首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In skeletal muscle, there is bidirectional signalling between the L-type Ca2+ channel (1,4-dihydropyridine receptor; DHPR) and the type 1 ryanodine-sensitive Ca2+ release channel (RyR1) of the sarcoplasmic reticulum (SR). In the case of “orthograde signalling” (i.e., excitation-contraction coupling), the conformation of RyR1 is controlled by depolarization-induced conformational changes of the DHPR resulting in Ca2+ release from the SR. “Retrograde coupling” is manifested as enhanced L-type current. The nature of this retrograde signal, and its dependence on RyR1 conformation, are poorly understood. Here, we have examined L-type currents in normal myotubes after an exposure to ryanodine (200 μM, 1 h at 37°C) sufficient to lock RyR1 in a non-conducting, inactivated, conformational state. This treatment caused an increase in L-type current at less depolarized test potentials in comparison to myotubes similarly exposed to vehicle as a result of a ~5 mV hyperpolarizing shift in the voltage-dependence of activation. Charge movements of ryanodine-treated myotubes were also shifted to more hyperpolarizing potentials (~13 mV) relative to vehicle-treated myotubes. Enhancement of the L-type current by ryanodine was absent in dyspedic (RyR1 null) myotubes, indicating that ryanodine does not act directly on the DHPR. Our findings indicate that in retrograde signaling, the functional state of RyR1 influences conformational changes of the DHPR involved in activation of L-type current. This raises the possibility that physiological regulators of the conformational state of RyR1 (e.g., Ca2+, CaM, CaMK, redox potential) may also affect DHPR gating.  相似文献   

2.
Ca2+ -induced inactivation of L-type Ca2+ channels is proposed as an important negative feedback mechanism regulating Ca2+ entry. Here, for the first time, evidence for modification of heart L-type Ca2+ channel activity by cytoplasmic calcium is provided from excised insideout membrane patches. Ba2+ currents through cardiac L-type Ca2+ channels exhibited only modest inactivation in the absence of cytoplasmic Ca2+. Elevation of cytoplasmic Ca2+ to micromolar concentrations strikingly affected L-type Ca2+ channel activity as evaluated from ensemble average Ba2+ currents. Inactivation was markedly increased concomitant with a reduction of peak inward current, which was almost completely eliminated at about 15 M cytoplasmic Ca2+ concentration. Half maximal suppression of Ba2+ currents was observed at 2.3 M Ca2+. The observed modifications of L-type Ca2+ channel activity show that cytoplasmic Ca2+ induces channel closure. Below 4 M Ca2+, channels can be reversibly reactivated during repetitive depolarizations, while at high Ca2+ concentrations (15 M) most Ca2+ channels reside in a closed state. This may allow for a delicate regulation of Ca2+ entry, and consequently of heart contraction.  相似文献   

3.
Ca2+-dependent modulation via calmodulin (CaM) has been documented for most high-voltage-activated Ca2+ channels, but whether the skeletal muscle L-type channel (Cav1.1) exhibits this property has been unknown. In this paper, whole-cell current and fluorescent resonance energy transfer (FRET) recordings were obtained from cultured mouse myotubes to test for potential involvement of CaM in function of Cav1.1. When prolonged depolarization (800 ms) was used to evoke Cav1.1 currents in normal myotubes, the fraction of current remaining at the end of the pulse displayed classic signs of Ca2+-dependent inactivation (CDI), including U-shaped voltage dependence, maximal inactivation (~30%) at potentials eliciting maximal inward current, and virtual elimination of inactivation when Ba2+ replaced external Ca2+ or when 10 mM BAPTA was included in the pipette solution. Furthermore, CDI was virtually eliminated (from 30 to 8%) in normal myotubes overexpressing mutant CaM (CaM1234) that does not bind Ca2+, whereas CDI was unaltered in myotubes overexpressing wild-type CaM (CaMwt). In addition, a significant FRET signal (E = 4.06%) was detected between fluorescently tagged Cav1.1 and CaMwt coexpressed in dysgenic myotubes, demonstrating for the first time that these two proteins associate in vivo. These findings show that CaM associates with and modulates Cav1.1. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.  相似文献   

4.
Primary skeletal muscle cells were cultured in a normal- (1.8 mM) or high- (4.8 mM) Ca2+ culture medium to determine whether Ca2+ modulates the number of L-type Ca2+ channels. Skeletal myoballs cultured in a normal medium showed, when exposed to a high extracellular [Ca2+], ([Ca2+]e) a transient increase in intracellular [Ca2+] ([Ca2+]i) from a resting concentration of 60 to 160 nM. By day 3, however, when the experiments were made, [Ca2+]i no longer differed from control (pre-exposure to high Ca2+). The maximum charge movements in myoballs incubated in 1.8 and 4.8 mM were 16.4+/-1.05 (n=56) and 24.1+/-1.18 nC/microF (n=58; P<0.01), respectively, and peak Ca2+ currents at 20 mV were -10.8+/-1.09 (n=46) and -12.8+/-0.75 nA/microF (n=82), respectively (P>0.05). The tail current amplitudes in 1.8 and 4.8 mM Ca2+-treated cells were -9.3+/-1.23 and -14.2+/-1.37 nA/microF (P<0.05), respectively, at 10 mV and -15.3+/-1.76 and -23.6+/-2.02 nA/microF (P<0.05), respectively at 60 mV. The maximum binding of [3H]PN200-110 (a radioligand specific for L-type Ca2+ channel alpha1 subunits) in myoballs cultured in 1.8 and 4.8 mM [Ca2+]e was 1.34+/-0.23 and 3.2+/-0.63 pmol/mg protein (n=8; P<0.02), respectively. The increase in [Ca2+]i associated with the increases in charge movements, tail currents and the number of L-type Ca2+ channel alpha1 subunits in skeletal muscle cells cultured in high [Ca2+]e support the concept that extracellular Ca2+ influx modulates the expression of L-type Ca2+ channels in skeletal muscle cells.  相似文献   

5.
Aim: We have investigated the influence of Ca2+ ions on the basic biophysical properties of T‐type calcium channels. Methods: The Cav3.1 calcium channel was transiently expressed in HEK 293 cells. Current was measured using the whole cell patch clamp technique. Ca2+ or Na+ ions were used as charge carriers. The intracellular Ca2+ was either decreased by the addition of 10 mm ethyleneglycoltetraacetic acid (EGTA) or increased by the addition of 200 μm Ca2+ into the non‐buffered intracellular solution. Various combinations of extra‐ and intracellular solutions yielded high, intermediate or low intracellular Ca2+ levels. Results: The amplitude of the calcium current was independent of intracellular Ca2+ concentrations. High levels of intracellular Ca2+ accelerated significantly both the inactivation and the activation time constants of the current. The replacement of extracellular Ca2+ by Na+ as charge carrier did not affect the absolute value of the activation and inactivation time constants, but significantly enhanced the slope factor of the voltage dependence of the inactivation time constant. Slope factors of voltage dependencies of channel activation and inactivation were significantly enhanced. The recovery from inactivation was faster when Ca2+ was a charge carrier. The number of available channels saturated for membrane voltages more negative than ?100 mV for the Ca2+ current, but did not reach steady state even at ?150 mV for the Na+ current. Conclusions: Ca2+ ions facilitate transitions of Cav3.1 channel from open into closed and inactivated states as well as backwards transition from inactivated into closed state, possibly by interacting with its voltage sensor.  相似文献   

6.
Selective activation of neuronal functions by Ca(2+) is determined by the kinetic profile of the intracellular calcium ([Ca(2+)](i)) signal in addition to its amplitude. Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca(2+) current and the resulting rise and decay of [Ca(2+)](i) in differentiated pheochromocytoma (PC12) cells. We show that equal amounts of Ca(2+) entering through N-type and L-type voltage-gated Ca(2+) channels result in significantly different [Ca(2+)](i) temporal profiles. When the contribution of N-type channels was reduced by omega-conotoxin MVIIA treatment, a faster [Ca(2+)](i) decay was observed. Conversely, when the contribution of L-type channels was reduced by nifedipine treatment, [Ca(2+)](i) decay was slower. Potentiating L-type current with BayK8644, or inactivating N-type channels by shifting the holding potential to -40 mV, both resulted in a more rapid decay of [Ca(2+)](i). Channel-specific differences in [Ca(2+)](i) decay rates were abolished by depleting intracellular Ca(2+) stores with thapsigargin or by blocking ryanodine receptors with ryanodine, suggesting the involvement of Ca(2+)-induced Ca(2+) release (CICR). Further support for involvement of CICR is provided by the demonstration that caffeine slowed [Ca(2+)](i) decay while ryanodine at high concentrations increased the rate of [Ca(2+)](i) decay. We conclude that Ca(2+) entering through N-type channels is amplified by ryanodine receptor mediated CICR. Channel-specific activation of CICR provides a mechanism whereby the kinetics of intracellular Ca(2+) leaves a fingerprint of the route of entry, potentially encoding the selective activation of a subset of Ca(2+)-sensitive processes within the neuron.  相似文献   

7.
 Temperature normally affects peak L-type Ca2+ channel (CaCh) current with a temperature coefficient (Q 10) of between 1.8 and 3.5; in cardiomyocytes attenuating protein kinase A activity increases Q 10 whilst activating it lowers Q 10. We examine temperature effects using cloned human cardiac CaChs expressed in Xenopus oocytes. Peak inward currents (I Ba) through expressed CaChs (i.e. α1Cα2aβ1b) exhibited a Q 10 of 5.8±0.4 when examined between 15 and 25°C. The nifedipine-sensitive I Ba exhibited a higher Q 10 of 8.7±0.5, whilst the nifedipine-insensitive I Ba exhibited Q 10 of 3.7±0.3. Current/voltage (I/V) relationships shifted to negative potentials on warming. Using instead a different CaCh β subunit isoform, β2c, gave rise to an I Ba similar to those expressed using β1b. We utilized a carboxyl deletion mutant, α1C-Δ1633, to determine the temperature sensitivity of the pore moiety in the absence of auxiliary subunits; I Ba through this channel exhibited a Q 10 of 9.3±0.3. However, the Q 10 for macroscopic conductance was reduced compared to that of heteromeric channels; decreasing from 5.0 (i.e. α1Cα2aβ1b) and 3.9 (i.e. α1Cα2aβ2c) to 2.4 (α1C-Δ1633). These observations differ markedly from those made in studies of cardiomyocytes, and suggest that enhanced sensitivity may depend on the membrane environment, channel assembly or other regulatory factors. Received: 16 December 1997 / Accepted: 23 February 1998  相似文献   

8.
9.
10.
 Cardiac and skeletal type of excitation-contraction coupling (ECC) are quite different. Those differences could be explained by structural ones in the molecular entities involved in ECC, ie dihydropyridines (DHP) receptors (α1 subunit of L-type calcium channels) of the sarcolemma or ryanodine receptors of the sarcoplasmic reticulum membrane. As previously demonstrated by means of electrophysiology, the two types of ECC coexist during the first stages of in vitro development of skeletal muscle, whereas the skeletal type predominates at the later ones. In order to see whether evolution of ECC could be correlated with the one of α1 subunit expression, we determined by Northern Blotting which isoforms of α1 subunit are expressed during the in vitro myogenesis. mRNA corresponding to the cardiac isoform are present in myoblasts (before fusion), but patch-clamp experiments showed that they are not functional. After fusion, skeletal and cardiac mRNA are coexpressed in myotubes, with different intensities: whereas expression of skeletal mRNA (which are the more intensive) stabilized at the later stages tested, cardiac mRNA decreased. We conclude that evolution in mRNA α1 subunit isoforms expression could partly explained evolution of ECC features during in vitro myogenesis. Received: 24 July 1996 / Received after revision and accepted: 30 September 1996  相似文献   

11.
Hydrogen sulfide (H(2)S) concentration can be maintained in cell cultures within the range reported for rat brain by repetitive pulses of sodium hydrogen sulfide. Less than 2 h exposure to H(2)S concentrations within 50 and 120 microM (i.e., within the upper segment of the reported physiological range of H(2)S in rat brain), produces a large shift of the intracellular calcium homeostasis in cerebellar granule neurons (CGN) in culture, leading to a large and sustained increase of cytosolic calcium concentration. Only 1 h exposure to H(2)S concentrations within 100 and 300 microM raises intracellular calcium to the neurotoxic range, with nearly 50% cell death after 2 h. L-type Ca(2+) channels antagonists nimodipine and nifedipine block both the H(2)S-induced rise of cytosolic calcium and cell death. The N-methyl-D-aspartate receptor antagonists (+)-MK-801 and DL-2-amino-5-phosphonovaleric acid afforded a nearly complete protection against H(2)S-induced CGN death and largely attenuated the rise of cytosolic calcium. Thus, H(2)S-induced rise of cytosolic calcium eventually reaches the neurotoxic cytosolic calcium range, leading to glutamate-induced excitotoxic CGN death. The authors conclude that H(2)S is a major modulator of calcium homeostasis in neurons as it induces activation of Ca(2+) entry through L-type Ca(2+) channels, and thereby of neuronal activity.  相似文献   

12.
Skeletal muscle contraction is basically controlled by Ca(2+) release and its reuptake into the sarcoplasmic reticulum. However, the long-term maintenance of muscle function requires an additional Ca(2+) influx from extracellular. Several mechanisms seem to contribute to the latter process, such as store-operated Ca(2+) entry, stretch-activated Ca(2+) influx and resting Ca(2+) influx. Candidate channels that may control Ca(2+) influx into muscle fibers are the STIM proteins, Orai, and the members of the transient receptor potential (TRP) family of cation channels. Here we show that TRPV4, an osmo-sensitive cation channel of the vanilloid subfamily of TRP channels is functionally expressed in mouse skeletal muscle. Western blot analysis showed the presence of TRPV4-specific bands at about 85 and 100?kDa in all tested muscles. The bands were absent when muscle proteins from TRPV4 deficient mice were analyzed. Using the manganese quench technique, we studied the resting influx of divalent cations into isolated wild-type muscle fibers. The specific TRPV4-channel activator 4α-phorbol-12,13-didecanoate (4α-PDD) stimulated resting influx by about 60% only in wild-type fibers. Electrical stimulation of soleus muscles did not reveal changes in isometric twitch contractions upon application of 4α-PDD, but tetanic contractions (at 120?Hz) were slightly increased by about 15%. When soleus muscles were stimulated with a fatigue protocol, muscle fatigue was significantly attenuated in the presence of 4α-PDD. The latter effect was not observed with muscles from TRPV4(-/-) mice. We conclude that TRPV4 is functionally expressed in mouse skeletal muscle and that TRPV4 activation modulates resting Ca(2+) influx and muscle fatigue.  相似文献   

13.
14.
 The mechanism by which glibenclamide regulates mechanically activated atrial natriuretic peptide (ANP) secretion was investigated using isolated perfused rat atria. A reduction in atrial pressure from an experimentally imposed distending pressure stimulated the secretion of ANP and caused concomitant translocation of extracellular fluid (ECF) into the atrial lumen. The activation of ANP secretion and ECF translocation were closely correlated with atrial volume changes and the increase in ANP secretion was a function of the ECF translocation. Glibenclamide (1, 10, 100 μM), an ATP-sensitive K+ (K+ ATP) channel blocker, had no effect on the basal secretion of ANP, suppressed the stimulation of stretch-activated ANP secretion in a dose-dependent manner, but not the translocation of the ECF. Glipizide (100 μM) and tolbutamide (100 μM), other K+ ATP channel blockers, had similar effects to those of glibenclamide. Suppression by glibenclamide (100 μM) of the stretch-induced ANP secretion was not observed in atria that had been pretreated with pinacidil (200 μM), an ATP-sensitive K+ channel opener: pinacidil alone had no effect on ECF translocation and ANP secretion. Furthermore, blocking Ca2+ influx by using the Ca2+ channel blocker diltiazem (10 nM), or a Ca2+-depleted medium prevented the suppression of stretch-induced ANP secretion by glibenclamide. In other experiments, atrial distension produced a slight membrane depolarization of cardiomyocytes; this was accentuated in the presence of glibenclamide. Furthermore, in single cardiomyocytes, glibenclamide increased the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. From these results, we suggest that glibenclamide suppresses atrial release of ANP by blocking K+ ATP channels and increasing Ca2+ influx and that the K+ ATP channels are associated with the regulation of the mechanically activated ANP secretion from the atria. Received: 13 May 1996 / Received after revision: 10 February 1997 / Accepted: 5 March 1997  相似文献   

15.
Ca2+-activated K+ channels of a large conductance (BKCa) in human skeletal muscle were studied by patch clamping membrane blebs and by using the three microelectrode voltage-clamp recording technique on resealed fibre segments. Single-channel recordings in bleb-attached and inside-out modes revealed BKCa conductances of 230 pS for symmetrical and 130 pS for physiological K+ distributions. Open probability increased with membrane depolarization and increasing internal [Ca2+]. The Hill coefficient was 2.0, indicating that at least two Ca2+ ions are required for full activation. Kinetic analysis revealed at least two open and three closed states. An additional long-lived inactivated state, lasting about 0.5–20 s, was observed following large depolarizations, when extracellular K+ was lowered to physiological values. BKCa were blocked by three means: (1) externally by tetraethylammonium which reduced single-channel amplitude (IC50 approx. 0.3 mM); (2) internally by polymyxin B which decreased the open probability (IC50 approx. 5 g/ml); and (3) externally by charybdotoxin which caused long-lasting periods of inactivation (IC50 <10 nM). Measurements on resealed fibre segments at physiological [K+] were in accordance with the single-channel data: only when intracellular [Ca2+] was elevated did charybdotoxin (50 nM) reduce the macroscopic membrane K+ conductance with depolarizing voltage steps.  相似文献   

16.
Voltage-gated Ca(2+) channels (VGCCs) are important in regulating a variety of cellular functions in neurons. It remains poorly understood how VGCCs with different functions are sorted within neurons. Here we show that the t-complex testis-expressed 1 (tctex1) protein, a light-chain subunit of the dynein motor complex, interacts directly and selectively with N- and P/Q-type Ca(2+) channels, but not L-type Ca(2+) channels. The interaction is insensitive to Ca(2+). Overexpression in hippocampal neurons of a channel fragment containing the binding domain for tctex1 significantly decreases the surface expression of endogenous N- and P/Q-type Ca(2+) channels but not L-type Ca(2+) channels, as determined by immunostaining. Furthermore, disruption of the tctex1-Ca(2+) channel interaction significantly reduces the Ca(2+) current density in hippocampal neurons. These results underscore the importance of the specific tctex1-channel interaction in determining sorting and trafficking of neuronal Ca(2+) channels with different functionalities.  相似文献   

17.
Microinjection of inositol 1,4,5-trisphosphate (InsP 3) into intact skeletal muscle fibers isolated from frogs (Rana temporaria) increased resting cytosolic Ca2+ concentration ([Ca2+]i) as measured by double-barreled Ca2+-selective microelectrodes. In contrast, microinjection of inositol 1-phosphate, inositol 1,4-biphosphate, and inositol 1,4,5,6-tetrakisphosphate did not induce changes in [Ca2+]i. Incubation in low-Ca2+ solution, or in the presence of L-type Ca2+ channel blockers did not affect InsP 3-induced release of cytosolic Ca2+. Neither ruthenium red, a blocker of ryanodine receptor Ca2+-release channels, nor cytosolic Mg2+, a known inhibitor of the Ca2+-induced Ca2+-release process, modified the InsP 3-induced release of cytosolic Ca2+. However, heparin, a blocker of InsP 3 receptors, inhibited InsP 3-induced release of cytosolic Ca2+. Also, pretreatment with dantrolene or azumulene, two inhibitors of cytosolic Ca2+ release, reduced [Ca2+]i, and prevented InsP 3 from inducing release of cytosolic Ca2+. Incubation in caffeine or lengthening of the muscle increased [Ca2+]i and enhanced the ability of InsP 3 to induce release of cytosolic Ca2+. These results indicate that InsP 3, at physiological concentrations, induces Ca2+ release in intact muscle fibers, and suggest that the InsP 3-induced Ca2+ release is regulated by [Ca2+]i. A Ca2+-dependent effect of InsP 3 on cytosolic Ca2+ release could be of importance under physiological or pathophysiological conditions associated with alterations in cytosolic Ca2+ homeostasis. Received: 15 December 1995/Received after revision and accepted: 10 May 1996  相似文献   

18.
The abundance of voltage-gated L-type Ca2+ channels is altered by beta-adrenergic receptor (beta-AR) stimulation and by an elevation of the intracellular Ca2+ concentration in cardiac myocytes. In whole animal, chronic beta-AR stimulation or pacing heart results in various changes in the abundance of the channel, but it reduces the beta-AR responsiveness of the L-type channel. Because beta-AR stimulation facilitates the L-type calcium channels, it is difficult in the whole animal to study the effects of beta-AR and Ca2+ influx on the upregulation of the L-type channel independently of each other, which makes the culture of nonbeating adult myocytes an attractive model. We found that culturing quiescent adult rabbit ventricular myocytes with isoproterenol (ISO, 2 microM) for 72 h or more caused a significant increase in the expression of mRNA coding for the L-type channel alpha(1C) subunit by approximately twofold as compared to time-matched controls, and it was followed by a 1.8-fold increase in the Ca2+ current density at 96 h. Somewhat surprisingly, an acute application of 1 microM ISO increased the current amplitude even in ISO-treated cells. The increase in the current density, induced by sustained beta-AR stimulation, was blocked by a beta-AR antagonist, propranolol (10 microM), but not by a Ca2+ antagonist, nitrendipine (10 microM). In addition, the effects were reproduced by forskolin (10 microM), but not by a Ca2+ agonist, Bay-K 8644 (2 microM). Taken together, these results suggest that sustained beta-AR stimulation upregulates L-type channel expression, but does not alter the beta-AR responsiveness of the channel in quiescent myocytes.  相似文献   

19.
20.
Muscles deficient in ATP-dependent potassium (KATP) channels develop contractile dysfunctions during fatigue that may explain their apparently faster rate of fatigue compared with wild-type muscles. The objectives of this study were to determine: (1) whether the contractile dysfunctions, namely unstimulated force and depressed force recovery, result from excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) whether reducing the magnitude of these two contractile dysfunctions reduces the rate of fatigue in KATP channel-deficient muscles. To reduce Ca2+ influx, we lowered the extracellular Ca2+ concentration ([Ca2+]o) from 2.4 to 0.6 mM or added 1 microM verapamil, an L-type Ca2+ channel blocker. Flexor digitorum brevis (FDB) muscles deficient in KATP channels were obtained by exposing wild-type muscles to 10 microM glibenclamide or by using FDB from Kir6.2-/- mice. Fatigue was elicited with one contraction per second for 3 min at 37 degrees C. In wild-type FDB, lowered [Ca2+]o or verapamil did not affect the decrease in peak tetanic force and unstimulated force during fatigue and force recovery following fatigue. In KATP channel-deficient FDB, lowered [Ca2+]o or verapamil slowed down the decrease in peak tetanic force recovery, reduced unstimulated force and improved force recovery. In Kir6.2-/- FDB, the rate of fatigue became slower than in wild-type FDB in the presence of verapamil. The cell membrane depolarized from -83 to -57 mV in normal wild-type FDB. The depolarizations in some glibenclamide-exposed fibres were similar to those of normal FDB, while in other fibres the cell membrane depolarized to -31 mV in 80 s, which was also the time when these fibres supercontracted. It is concluded that: (1) KATP channels are crucial in preventing excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) they contribute to the decrease in force during fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号