slow after-hyperpolarization channels (sAHP) previously inferred from fluctuation analysis of the sAHP current. It is concluded that the SKCa channel reported here may be the channel that generates the sAHP in hippocampal pyramidal neurones. Received: 9 July 1998 / Received after revision: 5 October 1998 / Accepted: 7 October 1998  相似文献   

9.
The present study examines the properties of Clchannels in cultured respiratory cells of cystic fibrosis (CF) patients and normal (N) individuals. In excised membrane patches the conductances for CF and N Cl channels were larger at positive as compared to negative clamp voltages (V c): 74±2.6 (V c > 0) and 47±2.0 pS (V c < 0) for CF (n= 57) and 69±3.6 (V c > 0) and 45±2.3 pS (V c < 0) for N (n=35). The open probability (P o) of the channel increased markedly with depolarization. Both the voltage dependence of the conductance and of P o contribute to the outward rectification of the channel. The time histogram analysis reveals two open and two closed time constants. The selectivity of the channel was Cl=Br =I > NO 3 gluconate. The channel was inhibited reversibly by 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) at 10–7 mol/l to 10–5 mol/l. While Cl channels were present in cell attached patches of N cells, they were absent in those of CF cells. The mean conductance for cell attached (N) Cl channels was 76±3.2 pS for positive clamp voltages (V c) and 46±3.9 pS for negative V c (n=8). When the membrane patches were excised from CF cells Cl currents appeared spontaneously (n=19). The immediate appearance (within 1 s) of Cl channels after excision was observed at positive (n=6) as well as at negative clamp voltage (n=13). Excision activation of CF Cl channels was observed at low (< 10–9 mol/l) or high (10–3 mol/l) calcium activities on the cytosolic side of the excised patch. Variation of the Ca+ activity (< 10–9–10–3 mol/l) or pH (6.5–8.5) on the cytosolic side exerted no effects on these Cl channels. These results suggest that Cl channels are present in the apical membrane of CF and N respiratory cells but they seem to be inhibited in intact CF cells. Excision of the patch and hence removal of the cytosolic inhibitor leads to an activation of Cl channels. The Cl channels in excised patches of N and CF cells have identical properties.  相似文献   

10.
The apical membranes of cultured human nasal epithelial cells from adults and fetuses were investigated with the patch-clamp technique. Amiloride-insensitive, calcium- and voltage-dependent, non-selective cation channels were found in 4% of the cell-attached, and 18% of the inside-out and outside-out patches (n=412). Multiple functional channels were present in more than 90% of these patches, with a mean of 3.9 channels per patch (n=55). The current-voltage relationship can be described by the Goldman equations and the single channel conductance was 20.1±0.3 pS (n=29) in adult and 20.7±0.4 pS (n=44) in fetal cells in symmetrical 150mM NaCl solutions. The channels were highly selective for cations: PNa/PCl was 30 in adult and 45 in fetal experiments. They were equally permeable for K+ and Na+, somewhat less for Cs+, and impermeable for choline+ and tetraethylammonium+. The open probability was voltage dependent: it increased approximately 2-fold with 30mV depolarization in the potential range from −60mV to +60mV. The channels were activated by Ca2+ concentrations of about 10−4M at the cytoplasmic side, but were insensitive to extracellular Ca2+ and amiloride (10−4M). The non-selective cation channels found in apical membranes of cultured fetal nasal epithelial cells were not different from the adult ones.  相似文献   

11.
 We have previously shown that a new type of K+ channel, present in the basolateral membrane of the colonic crypt base (blm), is necessary for cAMP-activated Cl- secretion. Under basal conditions, and when stimulated by carbachol (CCH) alone, this channel is absent. In the present patch clamp-study we examined the ion channels present in the blm under cell-attached and in cell-excised conditions. In cell-attached recordings with NaCl-type solution in the pipette we measured activity of a K+ channel of 16 ± 0.3 pS (n = 168). The activity of this channel was sharply increased by CCH (0.1 mmol/l, n = 26). Reduction of extracellular Ca2+ to 0.1 mmol/l (n = 34) led to a reversible reduction of activity of this small channel (SKCa). It was also inactivated by forskolin (5 μmol/l, n = 38), whilst the K+ channel noise caused by the very small K+ channel increased. Activity of non-selective cation channels (NScat) was rarely observed immediately prior to the loss of attached basolateral patches and routinely in excised patches. The NScat, with a mean conductance of 49 ± 1.0 pS (n = 96), was Ca2+ activated and required >10 μmol/l Ca2+ (cytosolic side = cs). It was reversibly inhibited by ATP (<1 mmol/l, n = 13) and by 3′,5-dichloro-diphenylamine-2-carboxylate (10–100 μmol/l, n = 5). SKCa was also Ca2+ dependent in excised inside-out basolateral patches. Its activity stayed almost unaltered down to 1 μmol/l (cs) and then fell sharply to almost zero at 0.1 μmol/l Ca2+ (cs, n = 12). SKCa was inhibited by Ba2+ (n = 31) and was charybdotoxin sensitive (1 nmol/l) in outside-out basolateral patches (n = 3). Measurements of the Ca2+ activity ([Ca2+]i) in these cells using fura-2 indicated that forskolin and depolarization, induced by an increase in bath K+ concentration to 30 mmol/l, reduced [Ca2+]i markedly (n = 8–10). Hyperpolarization had the opposite effect. The present data indicate that the blm of these cells contains a small-conductance Ca2+-sensitive K+ channel. This channel is activated promptly by very small increments in [Ca2+]i and is inactivated by a fall in [Ca2+]i induced by forskolin. Received: 15 April 1996 / Received after revision and accepted: 17 June 1996  相似文献   

12.
Impalement studies in isolated perfused cortical collecting ducts (CCD) of rats have shown that the basolateral membrane possesses a K+ conductive pathway. In the present study this pathway was investigated at the single-channel level using the patch-clamp technique. Patch-clamp recordings were obtained from enzymatically isolated CCD segments and freshly isolated CCD cells with the conventional cell-free, cell-attached and the cell-attached nystatin method. Two K+ channels were found which were highly active on the cell with a conductance of 67±5 pS (n=18) and 148±4 pS (n=21) with 145 mmol/l K+ in the pipette. In excised patches the first channel had a conductance of 28±2 pS (n=15), whereas the second one had a conductance of 85±1 pS (n=53) at 0 mV clamp voltage with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. So far it has not been possible to characterize the smaller channel further. Excised, and with symmetrical K+ concentrations of 145 mmol/l, the intermediate channel had a linear conductance of 198±19 pS (n=5). After excision in the inside-out configuration the open probability (P o) of this channel was low (0.18±0.05, n=13) whereas in the outside-out configuration this channel had a threefold higher P o (0.57±0.04, n=12). Several inhibitors were tested in excised membranes. Ba2+ (1 mmol/l), tetraethylammonium (TEA+, 10 mmol/l) and verapamil (0.1 mmol/l) all blocked this channel reversibly. Furthermore P o was reversibly reduced by 10 nmol/l charybdotoxin (outside-out). This K+ channel of the basolateral membrane was regulated by cellular pH. P o was reduced to 26±3% at pH 6.5 (n=6) and increased to 216±18% at pH 8.5 (n=7) compared to pH 7.4. Half-maximal inhibition was reached at pH 7.0. The channel had its highest P o at a Ca2+ activity of less than 10–8 mol/l (n=13). Increasing the Ca2+ activity to 1 mmol/l on the cytosolic side of the membrane resulted in a reduction of P o to 13±3% (n=11). Half-maximal inhibition was reached at a Ca2+ activity of 10–5 mol/l. The high activity of both K+ channels of the basolateral membrane on the cell indicates that they may serve for K+ recirculation across the basolateral membrane.  相似文献   

13.
Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (P K) was 1.3 × 10−13 cm ⋅s−1. An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (P o) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about −60 mV, and the activation midpoint was −2 mV. P o decreased noticeably at 50 μM internal adenosine 5′-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 μM. Internal application of 5′-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased P o. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 μM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current. Received: 13 November 1995/Received after revision and accepted: 13 December 1995  相似文献   

14.
 Cystic fibrosis transmembrane conductance regulator (CFTR) functions as a Clchannel in a large variety of cells expressing this protein. Recently evidence has accumulated that it also regulates other ion channels. A coordinated increase in Cland K+ conductances is necessary in many Cl-secreting epithelia. This has, for example, recently been demonstrated for the colonic crypt, for which a new type of K+ channel and a specific inhibitor of this channel, the chromanol 293B, have been described. In the present study we have examined whether the cAMP-evoked activation of CFTR, overexpressed in Xenopus oocytes, in addition to its known activation of a Clconductance, also upregulates endogenous K+ channels. It is shown that CFTR-cRNA-injected but not water-injected oocytes possess a cAMP-activated Clconductance. Of the cAMP-induced whole-cell current increase, 15–25% was due to a 293B-, Ba2+and TEA+-inhibitable K+ conductance. The cRNA of the mutated CFTR (ΔF508 CFTR) had no such effect. We conclude that cAMP activated CFTR and an endogenous IsK-type and 293B-sensitive K+ conductance. Similar events, occurring, for example, in the colonic crypt possessing CFTR and 293B-sensitive K+ channels, might explain the coordinated cAMP-mediated increase in Cland K+ conductances. Received: 12 March 1996 / Accepted: 10 April 1996  相似文献   

15.
Ion channels in the basolateral membrane of rabbit parietal cells in isolated gastric glands were studied by the patch clamp technique. Whole-cell current-clamp recordings showed that the membrane potential (E m ) changed systematically as a function of the chloride concentrations of the basolateral bathing solution ([Cl]0), and of the pipette (intracellular) solution. The relationship betweenE m and [Cl]0 was not affected by additions of histamine, dibutyryl-cAMP, 4-acetoamido-4-isothiocyanostilbene-2,2-disulfonic acid and diphenylamine-2-carboxylate. The whole-cell Cl conductance was insensitive to voltage. In cell-attached and cell-free patch membranes, however, single Cl channel opening events could not be observed. The value ofE m depended little on the basolateral K+ concentration, but inward-rectifier K+ currents were observed in the whole-cell configuration, activated by hyperpolarizing pulses and inhibited by extracellular Ba2+. In cell-attached and cell-free patches, openings of single inward-rectifier K+ channels and non-selective cation channels were infrequently recorded. Neither cAMP nor Ca2+ activated these cation channels. The single K+ channel conductance was about 230 pS under the symmetrical high K+ conditions and was inhibited by intracellular tetraethylammonium ions (TEA). The non-selective cation channel had a voltage-independent single conductance of 22 pS and was not inhibited by TEA.  相似文献   

16.
We have investigated the conductance properties of large-conductance Ca2+-activated K+ (BKCa) channels formed by stable expression of the rSlo gene in HEK 293 cells. Single-channel recordings were obtained from inside-out patches excised into solution containing 100 μM Ca2+ to ensure a relatively high open probability over the range of membrane potentials studied (–120 to +100 mV). The unitary conductance of these channels at +80 mV was 221.6±5.4 pS in symmetrical 140 mM K+. Decreasing the K+ concentration on either side of the membrane, while maintaining ionic strength by adding N-methyl d-glucamine (NMDG+), reduced the unitary conductance. The reduction in conductance was greater when internal K+ was lowered by replacement with NMDG+. However, if sucrose was used as the internal K+ substitute instead of NMDG+ the reduction in unitary conductance was similar to that seen on reducing external K+. A rate-theory model whereby NMDG+ produces a very rapid block of the BKCa channel from the inside, but not the outside, is able to describe our results. Received:18 May 1998 / Received after revision: 17 June 1998 / Accepted: 2 July 1998  相似文献   

17.
Recent studies have demonstrated that active chloride secretion in mammalian colon and other epithelia, is dependent on the induction of an increase of apical chloride conductance. Since the physical characteristics of apical chloride channels in man have not been elucidated, patch clamp analysis of human colon cells (HT29), in culture, was performed, after stimulation with db-cAMP 10–4 mol/l. In excised inside out patches of apical membranes two types of channels were found. The smaller and less frequent channel had a mean conductance of 15±1 pS (n=9). This type of channel showed identical I/V curves in NaCl and KCl solutions. It was inhibited by a chloride channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB). The more frequently observed larger conductance channel was selective for anions and was impermeable to Na+ and K+. Regarding anion selectivity, the channel was similarly permeable to Cl, Br, I, and NO 3 , but was impermeable to gluconate. The channel was completely inhibited by the potent Cl channel blocker NPPB (10–6 mol/l). This channel exhibited rectification: The conductance was 50±4 pS at positive clamp potentials (sign referred to bath with respect to pipette interior) and 32±3 (n=33) pS at negative voltages. Moreover, the open state probability was doubled when the clamp potential was increased from –20 to +20 mV. These results demonstrate the existence of chloride channels in the apical membrane of db-cAMP treated colonic carcinoma cells.  相似文献   

18.
The luminal membrane of principal cells of rat cortical collecting duct (CCD) is dominated by a K+ conductance. Two different K+ channels are described for this membrane. K+ secretion probably occurs via a small-conductance Ca2+-independent channel. The function of the second, large-conductance Ca2+-dependent channel is unclear. This study examines properties of this channel to allow a comparison of this K+ channel with the macroscopic K+ conductance of the CCD and with similar K+ channels from other preparations. The channel is poorly active on the cell. It has a conductance of 263±11 pS (n=36, symmetrical K+ concentrations) and of 139±3 pS (n=91) with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. Its open probability is high after excision (0.71±0.03, n=85). The channel flickers rapidly between open and closed states. Its permeability in the cell-free configuration was 7.0±0.2×10–13 cm3/s (n=85). It is inhibited by several typical blockers of K+ channels such as Ba2+, tetraethylammonium, quinine, and quinidine and high concentrations of Mg2+. The Ca2+ antagonists verapamil and diltiazem also inhibit this K+ channel. As is typical for the maxi K+ channel, it is inhibited by charybdotoxin but not by apamin. The selectivity of this large-conductance K+ channel demonstrates significant differences between the permeability sequence (P K > P Rb > P NH4 > P Cs=P Li=P Na=P choline=0) and the conductance sequence (g K > g NH4 > g Rb > g Li=g choline > g Cs=g Na=0). The only other cations that are significantly conducted by this channel besides K+ (g K at V c = is 279±8 pS, n=88) are NH 4 + (g NH4=127±22 pS, n=10) and Rb+ (g Rb=36±5 pS, n=6). The K+ currents through this channel are reduced by high concentrations of choline+, Cs+, Rb+, and NH 4 + . These properties and the dependence of this channel on Ca2+ and voltage classify it as a maxi K+ channel. A possible physiological function of this channel is discussed in the accompanying paper.Supported by DFG Gr 480/10, by Schl 277/2-3 and by GIF 88/II  相似文献   

19.
We have used the patch-clamp technique to characterize three anion channels in the ventricular membrane of the choroid plexus epithelium from Necturus. The most frequently occurring channel had a nonlinear IV-curve. The conductance in excised patches with 112 mM chloride at both sides was 28 pS at 0 mV, increasing towards positive membrane potentials. The selectivity ratios were P NaP Cl 0.1 and . SITS and furosemide (1 mM) on the inside reduces chloride flux to 0.15 and 0.37 times the control value. In attached patches, the most commonly observed channel had a conductance of 7.5 pS. The single-channel current for this channel reversed direction at 15 mV hyperpolarization, indicating accumulation of chloride to a factor of 1.8 above equilibrium. External stimulation of the tissue by theophylline, IBMX and dbcAMP, or by hypotonic shock did not increase the activity of this channel. In very few excised patches, we have observed a chloride channel with a conductance of 7 pS with 112 mM chloride at both sides. The 7 pS channel appears to be identical to a 2 pS channel found in attached patches. The 2 pS channel was not normally active in attached patches but was activated in 28% of the patches by external stimulation. Finally, in few excised patches we have found a 375 pS channel which inactivates within seconds when membrane potential is stepped from 0 mV to a value that differs more than 10–20 mV from zero. The channel did not conduct gluconate but and P NaP Cl 0.1. Internal SITS and furosemide (1 mM) reduced chloride flux to 0.3 and 0.5 times the control value. The channel was never seen in attached patches. The current carried through these channels can not account for the transepithelial steady state Cl-flux measured by microelectrodes. KCl exit from the cell is suggested to be carried by KCl-cotransport or by channels that are too small to be seen in patch-clamp experiments.  相似文献   

20.
The Cl channels in human myoballs were investigated with several recording techniques. Three types of channels were found and dubbed small, intermediate, and large, according to their different conductance. The intermediate Cl channel was observed most frequently. It was active at the resting potential immediately after seal formation in cell-attached as well as in excised patches. Its Cl selectivity was rather high (P Cl/P Na = 9.46; P Cl/P MeSO 4 where P denotes permeability) and the slope conductance at the reversal potential with [Cl o/[Cl]i equal to 160 mM/42 mM was 31 pS. The channel showed an open-channel substructure with two subconductance levels having equal amplitudes. It can conduct two kinetically different currents that correspond to the activating and the inactivating Cl current components described by Zachar et al. (1992). The small Cl channel had a conductance of 10 pS at the reversal potential, a P Cl /P Na of 2.7, and a P Cl/P MeSO 4 of 22.6. Its open probability was biggest negative to –85 mV, resulting in an inactivating whole-cell Cl current component. Because of the small channel density and conductance the contribution of this channel type to the whole-cell current seems to be small. Patches with only one small channel were never observed which suggests that this channel type occurs in clusters. A third type of channel with very large conductance (250 pS) was seen only four times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号