首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonobese diabetic (NOD) mouse is a relevant model for studying human insulin-dependent diabetes mellitus (IDDM). The selective destruction of insulin-secreting cells in this model is subsequent to an autoimmune reaction directed towards the beta cells inside the islets of Langerhans of the pancreas. Given the key role played by T cells in the development of IDDM, we investigated a model of IDDM prevention in NOD mice by administration of a monoclonal antibody to the alpha/beta dimer of the T cell receptor for antigen. Our data provide evidence that aiming at the T cell receptor protects against both spontaneous and cyclophosphamide-induced diabetes in the NOD mouse. Interestingly, potential clinical application is suggested by the efficient and durable reversal of recent onset diabetes in mice treated with anti-alpha/beta monoclonal antibody within 1 week following the clinical discovery of IDDM.  相似文献   

2.
Insulin-dependent diabetes mellitus (IDDM) is strikingly similar in the non-obese diabetic (NOD) mouse and humans. In IDDM, the systematic autoimmune destruction of insulin-producing beta cells within the pancreas is dependent on autoreactive T cells. This autoimmune process can be accelerated by transferring spleen cells from diabetic donors into irradiated syngeneic NOD mice. In a previous study we established that interleukin 2 receptor (IL 2R)-bearing cells propagated from pre-diabetic NOD mice promote IDDM. Therefore, we reasoned that specific elimination of IL 2R+ T cells should abort the diabetogenic process. T cell expressing IL 2R can be selectively destroyed with a diphtheria toxin-related IL 2 fusion protein (DAB486-IL-2). We set DAB486-IL-2 the challenging task of preventing fulminant IDDM accelerated by the adoptive transfer of diabetic spleen cells. Eight weeks after the adoptive transfer only 10% and 20% of NOD mice treated with 10 and 5 micrograms/day of DAB486-IL-2, respectively, became diabetic while 100% control mice (vehicle buffer) became diabetic within 5 weeks. A dose of 1 microgram/day of DAB486-IL-2 had no protective effect. Although the protection conferred by DAB486-IL-2 is not permanent, it is maintained for at least 4 weeks following cessation of treatment. Furthermore, even though these NOD mice do eventually become diabetic, the tempo of expression and severity of diabetes, as assessed by the level of hyperglycemia, is dramatically reduced. Although histologic examination of pancreas revealed minimal degree of mononuclear infiltrate within the islets in both groups, the vehicle control mice had fewer islets per section indicating many islets had already been destroyed. In addition, spleen cells from diabetic NOD mice which were pre-treated with DAB486-IL-2 (10 micrograms/day) for 1 week lost their ability to transfer disease. Taken together, these studies strongly support the concept that IL 2R-bearing T cells are essential for the induction of IDDM and suggest that DAB486-IL-2 would be a promising therapeutic approach in the treatment of human IDDM.  相似文献   

3.
Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease.In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.  相似文献   

4.
The non-obese diabetic (NOD) mouse develops insulin dependent diabetes mellitus (IDDM) spontaneously with a higher incidence in females than in males. There are many similarities to the human disease, making it an ideal model. Our group is examining the role that CD4(+) and CD8(+) T cells play in IDDM in the NOD mouse, as it is known that both T cell subsets are required for onset of disease. Although IDDM has an autoimmune etiology, the initial triggering event is unknown and the autoantigen involved has not been identified. This investigation focussed on one of the potential autoantigens involved, the enzyme glutamic acid decarboxylase (GAD). We raised GAD peptide-specific CD8(+) T cells by immunising NOD mice with the GAD peptide alongside an irrelevant peptide that induced a CD4(+) T cell response. In order to maintain these peptide specific T cells in vitro and generate clones, it was found that antibodies specific to CD4(+) and MHC class II molecules needed to be included in the culture medium. This paper outlines the methods we employed to generate and maintain these CD8(+) T cells in vitro.  相似文献   

5.
In humans and non-obese diabetic mice (NOD), insulin-dependent diabetes mellitus (IDDM) results from a spontaneous T cell-dependent autoimmune destruction of the insulin-producing pancreatic beta cells. Previous data suggest that a delicate balance between autoaggressive T cells and suppressor-type immune phenomena determine whether expression of autoimmunity is limited to insulitis or progresses to IDDM. To resolve the cellular basis of this intricate network of pathogenic CD4+ and CD8+ T cells and the role of T cells in suppressive immune phenomena. T cell clones were propagated directly from islets of NOD mice at the onset of insulitis. Insofar as insulitis, but not IDDM, is universal in NOD mice, we have screened for the in vivo effects of the islet-infiltrating T cell clones upon expression of IDDM, not insulitis. A CD4+ T cell clone, IS-3S7D, proliferates in response to islet antigen(s) and its transfer into prediabetic NOD mice promotes the rapid onset of IDDM. An interleukin 2 (IL 2)-dependent noncytolytic, V beta 11+ CD8+. T cell clones IS-2.15, prevents an accelerated onset diabetes in two distinct models. The present study, which documents the presence of CD4+ diabetogenic T cell clones and CD8+ T cell clones that dampen autoimmunity, gives tangible evidence that opposing autoimmune processes may determine whether an autoimmune-prone host develops frank disease.  相似文献   

6.
DNA vaccination is an effective means of protecting experimental animals against infectious pathogens and cancer and has more recently been used to prevent autoimmune disease. Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease characterized by T-cell-mediated destruction of the insulin-secreting beta cells in the pancreas. The NOD mouse is an animal model of IDDM in which several autoantigens, including insulin, have been identified. In this study we demonstrate that vaccination of NOD mice with DNA encoding an immunodominant peptide of insulin (residues 9-23 of the B chain) protects the animals from developing diabetes. Animals injected intramuscularly with a bacterial plasmid encoding the insulin B chain peptide show significantly lower disease incidence and delayed onset of disease when compared to controls. Protection appears to be mediated by insulin B (9-23)-specific down-regulation of IFN-gamma. Our results confirm that DNA vaccination has a protective effect on autoimmunity, the understanding of which will reveal new insights into the immune system and open doors for novel therapies.  相似文献   

7.
The non-obese diabetic (NOD) mouse is an animal model of insulin-dependent diabetes mellitus (IDDM), in which 80% of the females become diabetic after the age of 12 weeks. Using an in vitro assay we investigated the capacity of spleen lymphocytes from NOD mice to inhibit the insulin secretion of normal islet cells after stimulation by theophylline plus arginine. Spleen cells from diabetic NOD mice inhibited the insulin release of DBA/2 islet cells. Depletion experiments using monoclonal antibodies demonstrated that inhibitory cells belonged to the Lyt2 positive T lymphocyte subset. The phenomenon was not restricted by the MHC class I K region, shared by NOD and DBA/2 mice, since lymphocytes from diabetic NOD mice also inhibited the insulin secretion of normal Wistar rat islet cells. Inhibitory T cells were detected in overtly diabetic mice but also in non-diabetic females aged 5-11 weeks indicating that they are not secondary to metabolic disturbances and might contribute to their onset. Conversely they were not found in male NOD mice although some of these mice show insulitis. The presence of these inhibitory T cells might thus represent an early and sensitive marker of anti-islet cell-mediated autoimmunity.  相似文献   

8.
The aim of the present study was to investigate the pathogenic properties of islet-infiltrating lymphocytes related to the severity of the autoimmune destruction of islet β-cells in the NOD mouse. We analysed the development of insulin-dependent diabetes mellitus (IDDM) produced by adoptive transfer of islet lymphocytes from NOD into NOD.scid mice. Here we show that the transfer was most effective when both CD4+ and CD8+ T cells were present in the infiltrate, but CD4+ T cells alone were sufficient to cause the disease. Islet lymphocytes from both females and males transferred diabetes effectively, but the severity of IDDM was higher when female islet lymphocytes were used. Unexpectedly, the sensitivity of male islets to β-cell damage was greater than that of female islets. Treatment of NOD females with a peptide of heat shock protein (hsp)60, p277, known to protect NOD mice from IDDM, reduced the pathogenicity of the islet lymphocytes. In contrast, administration of cyclophosphamide to males, a treatment that accelerates the disease, rendered the islet lymphocytes more pathogenic. More severe disease in the recipient NOD.scid mice was associated with more interferon-gamma (IFN-γ)-secreting islet T cells of the NOD donor. The disease induced by islet lymphocytes was strongly inhibited by co-transfer of spleen cells from prediabetic mice, emphasizing the regulatory role of peripheral lymphocytes. Thus, the cellular characteristics of the islet infiltrate and the pathogenicity of the cells are subject to complex regulation.  相似文献   

9.
The non-obese diabetic (NOD) mouse is an established animal model of the autoimmune disease, insulin-dependent diabetes mellitus (IDDM). The NOD-E mouse is a transgenic mouse which expresses the I-E molecule (absent in NOD mice). Expression of I-E protects these mice from both insulitis and IDDM.We have investigated the possible mechanisms of this protection by constructing bone marrow, and combined bone marrow and thymus chimeras between NOD and NOD-E mice. Our data suggest that thymic epithelium may play no direct role in either protection against, or promotion of, IDDM. Protection from diabetes is provided either by NOD-E donor bone marrow or NOD-E recipient non-thymic radioresistant cells. The means by which protection may be achieved in this system are discussed.  相似文献   

10.
We have described previously the prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in experimental murine tuberculosis. However, the high homology of this protein to the corresponding mammalian 60 kDa heat shock protein (Hsp60), together with the CpG motifs in the plasmid vector, could trigger or exacerbate the development of autoimmune diseases. The non-obese diabetic (NOD) mouse develops insulin-dependent diabetes mellitus (IDDM) spontaneously as a consequence of an autoimmune process that leads to destruction of the insulin-producing beta cells of the pancreas. IDDM is characterized by increased T helper 1 (Th1) cell responses toward several autoantigens, including Hsp60, glutamic acid decarboxylase and insulin. In the present study, we evaluated the potential of DNA-HSP65 injection to modulate diabetes in NOD mice. Our results show that DNA-HSP65 or DNA empty vector had no diabetogenic effect and actually protected NOD mice against the development of severe diabetes. However, this effect was more pronounced in DNA-HSP65-injected mice. The protective effect of DNA-HSP65 injection was associated with a clear shift in the cellular infiltration pattern in the pancreas. This change included reduction of CD4(+) and CD8(+) T cells infiltration, appearance of CD25(+) cells influx and an increased staining for interleukin (IL)-10 in the islets. These results show that DNA-HSP65 can protect NOD mice against diabetes and can therefore be considered in the development of new immunotherapeutic strategies.  相似文献   

11.
12.
We have evaluated the effects of the novel immunosuppressant sodium fusidate (fusidin) in the non-obese diabetic (NOD) mouse and in D-galactosamine (D-Gal)-presensitized BALB/c mice challenged with the bacterial superantigen, Staphylococcus aureus enterotoxin B (SEB) or with the endotoxin, Escherichia coli lipopolysaccharide (LPS). The NOD mouse model has clinical and histoimmunological features similar to those of human insulin-dependent diabetes mellitus (IDDM). The SEB- and LPS-treated BALB/c mouse models exhibit pathogenic similarities with human septic shock conditions. In the NOD mouse, fusidin suppressed the spontaneous development of insulitis (mean inhibition 73%) and hyperglycaemia (IDDM incidence 25% versus 0%) when administered at 40 mg/kg five times weekly for 8 consecutive weeks from the fourth week of age; concurrently treated animals exhibited reduced percentages of splenic T lymphocytes. This anti-diabetogenic effect was confirmed in the accelerated model of diabetes induced in the NOD mouse with cyclophosphamide (CY) (IDDM incidence 55% versus 21-6% using dosages of fusidin from 40 to 80 mg/kg five times weekly); protection from IDDM development was achieved even when the drug (80 mg/kg/day) was first administered 7 days after CY challenge. In contrast, fusidin did not reverse hyperglycaemia when administered to CY-treated animals within 3 days of IDDM development. In the two models of septic shock, prophylactic treatment with fusidin, 80 mg/kg given three times for 2 days prior to D-Gal/SEB or D-Gal/LPS challenge, drastically reduced the lethality compared with D-Gal/buffer-treated mice. This effect may depend on the inhibitory action of fusidin on the secretion of cytokines such as interferon-gamma and tumour necrosis factor-alpha, the serum levels of which were greatly diminished in the fusidin-treated mice (mean inhibition 50-90%). These results demonstrate that fusidin may have a role in the treatment of cell-mediated autoimmune diseases and cytokine-mediated infectious diseases in humans.  相似文献   

13.
The non-obese diabetic (NOD) mouse is an animal model of human insulin-dependent diabetes mellitus (IDDM). Most NOD mice show insulitis at several weeks of age, and 60-90% of the female mice develop overt diabetes after 20-30 weeks of age. NOD mice share many features of human IDDM. As in human IDDM, the disease development in NOD mice is controlled by a number of disease susceptibility or resistant genes (Idds), including the major histocompatibility complex locus. Cumulative evidence suggests that Thl CD4+ T cells play a critical role in the autoimmune process leading to beta cell destruction. In addition to CD4+ T cells, CD8+ cells and B cells also participate in the pathogenesis. There are several candidate antigens recognized by autoreactive T cells such as glutamic acid decarboxylase (GAD), insulin and heat shock protein (HSP) 60. Treatment by these antigens suppresses IDDM development in NOD mice, suggesting that they may initiate the autoimmune process of NOD mice.  相似文献   

14.
Martins TC  Aguas AP 《Immunology》1999,96(4):600-605
Non-obese diabetic (NOD) mice spontaneously develop autoimmune insulin-dependent diabetes mellitus (IDDM). Infection of the animals with mycobacteria, or immunization with mycobacteria-containing adjuvant, results in permanent protection of NOD mice from diabetes and we have recently reported that the phenomenon is associated with increased numbers of interferon-gamma-producing T cells, possessing increased cytotoxic activity, and also with augmented numbers of activated immunoglobulin M-positive (IgM+) B cells. Here, we have investigated whether protection of NOD mice from IDDM was associated with changes on costimulatory pathways of T and B cells, namely CD28/CTLA-4-B7 and CD40-CD40 ligand (CD40L) and we also further characterized protective T helper (Th) cells with regards to the expression of the differentiation markers CD45RB and CD38. We report that Th cells involved in diabetes vaccination of NOD mice by mycobacterial infection seem to belong to CD45RBlo CD38+ phenotype. The protective effect of Mycobacterium avium infection is also associated with increased CD40L and CTLA-4- expressing Th cells and with the generation of a CD40- IgG+ B cells. Our data are consistent with induction by mycobacterial infection of regulatory CD45RBlo CD38+ Th cells with the ability to trigger deletion or anergy of peripheral self-reactive lymphocytes, with shutting down of IgG+ B-cell response. They also implicate a role for IgG+ B cells in the autoimmune aggression of the endocrine pancreas of NOD mice.  相似文献   

15.
Dendritic cells (DC) and macrophages (Mphi) are present in high numbers in the pancreas of the non-obese diabetic (NOD) mouse during the diabetogenic process from very early stages onwards. In this study, we used clodronate-loaded liposomes to mediate the temporary systemic depletion of these phagocytic cells and monocytic precursors in order to modulate the pancreatic inflammation. Two intraperitoneal injections given with a 2-day interval to 8-week-old NOD mice depleted monocytes from the circulation and monocytes, DC and Mphi from the spleen within the first days after the injections. Monocytes, DC and Mphi reappeared in the circulation and the spleen within one week and had an unchanged phenotype and antigen presenting function. Interestingly, this treatment caused a delayed disappearance (7-21 days postinjection) of DC and Mphi from the endocrine pancreas at a time when monocytes, DC and Mphi had already repopulated the circulation and the spleen. The depletion of DC and Mphi from the endocrine pancreas was accompanied by a total disappearance of lymphocytes from the pancreas. DC, Mphi and lymphocytes reappeared in the pancreatic inflammatory infiltrates in treated mice from 28 days postdepletion onwards. Importantly, the treatment significantly postponed the onset of diabetes, leading to a strongly decreased incidence by 35 weeks of age. Taken together, our data show an essential role of phagocytic cells, that is, DC and Mphi, in the recruitment of lymphocytes to the pancreatic islets in NOD mice.  相似文献   

16.
Current evidence supports an autoimmune etiopathogenesis for Type I, insulin-dependent diabetes mellitus (IDDM) in which the pancreatic beta (beta) cell is the specific target tissue. Recently, the NOD (non-obese diabetic) mouse has become an important model for IDDM, exhibiting many of the pathological features observed in man, including a progressive pancreatic islet leukocytic inflammation referred to as insulitis. The present study was carried out to determine the efficacy of the bacterial-derived bio-product, pertussigen, to retard the progression of insulitis and thereby prevent overt diabetes. Results revealed that (1) the rapid onset of IDDM in female NOD mice is absent if the mothers are treated with pertussigen prior to mating, (2) treatment of young prediabetic NOD mice with repeated injections of pertussigen results in the retardation of onset of IDDM when compared to untreated control NOD mice, and (3) the severity of insulitis in pertussigen-treated NOD mice not developing IDDM was noticeably less severe than age and sex-matched untreated control mice. Since earlier work had shown that pertussis vaccine, which contains pertussigen, could prevent development of IDDM in mice treated with streptozotocin, the present results may indicate basic differences in the inflammatory responses in the genetically-predisposed NOD mice and IDDM-nonsusceptible mice with streptozotocin-induced diabetes.  相似文献   

17.
Several previous observations indicate a role for the immune system in the pathogenesis of insulin-dependent diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice. In order to assess the status of the immune system in this model of spontaneous diabetes we studied the phenotype of circulating lymphocytes and the humoral autoimmunity to islet cells in non-diabetic NOD mice at various ages. Lymphocyte numbers were low in young NOD mice (age less than 160 days) as compared with other strains of mice and increased later to reach values in or above the range of controls. The percentages of circulating T lymphocytes and their L3T4+ and Lyt2+ subsets were higher in NOD mice of all ages and both sexes than in controls; however, no imbalance of the L3T4+ and Lyt2+ subpopulations was found. Anti-insulin autoantibodies were detected by an ELISA assay in all the NOD mice studied throughout the entire period of observation. Autoantibodies reacting with the cytoplasm of islet cells in Bouin's fixed pancreas sections, likely to be anti-insulin antibodies, were found in 47 to 58% of the samples from NOD mice aged 75 to 150 days. Antibodies to surface antigens of rat insulinoma cells were virtually absent in young NOD mice (75-100 days) and appeared in 33 to 43% of the samples from 150 to 185 days old NOD mice. The autoantibodies and the quantitative lymphocyte abnormalities reported here, although not predictive of the appearance of overt diabetes, are likely to be involved in the pathogenesis of the disease and therefore may indicate directions for future investigations.  相似文献   

18.
We have evaluated the effects of a treatment with soluble interleukin-1 receptor (sIL-1R) in the accelerated model of autoimmune diabetes induced by cyclophosphamide (CY) in the non-obese diabetic (NOD) mouse. Prior to the CY challenge (350 mg/kg body weight), female euglycemic NOD mice were randomly divided into three groups (A–C). Groups B and C were treated daily from 1 day before to 13 days after the CY challenge with sIL-1R at doses of 0.2 and 2 mg/kg body weight. Group A was treated with PBS. By 2 weeks after CY administration, an acute form of autoimmune diabetes with glycosuria, hyperglycemia and severe insulitis occurred in the majority (13/20, 65%) of the control mice (group A). In contrast, repeated injections with sIL-1R protected NOD mice from insulin-dependent diabetes mellitus (IDDM) development in a dose-dependent fashion; the incidence of IDDM was 53.3% (8/15) in the mice treated with 0.2 mg/kg and only 6.7% (1/15) in those treated with 2 mg/kg. However, none of the doses of the sIL-1R reduced the extent of insulitis in NOD mice. Importantly, the anti-diabetogenic property of sIL-1R may not involve major T cell function impairment; accordingly, in parallel experiments, splenic lymphoid cells from NOD mice not challenged with CY, but treated with 2 mg/kg sIL-1R for 5 consecutive days showed a normal distribution of mononuclear cell subsets and maintained their capacity to secrete interferon-γ and IL-2 and to proliferate in response to polyclonal mitogenic stimulation with concanavalin A.  相似文献   

19.
The non-obese diabetic (NOD) mouse is a spontaneous animal model for type 1 diabetes characterized by a selective destruction of the insulin producing beta cells in the pancreas. As in humans, the disease is controlled by several susceptibility genes, some of which map to the major histocompatibility complex on chromosome 17. However, environmental factors also contribute to the development of the disease in the NOD mouse, presumably through controlling the balance between the Th1 and Th2 response in the animal. Recent observations have shown that the NOD mouse has abnormalities in the development of bone marrow-derived antigen-presenting cells. These include the most potent activators of naive T cells, the dendritic cells, which exist in at least two different sub-populations; DC1 cells, responsible for activation of Th1 cells, and DC2 cells, which produce Th2 cells. In addition to activating naive T cells, the dendritic cells are also involved in generating central and peripheral tolerance to self molecules. In this process DC2 cells appear to be more important for the development of peripheral tolerance than DC1 cells. Besides abnormalities in the development of bone marrow-derived antigen-presenting cells, the NOD mouse also has a defect in the thymic selection of T cells, leading to a higher concentration of autoreactive T cells. We speculate that the NOD mouse may develop an imbalance in the two subsets of dendritic cells with a skewing towards DC cells, thus having a reduced ability to generate peripheral tolerance to a number of autoantigens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号