首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bath application of kainate (100-300 nM) induced a persistent gamma-frequency (30-80 Hz) oscillation that could be recorded in stratum radiatum of the CA3 region in vitro. We have previously described that in knockout mice lacking the gap junction protein connexin 36 (Cx36KO), gamma-frequency oscillations are reduced but still present. We now demonstrate that in the Cx36KO mice, but not in wild-type (WT), large population field excitatory postsynaptic potentials, or sharp wave-burst discharges, also occurred during the on-going gamma-frequency oscillation. These spontaneous burst discharges were not seen in WT mice. Burst discharges in the Cx36KO mice occurred with a mean frequency of 0.23 +/- 0.11 Hz and were accompanied by a series of fast (approximately 60-115 Hz) population spikes or "ripple" oscillations in many recordings. Intracellular recordings from CA3 pyramidal cells showed that the burst discharges consisted of a depolarizing response and presumed coupling potentials (spikelets) could occasionally be seen either before or during the burst discharge. The burst discharges occurring in Cx36KO mice were sensitive to gap junctions blockers as they were fully abolished by carbenoxolone (200 microM). In control mice we made several attempts to replicate this pattern of sharp wave activity/ripples occurring with the on-going kainate-evoked gamma-frequency oscillation by manipulating synaptic and electrical signaling. Partial disruption of inhibition, in control slices, by bath application of the gamma-aminobutyric acid-A (GABA(A)) receptor antagonist bicuculline (1-4 microM) completely abolished all gamma-frequency activity before any burst discharges occurred. Increasing the number of open gap junctions in control slices by using trimethylamine (TMA; 2-10 mM), in conjunction with kainate, failed to elicit any sharp wave bursts or fast ripples. However, bath application of the potassium channel blocker 4-aminopyridine (4-AP; 20-80 microM) produced a pattern of activity in control mice (13/16 slices), consisting of burst discharges occurring in conjunction with kainate-evoked gamma-frequency oscillations, that was similar to that seen in Cx36KO mice. In a few cases (n = 9) the burst discharges were accompanied by fast ripple oscillations. Carbenoxolone also fully blocked the 4-AP-evoked burst discharges (n = 5). Our results show that disruption of electrical signaling in the interneuronal network can, in the presence of kainate, lead to the spontaneous generation of sharp wave/ripple activity similar to that observed in vivo. This suggests a complex role for electrically coupled interneurons in the generation of hippocampal network activity.  相似文献   

2.
Vreugdenhil M  Toescu EC 《Neuroscience》2005,132(4):1151-1157
Normal brain ageing is associated with a decline in hippocampal memory functions. Neuronal oscillations in the gamma frequency band have been implicated in various cognitive tasks. In this study we test the effect of normal brain ageing on gamma oscillations in the mouse hippocampus in vitro. gamma Oscillations were evoked by either 10 microM carbachol or 100 nM kainate in ventral hippocampus slices from young (>5 month) and aged (>22 month) C57Bl/J6 mice. In slices from young mice carbachol-induced gamma oscillations were more regular and more coherent than those induced by kainate. Compared with young, the power in the 20-80 Hz frequency range in area CA3 of slices from aged mice was reduced to 14% for kainate-induced oscillations and to 7% for carbachol-induced oscillations, whereas waveform, dominant frequency and coherence of the oscillation were unchanged. Local network properties were assessed by paired-pulse stimulation of Schaffer collateral/commissural fibers. The excitatory synaptic response in stratum radiatum of CA3 was reduced, in correlation with the antidromic population spike, but functional inhibition in CA3 and CA1 was unaffected. Changes in local network properties could not explain the reduced gamma oscillation strength. Since oscillations driven by two different pathways are similarly affected with age, an age-dependent effect on tonic depolarizing drive of principal cells is unlikely to explain the current results. Other mechanisms, including a change with age in the use-dependent modulation of synaptic strength, should account for the impaired gamma oscillations in the aged hippocampus that may contribute to age-dependent memory impairment.  相似文献   

3.
Persistent gamma frequency (30-70 Hz) network oscillations occur in hippocampal slices under conditions of metabotropic glutamate receptor (mGluR) activation. Excessive mGluR activation generated a bistable pattern of network activity during which epochs of gamma oscillations of increasing amplitude were terminated by synchronized bursts and very fast oscillations (>70 Hz). We provide experimental evidence that, during this behavior, pyramidal cell-to-interneuron synaptic depression takes place, occurring spontaneously during the gamma rhythm and associated with the onset of epileptiform bursts. We further provide evidence that excitatory postsynaptic potentials (EPSPs) in pyramidal cells are potentiated during the interburst gamma oscillation. When these two types of synaptic plasticity are incorporated, phenomenologically, into a network model previously shown to account for many features of persistent gamma oscillations, we find that epochs of gamma do indeed alternate with epochs of very fast oscillations and epileptiform bursts. Thus the same neuronal network can generate either gamma oscillations or epileptiform bursts, in a manner depending on the degree of network drive and network-induced fluctuations in synaptic efficacies.  相似文献   

4.
Synchronous population activity is prevalent in neurones of the central nervous system and experimentally captured as oscillatory electric fields, the frequency of which can represent the state of the neural circuit, e.g. theta (∼5 Hz) and gamma (∼40 Hz). Such field oscillations, however, are not merely a result of coherent neuronal activity. They may also play active roles in information processing in the brain. In this study, we observed that, in cultured hippocampal slices, CA3 pyramidal cells responded to single-pulse stimuli with monosynaptic and polysynaptic potentials and firing spikes which occurred after variable latencies. The variability of the spike latencies was greatly reduced in the presence of weak electric field oscillations, especially the oscillation in the gamma-band frequency range, that per se induced only small fluctuations in the subthreshold membrane potential, and this effect was inhibited by blockade of NMDA receptor activity. Furthermore, the latency of the firing spikes changed if the stimulus was applied at a different phase of the imposed gamma oscillations. These results may suggest that the background field oscillations serve as an extracellular time reference and assure accurate and stable decoding of a memory trace present in cortical feedback networks.  相似文献   

5.
Fast oscillations in the beta (15-40 Hz in awake rats) and gamma (50-100 Hz) frequency ranges are prominent in field potentials induced by odorants in the mammalian olfactory bulb (OB) and piriform cortex (PC). Whereas the gamma oscillation has been studied for >50 yr, the beta oscillation has attracted attention only recently, and its origin, mechanism, and relationship to gamma are unknown. To address these questions, we have examined responses induced by odorants in the urethane-anesthetized rat-a preparation well-suited for the analysis of mechanisms. We found that both oscillations could be induced by odorants in a concentration-dependent manner. Analysis with a concentration series and spectral methods revealed that the beta and gamma oscillations were distinct and not harmonically related, indicating generation by independent mechanisms. The beta oscillation was synchronous at sites < or =4 mm apart in the OB, the greatest distance tested. In contrast, the gamma oscillation was synchronous in some experiments and asynchronous in others (frequency differed slightly at different sites, resulting in progressive phase shifts). Current source-density analysis indicated that, for both oscillations, the field potentials in the OB were generated by synaptic currents in granule cells. The two oscillations were differently affected by surgical interruption of the lateral olfactory tract. This lesion abolished the beta oscillation, whereas the gamma oscillation was still induced in the OB. Our results confirm previous reports that the gamma oscillation is generated within the OB but indicate that the beta oscillation requires the participation of PC.  相似文献   

6.
The dentate gyrus is a prominent source of gamma frequency activity in the hippocampal formation in vivo. Here we show that transient epochs of gamma frequency network activity (67 +/- 12 Hz) can be generated in the dentate gyrus of rat hippocampal slices, following brief pressure ejections of a high-molarity potassium solution onto the molecular layer. Oscillatory activity remains synchronized over distances >300 microm and is accompanied by a modest rise in [K(+)](o). Gamma frequency oscillations were abolished by a GABA(A) receptor antagonist demonstrating their dependence on rhythmic inhibition. However, in many cases, higher frequency oscillations (>80 Hz) remained in the absence of synaptic transmission, thus demonstrating that nonsynaptic factors may underlie fast oscillatory activity.  相似文献   

7.
Electrophysiological activity was recorded intracellularly from pyramidal neurons in rat hippocampal slices. Topical application of histamine produced a slow depolarization that was not associated with conductance changes. The depolarization was accompanied by an increase in the rate of action potential discharges. These effects were markedly reduced in slices maintained in a low Ca2+, high Mg2+ medium, indicating that histamine may act presynaptically on hippocampal pyramidal neurons.  相似文献   

8.
Slow oscillations originating in the prefrontal neocortex during slow-wave sleep (SWS) group neuronal network activity and thereby presumably support the consolidation of memories. Here, we investigated whether the grouping influence of slow oscillations extends to hippocampal sharp wave-ripple (SPW) activity thought to underlie memory replay processes during SWS. The prefrontal surface EEG and multiunit activity (MUA), along with hippocampal local field potentials (LFP) from CA1, were recorded in rats during sleep. Average spindle and ripple activity and event correlation histograms of SPWs were calculated, time-locked to half-waves of slow oscillations. Results confirm decreased prefrontal MUA and spindle activity during EEG slow oscillation negativity and increases in this activity during subsequent positivity. A remarkably close temporal link was revealed between slow oscillations and hippocampal activity, with ripple activity and SPWs being also distinctly decreased during negative half-waves and increased during slow oscillation positivity. Fine-grained analyses of temporal dynamics revealed for the slow oscillation a phase delay of approximately 90 ms with reference to up and down states of prefrontal MUA, and of only approximately 60 ms with reference to changes in SPWs, indicating that up and down states in prefrontal MUA precede corresponding changes in hippocampal SPWs by approximately 30 ms. Results support the notion that the depolarizing surface-positive phase of the slow oscillation and the associated up state of prefrontal excitation promotes hippocampal SPWs via efferent pathways. The preceding disfacilitation of hippocampal events temporally coupled to the negative slow oscillation half-wave appears to serve a synchronizing role in this neocorticohippocampal interplay.  相似文献   

9.
The rhythmical and pharmacological properties of carbachol-induced beta oscillation were studied using rat hippocampal slices. With the application of 30 microM carbachol, beta-range oscillations with frequencies of 13-20 Hz were recorded from the CA3 region. An AMPA receptor antagonist, CNQX, diminished the oscillations. An NMDA receptor antagonist, APV, significantly suppressed the pre-established beta oscillations. The pre-application of APV blocked the start of the carbachol-induced beta oscillations. When bicuculline (BIC), a GABAA receptor antagonist, was applied to the pre-established beta oscillations, the frequency decreased to the theta-range. When 5 microM BIC was applied with 30 microM carbachol, the beta oscillations did not start; instead, theta-like activities were induced. It has been reported that carbachol in hippocampal slices can induce theta-like activities, which are not modulated by BIC, while BIC's facilitating the start of the activities. The results of the present study suggest that the GABAA receptor-mediated inhibitory transmission modulates the beta oscillation and that the transmission is needed for the start process of the oscillations. Therefore, the start and generation mechanisms of carbachol-induced beta oscillation will be different from those of carbachol-induced theta-like activities.  相似文献   

10.
Though all in vitro models of gamma frequency network oscillations are critically dependent on GABAA receptor-mediated synaptic transmission little is known about the specific role played by different subtypes of GABAA receptor. Strong expression of the α5 subunit of the GABAA receptor is restricted to few brain regions, amongst them the hippocampal dendritic layers. Receptors containing this subunit may be expressed on the extrasynaptic membrane of principal cells and can mediate a tonic GABAA conductance. Using hippocampal slices of wild-type (WT) and α5−/− mice we investigated the role of α5 subunits in the generation of kainate-induced gamma frequency oscillations (20–80 Hz). The change in power of the oscillations evoked in CA3 by increasing network drive (kainate, 50–400 n m ) was significantly greater in α5−/− than in WT slices. However, the change in frequency of gamma oscillations with increasing network drive seen in WT slices was absent in α5−/− slices. Raising the concentration of extracellular GABA by bathing slices in the GABA transaminase inhibitor vigabatrin and blocking uptake with tiagabine reduced the power of gamma oscillations more in WT slices than α5−/− slices (43% versus 15%). The data suggest that loss of this GABAA receptor subunit alters the dynamic profile of gamma oscillations to changes in network drive, possibly via actions of GABA at extrasynaptic receptors.  相似文献   

11.
Liu F  Jiang H  Zhong W  Wu X  Luo J 《Neuroscience》2010,171(3):747-759
The hippocampus plays an important role in the formation of new memories and spatial navigation. Recently, growing evidence supports the view that it is also involved in addiction to opiates and other drugs. Theoretical and experimental studies suggest that hippocampal neural-network oscillations at specific frequencies and unit firing patterns reflect information of learning and memory encoding. Here, using multichannel recordings from the hippocampal CA1 area in behaving mice, we investigated the phase correlations between the theta (4-10 Hz) and gamma (40-100 Hz) oscillations, and the timing of spikes modulated by these oscillations. Local field potentials and single unit recordings in the CA1 area of mice receiving chronic morphine treatment revealed that the power of the theta rhythm was strongly increased; at the same time, the theta frequency during different behavioral states shifted markedly, and the characteristic coupling of theta and gamma oscillations was altered. Surprisingly, though the gamma oscillation frequency changed, the power of gamma lacking theta did not. Moreover, the timing of pyramidal cell spikes relative to the theta rhythm and the timing of interneuron spikes relative to the gamma rhythm changed during chronic morphine administration. Furthermore, these responses were impaired by a selective D1/D5 receptor antagonist intra-hippocampus injection. These results indicate that chronic morphine administration induced the changes of ensemble activity in the CA1 area, and these changes were dependent on local dopamine receptor activation.  相似文献   

12.
Normal ageing-associated spatial memory impairment has been linked to subtle changes in the hippocampal network. Here we test whether the age-dependent reduction in gamma oscillations can be explained by the changes in intrinsic properties of hippocampal interneurons.Kainate-induced gamma oscillations, but not spontaneous gamma oscillations, were reduced in slices from aged mice. CA3 interneurons were recorded in slices from young and aged mice using Fura-2-filled pipettes. Passive membrane properties, firing properties, medium- and slow-afterhyperpolarisation amplitudes, basal [Ca2+]i and firing-induced [Ca2+]i transients were not different with ageing. Kainate caused a larger depolarisation and increase in [Ca2+]i signal in aged interneurons than in young ones. In contrast to young interneurons, kainate increased the medium- and slow-afterhyperpolarisation and underlying [Ca2+]i transient in aged interneurons.Modulating the slow-afterhyperpolarisation by modulating L-type calcium channels with BAY K 8644 and nimodipine suppressed and potentiated, respectively, kainate-induced gamma oscillations in young slices.The age-dependent and stimulation-dependent increase in basal [Ca2+]i, firing-induced [Ca2+]i transient and associated afterhyperpolarisation may reduce interneuron excitability and contribute to an age-dependent impairment of hippocampal gamma oscillations.  相似文献   

13.
Parkinson's disease (PD) is associated with enhanced synchronization of neuronal network activity in the beta (15-30 Hz) frequency band across several nuclei of the basal ganglia (BG). Deep brain stimulation of the subthalamic nucleus (STN) appears to reduce this pathological oscillation, thereby alleviating PD symptoms. However, direct stimulation of primary motor cortex (M1) has recently been shown to be effective in reducing symptoms in PD, suggesting a role for cortex in patterning pathological rhythms. Here, we examine the properties of M1 network oscillations in coronal slices taken from rat brain. Oscillations in the high beta frequency range (layer 5, 27.8+/-1.1 Hz, n=6) were elicited by co-application of the glutamate receptor agonist kainic acid (400 nM) and muscarinic receptor agonist carbachol (50 microM). Dual extracellular recordings, local application of tetrodotoxin and recordings in M1 micro-sections indicate that the activity originates within deep layers V/VI. Beta oscillations were unaffected by specific AMPA receptor blockade, abolished by the GABA type A receptor (GABA(A)R) antagonist picrotoxin and the gap-junction blocker carbenoxolone, and modulated by pentobarbital and zolpidem indicating dependence on networks of GABAergic interneurons and electrical coupling. High frequency stimulation (HFS) at 125 Hz in superficial layers, designed to mimic transdural/transcranial stimulation, generated gamma oscillations in layers II and V (incidence 95%, 69.2+/-7.3 Hz, n=17) with very fast oscillatory components (VFO; 100-250 Hz). Stimulation at 4 Hz, however, preferentially promoted theta activity (incidence 62.5%, 5.1+/-0.6 Hz, n=15) that effected strong amplitude modulation of ongoing beta activity. Stimulation at 20 Hz evoked mixed theta and gamma responses. These data suggest that within M1, evoked theta, gamma and fast oscillations may coexist with and in some cases modulate pharmacologically induced beta oscillations.  相似文献   

14.
The precise molecular events of mitochondrial dysfunction, one of the last steps that irreversibly determines cellular degeneration and death, remain unknown. We introduce a novel strategy to isolate and assess the molecular mechanisms underlying mitochondrial dysfunction. Using an in vitro ischemia model, we obtained evidence for prolonged mitochondrial depolarization in rat organotypic hippocampal brain slices during reperfusion. Then, mitochondria were isolated from brain slices and mitochondrial proteins were purified on a cyclosporin-A affinity column. Cyclosporin-A is the most potent inhibitor of mitochondrial dysfunction, in particular the mitochondrial permeability transition, and therefore we hypothesized that it may interact with proteins involved in the permeability transition after mitochondria were subjected to manipulations that promote this event. Mitochondrial porin was reproducibly eluted from the affinity column using proteins from ischemic brain mitochondria, or from mitochondria exposed to oxidative stress that were used as a positive control. Anti-porin antibodies prevented mitochondrial depolarization and electrophysiological deterioration of hippocampal neurons during hypoxia-reperfusion, as measured by simultaneous fluorescence imaging and whole-cell recordings.These observations provide biochemical and functional evidence that porin is directly involved in mitochondrial dysfunction and neuronal impairment during ischemia-reperfusion, and indicate that porin could be a novel therapeutic target to prevent cellular degeneration.  相似文献   

15.
In this study, we have compared the generation of superoxide radical in rat hippocampal and striatal slices in the presence of specific mitochondrial electron transport chain (ETC) inhibitors (complexes I and III) under control and depolarization conditions [incubation in artificial cerebrospinal fluid (ACSF) or depolarizing ACSF (dACSF), respectively]. Superoxide radical generation was increased in both ACSF- and dACSF-incubated hippocampal and striatal slices when rotenone and antimycin A were added to the incubation medium. The increase in superoxide radical was dependent on the concentration of ETC inhibitors under control, but not depolarization conditions. Rotenone was found to be more effective than antimycin A in producing superoxide radical from hippocampal and striatal slices. Our results also showed that hippocampal slices were more sensitive to ETC inhibitors compared with striatal slices. Thus, different regions of the brain seem to differ in their capacity to generate free radicals and vulnerability to oxidative stress conditions. This difference should be considered in developing therapeutic modalities against oxidative stress-related disorders and neurodegeneration.  相似文献   

16.
Watanabe H  Aihara T  Tsukada M 《Neuroscience》2006,140(4):1189-1199
Hippocampal CA1 neurons receive multiple rhythmical inputs with relatively independent phases during theta activity. It, however, remains to be determined how these multiple rhythmical inputs affect oscillation properties in membrane potential of the CA1 pyramidal cell. In order to investigate oscillation properties in the subthreshold membrane potential, we generated oscillations in the membrane potential of the CA1 pyramidal cells in rat hippocampal slices in vitro with a sinusoidal current injection into the pyramidal soma at theta band frequencies (4–7 Hz), and analyzed effect of rhythmically excitatory synaptic inputs. The Schaffer collaterals were stimulated with a cyclic Gaussian stimulation method, whose pulse intervals were distributed at 10 pulses/cycle (5 cycles/s). We found that the cyclic Gaussian stimulations induced membrane potential oscillations and their phase delays from the mean of the pulse distribution were dependent on membrane potential oscillation amplitude. We applied four pairs of cyclic Gaussian stimulations and somatic sinusoidal current stimulations at the same frequency (5 Hz) with varying phase differences (−π/2, 0, π/2, π rad). The paired stimulations induced phase distributions of the oscillation in the membrane potential, which showed a dependency on an increasing membrane potential oscillation amplitude response to cyclic Gaussian stimulation. This membrane potential dynamic was exhibited by the mixture of the membrane potential oscillation-amplitude-dependent phase delay and the linear summation of the two sinusoidal waves. These suggest that phases of the membrane potential oscillation are modulated by excitatory synaptic inputs. This phase-modulation by excitatory synaptic inputs may play a crucial role for memory operation in the hippocampus.  相似文献   

17.
Fast oscillations at gamma and beta frequency are relevant to cognition. During this activity, excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) are generated rhythmically and synchronously and are thought to play an essential role in pacing the oscillations. The dynamic changes occurring to excitatory and inhibitory synaptic events during repetitive activation of synapses are therefore relevant to fast oscillations. To cast light on this issue in the CA1 region of the hippocampal slice, we used a train of stimuli, to the pyramidal layer, comprising 1 s at 40 Hz followed by 2--3 s at 10 Hz, to mimic the frequency pattern observed during fast oscillations. Whole cell current-clamp recordings from CA1 pyramidal neurons revealed that individual stimuli at 40 Hz produced EPSPs riding on a slow biphasic hyperpolarizing-depolarizing waveform. EPSP amplitude initially increased; it then decreased concomitantly with the slow depolarization and with a large reduction in membrane resistance. During the subsequent 10-Hz train: the cells repolarized, EPSP amplitude and duration increased to above control, and no IPSPs were detected. In the presence of GABA(A) receptor antagonists, the slow depolarization was blocked, and EPSPs of constant amplitude were generated by 10-Hz stimuli. Altering pyramidal cell membrane potential affected the time course of the slow depolarization, with the peak being reached earlier at more negative potentials. Glial recordings revealed that the trains were associated with extracellular potassium accumulation, but the time course of this event was slower than the neuronal depolarization. Numerical simulations showed that intracellular chloride accumulation (due to massive GABAergic activation) can account for these observations. We conclude that synchronous activation of inhibitory synapses at gamma frequency causes a rapid chloride accumulation in pyramidal neurons, decreasing the efficacy of inhibitory potentials. The resulting transient disinhibition of the local network leads to a short-lasting facilitation of polysynaptic EPSPs. These results set constraints on the role that synchronous, rhythmic IPSPs may play in pacing oscillations at gamma frequency in the CA1 hippocampal region.  相似文献   

18.
The ionic conductances underlying membrane potential oscillations of hippocampal CA1 interneurons located near the border between stratum lacunosum-moleculare and stratum radiatum (LM) were investigated using whole cell current-clamp recordings in rat hippocampal slices. At 22 degrees C, when LM cells were depolarized near spike threshold by current injection, 91% of cells displayed 2-5 Hz oscillations in membrane potential, which caused rhythmic firing. At 32 degrees C, mean oscillation frequency increased to 7.1 Hz. Oscillations were voltage dependent and were eliminated by hyperpolarizing cells 6-10 mV below spike threshold. Blockade of ionotropic glutamate and GABA synaptic transmission did not affect oscillations, indicating that they were not synaptically driven. Oscillations were eliminated by tetrodotoxin, suggesting that Na+ currents generate the depolarizing phase of oscillations. Oscillations were not affected by blocking Ca2+ currents with Cd2+ or Ca2+-free ACSF or by blocking the hyperpolarization-activated current (Ih) with Cs+. Both Ba2+ and a low concentration of 4-aminopyridine (4-AP) reduced oscillations but TEA did not. Theta-frequency oscillations were much less common in interneurons located in stratum oriens. Intrinsic membrane potential oscillations in LM cells of the CA1 region thus involve an interplay between inward Na+ currents and outward K+ currents sensitive to Ba2+ and 4-AP. These oscillations may participate in rhythmic inhibition and synchronization of pyramidal neurons during theta activity in vivo.  相似文献   

19.
The hippocampus is an area important for learning and memory and exhibits prominent and behaviourally relevant theta (4–12 Hz) and gamma (30–100 Hz) frequency oscillations in vivo. Hippocampal slices produce similar types of oscillatory activity in response to bath-application of neurotransmitter receptor agonists. The medial septum diagonal band area (MS/DB) provides both a cholinergic and GABAergic projection to the hippocampus, and although it plays a major role in the generation and maintenance of the hippocampal theta rhythm in vivo, there is evidence for intrinsic theta generation mechanisms in the hippocampus, especially in area CA3. The aim of this study was to examine the role of the nicotinic receptor (nAChR) in the induction of oscillatory field activity in the in vitro preparation of the rat hippocampus. Bath-application of a low concentration of nicotine (1 μM) to transversely-cut hippocampal slices produced persistent theta-frequency oscillations in area CA3 of the hippocampus. These oscillations were reduced by both GABAA receptor antagonists and ionotropic glutamate receptor antagonists, indicating the involvement of local GABAergic and glutamatergic neurons in the production of the rhythmic theta activity. The nicotine-induced theta activity was inhibited by non-selective nAChR antagonists and partially by an α7* nAChR antagonist. The induction of theta frequency oscillations in CA3 by nicotine was mimicked α7* nAChR agonists but not by non-α7* nAChR agonists. In conclusion, theta activity in the hippocampus may be promoted by tonic stimulation of α7* nAChRs, possibly via selective stimulation of theta-preferring interneurons in the hippocampus that express post-synaptic α7* nAChRs.  相似文献   

20.
The mechanism of the propagation of spreading depression is unclear. Classical theories proposed a self-maintained cycle fed by elevated potassium and/or glutamate in the extracellular space. Earlier we found in vivo a characteristic oscillatory field activity that is synchronous in a strip of tissue ahead of the oncoming wave of neuron depolarization and that occurs before the extracellular potassium level begins to rise [Herreras O, Largo C, Ibarz JM, Somjen GG, Marrín del Río R (1994) Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. J Neurosci 14:7087-7098]. We investigated here the possible participation of glutamate and the role of glia in the prodromal field oscillations using extra and intracellular recordings and pharmacological manipulations in rat hippocampal slices. As earlier shown in vivo, field oscillations propagated ahead of the negative potential shift covering distances of up to 1 mm. The oscillatory prodromals were initially subthreshold but then each wave became crowned by a population spike. The frequency of the oscillatory prodromals was variable among slices (80-115 Hz), but constant in individual slices. The blockade of ionotropic glutamate receptors decreased the frequency of prodromal oscillations, retarded spreading depression propagation, and shortened the duration of depolarization. Blocking the glutamate membrane transport increased the oscillatory frequency. The selective metabolic poisoning of astrocytes led to gradual disorganization of prodromal oscillations whose frequency first increased and then decreased. Also, the amplitude of the population spikes within the burst diminished as individual cells fired fewer action potentials, although still phase-locked with population spikes. The effects of glial metabolic impairment were observed within the period when neuron electrical properties were still normal, and were blocked by glutamate receptor antagonists. These data suggest that glutamate released from glial cells and possibly also from neurons has a role in the generation of oscillations and neuron firing synchronization that precede the spreading depression-related depolarization, but additional mechanisms are required to fully explain the onset and propagation of spreading depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号