首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to target specific cell types to achieve optimal distribution of therapeutic entities into diseased tissues, while limiting possible adverse off-target effects, has long been a goal of many research groups and pharmaceutical organizations. This review focuses on peptidic tissue-specific biomarkers that allow peptides to act as homing devices for specific tissue types or organs, with a focus on homing peptides (HPs) and cell-penetrating homing peptides (CPHPs). These HPs, in addition to promoting cellular uptake, can deliver a variety of cargos (drugs, oligonucleotides and nanoparticles) into cells. Two such peptides that have entered clinical trials are the tumor-homing peptide asparagine-glycine-arginine (NGR) (fused to human tumor necrosis factor), which selectively binds CD13, an aminopeptidase that is overexpressed on tumor blood vessels, and cyclo[Arg-Gly-Asp-D-Phe-(NMeVal)] (cRGD, cilengitide), an anti-angiogenic agent that targets the α(v)β(3) and α(v)β(5) integrins.  相似文献   

2.
Targeted delivery of chemotherapeutic drug at the tumor site enhances the efficacy with minimum systemic exposure. Towards this, drugs conjugated with peptides having affinity towards a particular molecular target are recognized as affective agents for targeted chemotherapy. Thus, in the present study, tumor‐homing asparagine‐glycine‐arginine (NGR) peptide ligand was conjugated to DNA alkylating nitrogen mustard, chlorambucil (CLB). The peptide‐drug conjugate (PDC), CLB‐c(NGR), was radiolabeled with 99mTc‐HYNIC core to trace its pharmacokinetics and biodistribution pattern. In vitro cell‐binding studies of 99mTc‐HYNIC‐CLB‐c(NGR) were conducted in murine melanoma B16F10 cells. The cytotoxicity studies conducted by incubation of the peptide/drug/PDC with B16F10 cells demonstrated enhanced cytotoxic effect of PDC in comparison to either the peptide or the drug alone. In vivo biodistribution studies in C57BL6 mice bearing melanoma tumor showed maximum tumor uptake at 30 minutes pi (2.45 ± 0.28% ID/g), which reduced to 0.77 ± 0.1% ID /g at 3 hours pi. The radiotracer being hydrophilic cleared rapidly from the heart, lungs, liver, and muscle. The tumor‐to‐blood and tumor‐to‐muscle ratios improved with time. This study opens avenues for conjugation of other targeting peptides with the drug CLB for enhanced toxicity at the diseased site.  相似文献   

3.
Abstract: Despite their low molecular weight and simple structure, peptides regulate vital reactions of various cells. With higher standards of safety and purity required in clinical researches, chemically synthesized peptides are considered as an ideal alternative material for animal‐derived materials in the regulation of cellular events. However, effective high‐throughput assay for studying peptide‐cell interactions has not been established to design peptide with objective function. Here, we report the effectiveness of the utilization of peptide array combined with cell assay for the design of cell‐interactive peptides. As a model case, peptide that regulates tumor cell viability with support‐bound form was explored. By culturing cells on peptide array, we found a novel 5‐mer sequence CNNLP (Cys‐Asp‐Asp‐Leu‐Pro) that strongly inhibits viability of tumor cells (leukemia and adenocarcinoma) from human Fas antigen ligand. We here indicate the advantageous features of peptide array, which are ‘feasibility in examining combinatorial amino acid substitutions’ and ‘indicative data consist of effective and ineffective substitutions from an assay’, contributes greatly for studying peptide‐cell interaction. These features differentiate peptide array from other peptide library screening strategy. As a result, we succeeded in obtaining 29 novel tumor‐growth inhibitory peptides with it solid‐bound form, and structural rules that suggest ideal peptide design for acquiring objective peptide function.  相似文献   

4.
The development of intravascular conjugates that efficiently deliver genes or drugs to tumors is limited by the lack of efficacious targeting ligands. Small targeting peptides, such as those iterated by phage display technology, offer enormous potential for these applications. The majority of reports published to date have focused on the identification of peptides isolated for their ability to bind to human cancer cell lines in vitro, and have failed to account for the loss of polarization and de-differentiation of such cells from their in vivo state. Here, we report a novel approach for the identification of peptides capable of binding specifically to cancer cells derived from clinically resected human colon cancer. In this strategy, laser capture microdissection (LCM) is performed on a surgically resected colon cancer specimen to separate only cancer cells from the specimen. Subsequently, biopanning was performed on the LCM-selected colon cancer cells to identify peptide sequences that bound specifically to them. A peptide containing the SPT motif was selected as the most promising consensus sequence binding specifically to the LCM-selected colon cancer cells. Phage clones displaying the SPT motif demonstrated 9-fold higher binding to colon cancer cells derived from a patient than insertless phage (p < 0.05), while, recovery of the SPT phage from the colon cancer cell lines DLD-1 and HCT-15 was 7-fold higher than that of the control insertless phage (p < 0.05). The binding of SPT phage to colon cancer cells from the patient was confirmed by immunofluorescence. Additionally, a synthesized SPT-containing peptide (SPTKSNS) showed binding activity in the absence of mitogenic effects on colon cancer cells in vitro. In summary, we have introduced LCM into a biopanning procedure and identified a small peptide that binds preferentially to colon cancer cells derived from a clinically resected sample. This procedure could be applicable for the design of customized cancer cell targeting methodologies using clinical biopsy samples from human subjects.  相似文献   

5.
Notch pathway was found to be activated in most glioblastomas (GBMs), underlining the importance of Notch in formation and recurrence of GBM. In this study, a Notch inhibitory peptide, dominant negative MAML (dnMAML), was conjugated to elastin-like polypeptide (ELP) for tumor targeted delivery. ELP is a thermally responsive polypeptide that can be actively and passively targeted to the tumor site by localized application of hyperthermia. This complex was further modified with the addition of a cell penetrating peptide, SynB1, for improved cellular uptake and blood–brain barrier penetration. The SynB1–ELP1–dnMAML was examined for its cellular uptake, cytotoxicity, apoptosis, cell cycle inhibition and the inhibition of target genes’ expression. SynB1–ELP1–dnMAML inhibited the growth of D54 and U251 cells by inducing apoptosis and cell cycle arrest, especially in the presence of hyperthermia. Hyperthermia increased overall uptake of the polypeptide by the cells and enhanced the resulting pharmacological effects of dnMAML, showing the inhibition of targets of Notch pathway such as Hes-1 and Hey-L. These results confirm that dnMAML is an effective Notch inhibitor and combination with ELP may allow thermal targeting of the SynB1–ELP1–dnMAML complex in cancer cells while avoiding the dangers of systemic Notch inhibition.  相似文献   

6.
Aberrant expression of ErbB-2, a member of the epidermal growth factor family of receptors, has been implicated in the formation of various malignancies including ovarian cancer. The objective of this study was to determine if the bacteriophage (phage) display-selected ErbB-2 targeting peptide, KCCYSL, once radiolabeled with (111)In would serve as a tumor targeting and Single Photon Emission Computed Tomography (SPECT/CT) imaging agent in a mouse model of human ovarian carcinoma expressing ErbB-2. The KCCYSL peptide was synthesized with a chelator 1,4,7,10-tetra-azacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA), and a Gly-Ser-Gly (GSG) spacer between DOTA and amino terminus of the peptide and radiolabeled with (111)InC1(3). In vitro cell binding studies indicated that (111)In-DOTA-GSG-KCCYSL bound to cultured ovcar-3 carcinoma cells. Biodistribution studies in scid mice bearing human ovcar-3 tumor xenografts revealed a tumor uptake of 0.50 ± 0.05 percent injected dose per gram (%ID/g) at 1 h, and 0.39 ± 0.1 %ID/g at 2 h. Blocking studies with non-radiolabeled counterpart indicated a partial inhibition (41%) (P = 0.04) in tumor uptake of (111)In-DOTA-GSG-KCCYSL. In vivo tumor uptake of (111)In-DOTA-GSG-KCCYSL was clearly evident through SPECT/CT images after 2 h post injection. These studies suggest the potential of this peptide as a radiopharmaceutical for imaging of ErbB-2-expressing ovarian tumors.  相似文献   

7.
θ‐defensins belong to the family of host defence peptides. They are the only known example of cyclic polypeptides in animal proteomes. This study presents the synthesis of simplified θ‐defensin analogues with pairs of cysteine replaced either by alanine, leucine or serine residues. Cytotoxicity tests were performed on human mammary epithelial (HB2) and breast cancer (SKBR3, MDA‐MB‐231) cell lines to determine whether peptides are selectively targeting cancer cells. The effect of these peptides was also evaluated in 3D Matrigel cultures, which are based on extracellular matrix components and therefore closely represent in vivo conditions. Finally, to determine whether analogues are able to sensitize MDA‐MB‐231 triple‐negative breast cancer cells to chemotherapeutics, we co‐administrated peptides with cisplatin or doxorubicin hydrochloride also in 3D Matrigel cultures. Additionally, cytotoxicity towards peripheral blood mononuclear cells and haemolytic effect were examined for a chosen representative of synthesized compounds. The results showed that positively charged serine‐containing θ‐defensin derivatives were more cytotoxic towards breast cancer cells (SKBR3, MDA‐MB‐231) than towards mammary epithelial cells (HB2). Analogues enhanced the effect of cisplatin and doxorubicin hydrochloride on triple‐negative breast cancer cell line (MDA‐MB‐231).  相似文献   

8.
Abstract: B‐cell epitopes were selected from the gp21 and gp46 subunits of the envelope glycoprotein of human T‐cell lymphotropic virus type 1 (HTLV‐1) by computer‐aided analyses of protein antigenicity. Molecular modeling was used to design and synthesize the epitopes as chimeric constructs with promiscuous T‐helper epitopes derived either from the tetanus toxoid (amino acids 947–967) or measles virus fusion protein (amino acids 288–302). Circular dichroism measurements revealed that the peptides had a secondary structure that correlated well with the crystal structure data or predicted structure. The chimeric peptides were then evaluated for their immunogenicity in rabbits or mice. Antibodies against one of the epitopes derived from the gp21 subunit were found to be neutralizing in its ability to inhibit the formation of virus‐induced syncytia. These studies underscore the importance of the gp21 transmembrane region for the development of vaccine candidates. The applicability of a chimeric approach is discussed in the context of recent findings regarding the role of gp21 transmembrane region in the viral fusion process.  相似文献   

9.
Introduction: Very few successful interventions have been possible in glioma therapy owing to its aggressive nature as well as its hindrance of targeted therapy together with the limited access afforded by the blood–brain barrier (BBB). With the advent of nanotechnology based delivery vehicles such as micelles, dendrimers, polymer-based nanoparticles and nanogels, the breach of the BBB has been facilitated. However, there remains the issue of targeted therapy for glioma cells. Peptide-mediated surface modification of nanocarriers serves this purpose, extending the ability to target glioma further than the enhanced permeability and retention effect.

Areas covered: Here we have tried to re-establish the significance of peptides that could be used in various ways for treating glioma. Peptide-embellished nanocarriers used to deliver anticancer drugs; nucleic acids (siRNA, miRNA); micelles or dendrimers grafted with immunogenic glioma-derived peptides used for stimulating active immunity in vaccine therapy, glioma targets for cell penetrating peptides and homing to specific receptors are reviewed.

Expert opinion: Peptides have multifunctional potential in targeting, BBB and cell penetration, and can serve as antagonists of various ligands and agonists of particular over-expressed receptors as discussed in this review. Using peptides in targeted personalized therapy would be one step forward and may offer new avenues for glioma therapeutics.  相似文献   


10.
Abstract: In the field of drug delivery there has been a continuous study of powerful delivery systems to aid non permeable drugs in reaching their intracellular target. Among the systems explored are cell penetrating peptides (CPPs), which first garnered interest a decade ago when the interesting translocation properties of the pioneer CPPs Tat and Antp were described. A new family of CPPs has recently been described as non cytotoxic Pro‐rich vectors with favorable profiles for internalization in HeLa cells. Fatty acyl moieties that can tune a peptide's interaction with the lipophilic environment of a cell membrane have been incorporated into the Pro‐rich sequence. Improvements in cellular uptake of peptides modified with fatty acyl groups, as studied by confocal microscopy and flow cytometry, as well as the results obtained by the interaction of these peptides with a model dioleoylphosphatidylcholine (DOPC) membrane and transmission electron microscopy (TEM), illustrate the importance of the fatty acyl moieties for efficient internalization.  相似文献   

11.
Rabies virus glycoprotein (RVG), a 505 amino acid type-1 glycoprotein, is responsible for the neurotrophic nature of the rabies virus infection. Despite varying reports in the literature as to which receptor is ultimately responsible for interaction of RVG with the nervous system, there is a strong argument for major nicotinic acetylcholine receptor (nAChR) involvement. Peptide derivatives of RVG, such as rabies virus-derived peptide (RDP) and RVG-29 are emerging as promising targeting ligands for the delivery of therapeutics to the central nervous system (CNS). The neurotrophic nature of RVG and indeed its derivatives may be due to interaction with ubiquitous nAChRs principally, but also association with other neural cell-specific molecules such as neural cell adhesion molecule (NCAM). It is possible that nAChR-mediated uptake of RVG-derived peptides may serve as an attractive new approach for targeting drug delivery to the brain. Potential application of this type of drug delivery system extends to many diseases affecting the CNS, where specific and effective drug delivery is normally a challenging process.  相似文献   

12.
A major obstacle to advances in anti-vascular therapy is the lack of molecule candidates that are effective in selectively targeting cancer tissues while sparing normal ones. Phage display peptide library greatly eases the discovery of peptides with specific homing capacity. Many novel peptides homing to angiogenic vessels were isolated recently. Notably, many such peptides showed relatively specific affinity with particular tumor types. These peptides appear to be able to accumulate in the target vascular site of tumor, making them particularly efficient to deliver drugs or other therapeutic and imaging agents. Some homing peptides could not only target to the desired location, but also be internalized into targeted cells, or even induce destruction in desired cells all by the same peptide sequence itself. Accumulating evidence has shown that by tumor specific targeting delivery, improved local effect can be achieved with well tolerated side effects. In the current review, recent literatures and patents in this field have been summarized.  相似文献   

13.
Hunter-killer peptides (HKPs) are synthetic peptides that target specific cell types for apoptosis. These studies report functional and structural characteristics of HKP9, an hunter-killer peptide that specifically targets tumor vasculature with a new apoptotic sequence. Vesicle leakage experiments were performed as a model for membrane perturbing activity. Placement of the homing sequence reduces both cell toxicity and vesicle leakage activity. NMR studies elucidate the conformation and orientation of HKP9 in micelles. The positively charged end of the HKP9 killing sequence is solvent exposed; however, the central portion of the peptide is helical and buried in dodecylphosphorylcholine micelles. The homing sequence is less solvent exposed than in a previously reported tumor-homing peptide. The results suggest that solvent accessibility of the homing sequence should be considered in design of future peptides.  相似文献   

14.
目的合成纳米银,在其表面修饰穿膜肽(TAT),并检测修饰后纳米银粒对人乳腺癌耐阿霉素细胞(MCF-7/ADR)的穿膜活性。方法通过化学还原法制备纳米银(AgNP),并通过Ag-S共价键与TAT连接修饰AgNP。通过粒度仪、透射电镜、激光共聚焦显微镜、流式细胞仪以及二喹林甲酸法等仪器及方法对其表征、共价连接及TAT的介导活性进行测定。结果成功制备了10 nm以下的AgNP,且修饰TAT后的AgNP(AgNP-TAT)表现出了比AgNP更强的穿膜活性。结论 TAT修饰AgNP后能显著提高其穿膜活性。  相似文献   

15.
Gold nanocages (AuNCs) are comparatively novel nanostructures, as many of their characteristics are still to be exploited. The purpose of present study was to systematically investigate the toxicological effects of AuNCs on human keratinocyte cell line (HaCaT) utilizing Dark Field (DF)/Bright Field (BF) imaging and flow cytometry cell cycle techniques. We have applied surface modification, concentration, and incubation time of AuNCs as variables to investigate their effect on the cellular imaging and cell cycle response of HaCaT cells. The results indicate that the AuNCs interact with HaCaT cells in accordance to their surface charge and concentration. Cellular uptake is evident from DF images which lead to the cell cycle perturbations and apoptosis in HaCaT cells. AuNCs cause a prominent G2/M phase arrest after 24 h of incubation. To the best of our knowledge toxicological effects of AuNCs on cell cycle of HaCaT cell line in vitro are not reported previously.  相似文献   

16.
We have used tumor-homing peptides to target abraxane, a clinically approved paclitaxel-albumin nanoparticle, to tumors in mice. The targeting was accomplished with two peptides, CREKA and LyP-1 (CGNKRTRGC). Fluorescein (FAM)-labeled CREKA-abraxane, when injected intravenously into mice bearing MDA-MB-435 human cancer xenografts, accumulated in tumor blood vessels, forming aggregates that contained red blood cells and fibrin. FAM-LyP-1-abraxane co-localized with extravascular islands expressing its receptor, p32. Self-assembled mixed micelles carrying the homing peptide and the label on different subunits accumulated in the same areas of tumors as LyP-1-abraxane, showing that Lyp-1 can deliver intact nanoparticles into extravascular sites. Untargeted, FAM-abraxane was detected in the form of a faint meshwork in tumor interstitium. LyP-1-abraxane produced a statistically highly significant inhibition of tumor growth compared with untargeted abraxane. These results show that nanoparticles can be effectively targeted into extravascular tumor tissue and that targeting can enhance the activity of a therapeutic nanoparticle.  相似文献   

17.
Tumor-targeted delivery is considered a crucial component of current anticancer drug development and is the best approach to increase the efficacy and reduce the toxicity. Nanomedicine, particularly ligand-based nanoparticles have shown a great potential for active targeting of tumor. Cell penetrating peptide is one of the promising ligands in a targeted cancer therapy. In this study, the gambogic acid-loaded nanostructured lipid carrier (GA-NLC) was modified with two kinds of cell penetrating peptides (cRGD and RGERPPR). The GA-NLC was prepared by emulsification and solvent evaporation method and coupled with cRGD, RGERPPR, and combination cRGD and RGERPPR to form GA-NLC-cRGD, GA-NLC-RGE, and GA-NLC-cRGD/RGE, respectively. The formulations were characterized by their particle size and morphology, zeta potential, encapsulation efficiency, and differential scanning calorimetry. In vitro cytotoxicity and cellular uptake study of the formulations were performed against breast cancer cell (MDA-MB-231). Furthermore, in vivo biodistribution and antitumor activity of the formulations were determined by in vivo imaging and in tumor-bearing nude mice, respectively. The result of in vitro cytotoxicity study showed that GA-NLC-RGE exhibited a significantly higher cytotoxicity on MDA-MB-231 as compared with GA-NLC and GA-Sol. Similarly, RGE-Cou-6-NLC showed remarkably higher uptake by the cells than other NLCs over the incubation period. The in vivo imaging study has demonstrated that among the formulations, the RGE-decorated DiR-NLC were more accumulated in the tumor site. The in vivo antitumor activity revealed that RGE-GA-NLC inhibits the tumor growth more efficiently than other formulations. In conclusion, RGERPPR has a potential as an effective carrier in targeting drug delivery of anticancer agents.  相似文献   

18.
Cell‐penetrating peptides present an attractive and efficient tool for the delivery of a variety of cell impermeable cargoes across the cellular membrane. Cell‐penetrating peptides usually consist of short basic peptide sequences that are internalized by a variety of cell lines. Most cell‐penetrating peptides lack cell specificity, however, which greatly limits their use as efficient therapeutic agents. Herein, we present two cell‐penetrating peptides displaying a type II polyproline helical backbone that are functionalized to contain six cationic moieties and two distinctive hydrophobic functionalities, namely isobutyl or benzyl groups. The uptake efficiency of these cationic amphiphilic polyproline helices was studied in seven different cell lines, six cancerous (MCF‐7, HOS, HT1080, HeLa, KB‐FD, KB3‐1) and one non‐cancerous (WI 38). The cationic amphiphilic polyproline helix P11LRR at 50 μm showed high specificity toward MCF‐7 breast cancer cells. Co‐culture experiments with P11LRR demonstrated almost exclusive internalization by MCF‐7 cells and not WI38. The replacement of the isobutyl hydrophobic group with a benzyl moiety resulted in a shift in uptake efficiency and specificity across some cell lines. These results demonstrate that the type of hydrophobic residues utilized in the creation of cell‐penetrating peptides can strongly influence the extent and specificity of cellular internalization.  相似文献   

19.
Bacterial peptide pheromone has a high affinity to its membrane receptor. Fusion of these peptides to pore-forming antimicrobial peptide might enhance its bactericidal activity against pheromone-sensing bacteria. We constructed two chimeric peptides by fusing the pore-forming fungicidal peptide dhvar4 to the C-terminus of enterococcal peptide pheromones cCF10 and cOB1 individually. Comparison on the bactericidal activities against pheromone-sensing bacteria Enterococcus faecalis demonstrates that the chimeric peptides cCF10-dhvar4 and cOB1-dhvar4 are more potent than the parent peptide dhvar4. The LD(50)s of both chimeric peptides (1.0 microm) are 10 times lower than that of dhvar4 (10.8 microm). Free peptide pheromone could inhibit E. faecalis killing mediated by both chimeric peptides. As same as that of the parent peptide, both chimeric peptides kill bacteria by disrupting its cell membrane. These results indicate that fused enterococcal peptide pheromone increases the bactericidal activity of fungicidal peptide against E. faecalis by improving its ability to reach the cell membrane.  相似文献   

20.
Properties of different arginine-rich peptides, including net charge and charge distribution, were evaluated for their influence on surface binding, internalization, and intracellular localization. The peptides were radiolabeled and subsequently tested for surface binding and internalization in CHO-K1 cells. Subcellular fractionation assays were performed to separate the amount of peptides associated within vesicles from those inside the cytosol. Net neutral charged peptides, YGR6E6 and YG(RE)6, showed large decreases in both surface binding and cell uptake compared to their net positive charged counterparts, YGR6G6 and YG(RG)6. The peptides with clustered arginine residues, YGR6G6 and YGR6E6, exhibited significantly higher binding and uptake than those with alternating arginine and glycine/glutamate residues, YG(RG)6 and YG(RE)6. The intracellular distribution analysis for all of the peptides tested showed that, regardless of the net uptake, the arginine-rich peptides were preferentially localized in the cytosolic compartment of the cells. Both net positive charge and a clustered arginine sequence enhance the surface binding and internalization of peptides; however, the cytosolic versus vesicular intracellular distribution does not change. The results presented in this report provide important information regarding the specificity of binding and internalization of arginine-rich peptides, which is necessary for the future design of targeted drug delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号