首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolism of benzene by the liver has been suggested to play an important role in the hepatotoxicity of benzene. The role of the different benzene metabolites and the causes of species differences in benzene hepatotoxicity are, however, not known. The metabolism and covalent binding of 14C-benzene by liver microsomal fractions and liver slices from rat, mouse, and human subjects have been studied. Rat microsomal fraction formed phenol at a rate of 0.32 nmol/min/mg of protein; mouse microsomal fraction formed phenol at 0.64 nmol/min/mg and hydroquinone at 0.03 nmol/min/mg; and human microsomal fraction formed phenol at 0.46 nmol/min/mg and hydroquinone at 0.07 nmol/min/mg. Covalent binding of 14C-benzene metabolites to rat, mouse, and human liver microsomal protein was 29, 113, and 169 pmol/min/mg of protein, respectively. The rates of metabolite formation from benzene by liver slices in nmol/min/g of tissue were: rat, phenol 0.15, hydroquinone 0.26, and phenylsulfate 1.22; mouse: phenol 0.13, hydroquinone 0.29, phenylsulfate 1.37, and phenylglucuronide 1.34; and human: phenol 0.16, hydroquinone 0.27, phenylsulfate 0.83, and phenylglucuronide 0.52. trans,trans-Muconic acid formation was not detected with liver slices of any species. Covalent binding of 14C-benzene metabolites to rat, mouse, and human liver slices was 8.2, 79.7, and 27.3 pmol/min/g liver, respectively. There was no correlation between ascorbic acid levels in the human liver slices and covalent binding of 14C-benzene metabolites. The results show that phenol and hydroquinone found in extrahepatic tissues, including bone marrow, of animals exposed to benzene could originate from the liver. There was no evidence for the release of highly reactive benzene metabolites such as trans,trans-muconaldehyde or p-benzoquinone from liver cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Benzene is an occupational and environmental toxicant. The major health concern for humans is acute myelogenous leukemia. To exert its toxic effects, benzene must be metabolized by cytochrome P450 to phenol and subsequently to catechol and hydroquinone. Previous research has implicated CYP2E1 in the metabolism of phenol. In this study the cytochrome P450 isozymes involved in the metabolism of phenol were examined in hepatic and pulmonary microsomes utilizing chemical inhibitors of CYP2E1, CYP2B, and CYP2F2 and using CYP2E1 knockout mice. CYP2E1 was found to be responsible for only approximately 50% of 20 microM phenol metabolism in the liver. This suggests another isozyme(s) is involved in hepatic phenol metabolism. In pulmonary microsomes both CYP2E1 and CYP2F2 were significantly involved.  相似文献   

3.
Alterations of benzene metabolism in liver markedly influence benzene toxicity at extrahepatic target tissues. Therefore, generation of 11 phase I and II metabolites of benzene (including phenol, hydroquinone, catechol, benzene-1,2-dihydrodiol, their sulfates and glucuronides, and phenylglutathione) was compared in hepatocytes from 3-methylcholanthrene (MC)- or phenobarbital-treated rats and from untreated controls. At 0.1 mM benzene, total metabolism appeared to be unchanged by treatment with inducers. Phenylsulfate (35%), phenylglucuronide (15%), and phenylglutathione (12%) represented the major metabolites in hepatocytes from untreated controls. With hepatocytes from MC-treated rats, a pronounced shift from phenylsulfate to phenylglucuronide (increase to 34%) was observed, while the formation of unconjugated phenol, hydroquinone, and catechol was decreased (from 16 to 10%). A similar shift from sulfation to glucuronidation was seen in similar studies with phenol. Lineweaver-Burk analysis of microsomal phenol UDP-glucuronosyltransferase activity suggested that MC-treatment induced a high affinity isozyme (KM = 0.14 mM), in addition to the low affinity isozyme (KM = 3.1 mM) present in liver microsomes from untreated and phenobarbital-treated rats. It is concluded that induction by MC of a high affinity hepatic phenol UDP-glucuronosyltransferase effectively shifts benzene metabolism toward formation of less toxic metabolites. This shift may reduce toxic risks at extrahepatic target tissues.  相似文献   

4.
In this report, the identity of the cytochrome P450 isozyme(s) catalyzing the hydroxylation of benzene and the major hydroxylated metabolite of benzene, phenol, was investigated using rabbit hepatic microsomes and six purified isozymes of hepatic P450. Microsomes from acetone-treated rabbits showed about a 5-fold induction of benzene hydroxylation to phenol and hydroquinone. This increase correlated with the increase in form 3a determined immunochemically (about 7-fold). Antibody to isozyme 3a inhibited greater than 90% of the benzene and phenol hydroxylase activity of hepatic microsomes from acetone-treated rabbits. At high benzene concentrations (2 mM) in the presence of cytochrome b5, form 3a was 1.3 times more active than form 2 and 7- to 10-fold more active than forms 3b, 3c, 4, and 6. At lower benzene concentrations (about 0.3 mM) form 3a was 5-fold more active than form 2. Furthermore, form 3a was the only isozyme to produce significant quantities of hydroquinone as did microsomes from acetone-treated rabbits. When phenol was used as the substrate, hydroquinone was the only product detected, and acetone treatment induced its formation 4- to 5-fold. Purified form 3a was 20- to 30-fold more active than the next most active isozyme, form 6, depending on the presence or absence of cytochrome b5. These results suggest that isozyme 3a (P450IIE1) is a low-Km benzene hydroxylase and the principal phenol hydroxylase in rabbit hepatic microsomes. As a result, the induction of isozyme 3a could potentiate the toxicity of benzene by catalyzing an increase in the formation of both phenol and hydroquinone.  相似文献   

5.
Benzene-induced myelotoxicity can be reproduced by the coadministration of two principal metabolites, phenol and hydroquinone. Coadministration of phenol (75 mg/kg) and hydroquinone (25-75 mg/kg) twice daily to B6C3F1 mice for 12 days resulted in a significant loss in bone marrow cellularity in a manner exhibiting a dose-response. One explanation for this potentiation is that phenol stimulates the peroxidase-dependent metabolism of hydroquinone. Addition of phenol to incubations containing horseradish peroxidase, H2O2, and hydroquinone resulted in a stimulation of both hydroquinone removal and benzoquinone formation. Stimulation occurred with phenol as low as 100 microM and with very low concentrations of horseradish peroxidase. When boiled rat liver protein was added to identical incubations containing [14C]hydroquinone, the level of radioactivity recovered as protein bound increased by 37% when phenol was added. Similar results were observed when [14C]hydroquinone was incubated in the presence of activated human leukocytes. Hydroquinone binding was increased by approximately 70% in the presence of phenol. Phenol-induced stimulation of hydroquinone metabolism and benzoquinone formation represents a likely explanation for the bone marrow suppression associated with benzene toxicity.  相似文献   

6.
Styrene is a widely used chemical in the reinforced plastics industry and in polystyrene production. Its primary metabolic pathway to styrene oxide and then to styrene glycol, which is further metabolized to mandelic acid and phenylglyoxylic acid, has been well studied. However, a few studies have reported finding a minor metabolite, 4-vinylphenol (4-VP), in rat and human urine. The present studies sought to determine if the formation and metabolism of 4-VP in rat and mouse liver and lung preparations could be measured. When styrene was incubated with hepatic and pulmonary microsomal preparations, 4-VP formation could not be measured in these preparations. However, considerable 4-VP metabolizing activity, as determined by the loss of 4-VP, was observed in both mouse and rat liver and lung microsomal preparations. 4-Vinylphenol metabolizing activity in mouse liver microsomes was three times greater than that in rat liver microsomes, and activity in mouse lung microsomes was eight times greater than that in rat lung microsomes. This activity was completely absent in the absence of NADPH. Studies with cytochrome P-450 inhibitors indicated the involvement of CYP2E1 and CYP2F2. Induction of CYP2E1 by pyridine resulted in an increase in 4-VP metabolism by mouse hepatic microsomes but not by pulmonary microsomes. The metabolite(s) formed as a result of this oxidative pathway remain to be identified. In additional studies, glutathione conjugation appeared to be involved in 4-VP metabolism with the highest activity being in mouse lung, with or without the addition of NADPH.  相似文献   

7.
The effect of induction by phenobarbital (PB), beta-naphthoflavone (BNF), and benzene on benzene metabolism was studied in hepatic microsomes from male Sprague-Dawley rats. Two distinct forms of mixed-function oxidase activity appeared to metabolize benzene. One form was active at all substrate concentrations in microsomes from control, benzene-treated, and BNF-treated animals, and at benzene concentrations of 0.8 mM and below in microsomes from PB-treated animals. It was saturated at benzene concentrations above 0.4 mM, had a pH optimum of approximately 6.6, and was stimulated by fluoride. Pretreatment with benzene, but not BNF, increased benzene metabolism in these preparations. Benzene metabolism in microsomes from PB-induced rats was less active than in controls at benzene concentrations below 0.8 mM, but increased rapidly at higher benzene concentrations. Further characteristics of the PB-induced enzyme activity were that saturation was not observed at benzene concentrations as high as 4 mM, the pH optimum for benzene metabolism in these preparations was 7.1, metabolism was not stimulated by fluoride, and metabolism was inhibited by metyrapone. Both phenol and an unidentified polar component were formed from benzene in all microsomal preparations. Formation of the polar component was increased by PB pretreatment and inhibited by metyrapone, suggesting that formation of the polar component involves a step requiring cytochrome P-450.  相似文献   

8.
Benzene is an occupational hazard and environmental toxicant whose toxic effects are dependent on its metabolism by cytochrome P-450. Most physiologically based pharmacokinetic models assume that benzene is metabolized only in the liver. They may not be completely accurate in predicting metabolism, especially following inhalation exposure, if metabolism by the lung is important. In the current study, the metabolizing capability of the lung was examined in an in vivo simulation using the isolated perfused lung. Lungs from the rabbit, rat, and mouse were used to mimic benzene metabolism following exposure via the pulmonary vasculature. With the isolated perfused mouse lung, three concentrations (55 microM, 120 microM, and 200 microM) were used to evaluate concentration dependence. To evaluate the ability of the lung to metabolize inhaled benzene, the isolated perfused mouse lung was exposed to benzene (approximately 175 ppm) via the trachea. Benzene was metabolized in all species, with phenol being the major metabolite. Phenylsulfate was also detected in perfusate from rabbits and mice but at much lower levels. Benzene metabolism was concentration dependent in mice. The ability of the lung to metabolize benzene during inhalation exposure was demonstrated in the isolated perfused mouse lung. These results demonstrate that the lung can metabolize benzene in an in vivo simulation when exposed via the pulmonary vasculature or via inhalation.  相似文献   

9.
[14C]Phenol and [14C]benzene are metabolized in the presence of NADPH and hepatic microsomes isolated from phenobarbital- or benzene-pretreated or untreated guinea pigs to intermediates capable of covalently binding to microsomal protein. When 1 mM ascorbate was included in the incubation mixture containing benzene as the substrate, covalent binding was inhibited by 55%. Increasing the ascorbate concentration to 5 mM inhibited binding by only an additional 17%. In contrast, when phenol was used as the substrate, 1 mM ascorbate inhibited binding by 95%. When DT-diaphorase was included in the incubation mixture containing benzene as the substrate, binding was inhibited by only 18%. This degree of inhibition is in contrast to 70% inhibition with phenol. These results indicate that different metabolites are responsible for a portion of the covalent binding depending upon the substrate employed. GSH inhibited covalent binding greater than 95% with either substrate. The metabolism of phenol to hydroquinone was unaffected by the addition of ascorbate or GSH. The metabolism of benzene to phenol was unaffected by the addition of GSH; however, the addition of ascorbate decreased the formation of phenol by 35%. Tissue ascorbate could be modulated by placing guinea pigs on different dietary intakes of ascorbate. Bone marrow ascorbate concentrations could be modulated 10-fold without any significant change in the GSH concentrations. Bone marrow isolated from guinea pigs on different dietary intakes of ascorbate were incubated with H2O2 and phenol. Bone marrow with low ascorbate concentrations displayed 4-fold more covalent binding of phenol equivalents than those with high ascorbate concentrations. This is an example of how the dietary intake of ascorbate can result in a differential response to a potentially toxic event in vitro.  相似文献   

10.
Lung and liver microsomes of several species were evaluated for potential to form activated metabolites of 3-methylindole (3MI). Microsomes were incubated with [14C]3MI and glutathione (GSH). Electrophilic 3MI metabolites were trapped and quantitated as GSH adducts by HPLC, and by determining the amounts of activated intermediates which became covalently bound to microsomal protein. The highest rates of 3MI-GSH adduct formation by the lung were detected in microsomes of the goat, followed in decreasing order by pulmonary microsomes from the horse, monkey, mouse, and rat, respectively. In contrast, hepatic 3MI-GSH adduct production was highest in microsomes from the rat, followed by mouse, monkey, goat, and horse microsomes, respectively. These results suggest that the species and organ-selective toxicity of 3MI are primarily caused by differences in rates of oxidative metabolism of 3MI to an electrophilic intermediate.  相似文献   

11.
Cyclandelate was an effective inhibitor of rat hepatic acycloenzyme A: cholesterol acyltransferase (ACAT) with a concentration of 80 microM being required for half maximal inhibition. A similar effect was seen with human and rabbit liver microsomal enzymes. The drug did not compete with oleoyl CoA or cholesterol and could be removed from enzyme preparations by washing. It was hydrolysed rapidly by rat liver microsomes to products which were non inhibitory. No hydrolysis of the drug was seen with non hepatic microsomes and the concentration of cyclandelate required to cause half maximal inhibition of ACAT in the transformed mouse macrophage J774 microsomal fraction was less than 30 microM. The possible significance of the differential actions of cyclandelate towards hepatic and extra hepatic ACAT in vivo is discussed.  相似文献   

12.
In vitro metabolism of adenine, 9-methyladenine, and 9-benzyladenine using hepatic microsomes of hamster, mouse and rat was investigated. The results indicated that adenine was apparently not susceptible to microsomal N-oxidation. N-oxidation of 9-methyladenine was also not detected, whereas N-demethylation was observed with hepatic microsomes derived from hamster and rat but not from mouse. With 9-benzyladenine, both 1-N-oxide formation and N-debenzylation occurred with microsomes of all species in various amounts. N-Hydroxylation of the 6-amino group was not observed with any substrate in any species. Metabolic results are discussed in relation to chemical structure, electronic, lipophilic and steric factors.  相似文献   

13.
Since chlorine placement and the degree of chlorination of the biphenyl nucleus play an important role in the metabolism and ultimate elimination of polychlorinated biphenyls (PCBs), we have studied the metabolism of 4,4'-dichlorobiphenyl (4-DCB) by human hepatic microsomes. This low molecular weight PCB congener is substituted at the preferred site of metabolism (para-position). 4-DCB was metabolized by human microsomes with a Km of 0.43 microM and a Vmax of 1.2 pmoles/mg microsomal protein/min. Six metabolites were identified: 4,4'-dichloro-3,3'-biphenyldiol, 4'-chloro-3-biphenylol, 4'-chloro-4-biphenylol, 4,4'-dichloro-2-biphenylol, 4,4'-dichloro-3-biphenylol (most abundant), and 3,4'-dichloro-4-biphenylol. [14C]-4-DCB equivalents were found to covalently bind to microsomal protein. Addition of a 1 mM concentration of reduced glutathione decreased the degree of covalent binding. These data suggest that human microsomes metabolize this PCB through an arene oxide and that an "NIH shift" occurs. When UDPGA was added to the incubation, human microsomal glucuronosyltransferase catalyzed the formation of the glucuronide of the major metabolite, 4,4'-dichloro-3-biphenylol. These and previous in vitro results show that the biotransformation of PCBs by humans is governed by the same principles established for the in vivo biotransformation of PCBs by the rat, mouse and monkey. That is, PCBs without two adjacent unsubstituted carbon atoms are poorly metabolized and that an unsubstituted para-position facilitates metabolism.  相似文献   

14.
Benzene metabolism was stimulated in rat liver microsomes after treatment of rats with benzene but not after treatment with phenol or resorcinol. Pretreatment of rats with hydroquinone, pyrocatechol and pyrogallol inhibited benzene metabolism in vitro. Single large doses of benzene also stimulated the metabolism of zoxazolamine, neoprontosil and p-nitrobenzoic acid but not that of hexobarbital or chlorpromazine. During the course of daily benzene treatments, the metabolism of zoxazolamine was stimulated after 7 days, while 14 days of treatment was necessary for benzene and neoprontosil. The metabolism of hexobarbital and p-nitrobenzoic acid was inhibited after 14 days. Electron microscopic studies of the liver showed proliferation of the smooth endoplasmic reticulum (SER) after 7 and 14 days of benzene treatment. It is concluded that benzene, not its hydroxylated derivatives, is probably responsible for benzene-induced microsomal stimulation and that benzene-induced proliferation of SER does not ensure an increase of the metabolism of all drugs.  相似文献   

15.
Carcinogenicity studies have shown that chronic administration of 4-vinylcyclohexene (VCH) will induce ovarian tumors in B6C3F1 mice but not F-344 rats. This occurs because the blood level of the ovotoxic VCH metabolite, VCH-1,2-epoxide, is dramatically higher in VCH-treated female mice compared with rats. This species difference in VCH epoxidation is also reflected in the rate of VCH metabolism by hepatic microsomes (female mouse greater than female rat). The present study assessed the ability of microsomes obtained from human liver to metabolize VCH to epoxides since humans are exposed to VCH in certain occupational settings. The production of VCH-1,2-epoxide and VCH-7,8-epoxide from VCH (1 mM) by human hepatic microsomes was linear with respect to microsomal protein concentration (0.25-1.0 mg/ml) and incubation time (5-20 min). VCH-1,2-epoxide was the major metabolite, while the rate VCH-7,8-epoxide formation was about 6-fold lower and in some cases was below the limit of detection. There was no dramatic difference in the rate of VCH epoxidation by hepatic microsomes obtained from male and female humans. The rate of VCH-1,2-epoxide formation by female human hepatic microsomes was 0.71 +/- 0.35 nmol/mg microsomal protein/min (n = 4). This is 13- and 2-fold lower than the rate of VCH-1,2-epoxide formation by female mouse and rat hepatic microsomes, respectively. Therefore, if the rate of hepatic VCH epoxidation is the main factor which determines the ovotoxicity of VCH, then the results of these studies suggest that rats are the more appropriate animal model for extrapolation of animal data to humans.  相似文献   

16.
Metabolism of coumarin by rat, gerbil and human liver microsomes.   总被引:3,自引:0,他引:3  
1. o-Hydroxyphenylacetaldehyde was the major metabolite of coumarin (1 mM) in rat, gerbil and human liver microsomes. 2. Treatment of rats with phenobarbitone (PB) or beta-naphthoflavone increased the o-hydroxyphenylacetaldehyde formed. 3-Hydroxycoumarin was the other main metabolite produced by rat liver microsomes. 3. Liver microsomal metabolism of coumarin in gerbil was extensive with 3-, 5-, 6-, 7- and 8-hydroxycoumarins, and 3,7- and 6,7-dihydroxycoumarins produced, in addition to o-hydroxyphenylacetaldehyde. The profile of the hydroxy metabolites was altered by in vivo treatment of gerbils with cytochrome P-450 inducers, but there was no increase of coumarin metabolism. 4. Coumarin was metabolized by human liver microsomes to o-hydroxyphenylacetaldehyde, 7-hydroxycoumarin, 3-hydroxycoumarin, and trace amounts of 5-, 6- and 8-hydroxycoumarins. 5. At low substrate concentrations (0-10 microM) hepatic microsomal metabolism of coumarin in gerbil resembled that in man, with 7-hydroxycoumarin being a major metabolite. However, the production of o-hydroxyphenylacetaldehyde was greater in gerbil than human liver microsomes. 6. At higher substrate concentrations (1 mM) metabolism of coumarin by liver microsomes from PB-treated gerbils most closely resembled that by human liver microsomes. 7. The gerbil would appear to be a more appropriate animal model than rat for studies to assess the toxicological hazard of coumarin for man.  相似文献   

17.
Abstract

1. To search an appropriate evaluation methodology for the intestinal first-pass metabolism of new drug candidates, grapefruit juice (GFJ)- and vehicle (tap water)-pretreated mice or rats were orally administered midazolam (MDZ) or triazolam (TRZ), and blood levels of the parent compounds and their metabolites were measured by liquid chromatography/MS/MS. A significant effect of GFJ to elevate the blood levels was observed only for TRZ in mice.

2. In vitro experiments using mouse, rat and human intestinal and hepatic microsomal fractions demonstrated that GFJ suppressed the intestinal microsomal oxidation of MDZ and especially TRZ. Substrate inhibition by MDZ caused reduction in 1′-hydroxylation but not 4-hydroxylation in both intestinal and hepatic microsomal fractions. The kinetic profiles of MDZ oxidation and the substrate inhibition in mouse intestinal and hepatic microsomal fractions were very similar to those in human microsomes but were different from those in rat microsomes. Furthermore, MDZ caused mechanism-based inactivation of cytochrome P450 3A-dependent TRZ 1′-hydroxylation in mouse, rat and human intestinal microsomes with similar potencies.

3. These results are useful information in the analysis of data obtained in mouse and rat for the evaluation of first-pass effects of drug candidates to be metabolized by CYP3A enzymes.  相似文献   

18.
Metabolic activation of the ethynyl substituent of the contraceptive steroid norethindrone to cause the loss of hepatic cytochrome P-450 and the formation of green pigments has been compared in vivo and in vitro in rat, hamster, guinea pig, rabbit, mouse and hen and with marmoset and human liver microsomal preparations in vitro. In vivo green pigment accumulation in the liver 4 hr after the administration of norethindrone (100 mg/kg, i.p.) varied 60-fold between species. Male rat was the most active in this respect, the hen was the least active. The accumulation of green pigments in female rats was 27% that of male animals. This sex-dependent difference was not seen in male and female mice. Cytochrome P-450 destruction in vivo was also greatest in the male rat given norethindrone, whereas no loss was detected in the hen. In other species, however, the correlation between green pigment accumulation and cytochrome P-450 destruction was not particularly good. When liver microsomes were incubated with norethindrone and an NADPH generating system in vitro, the ranking order between species with respect to the initial rates of green pigment formation was similar to that based on the hepatic accumulation of these compounds found in vivo. Human liver microsomes showed initial rates of green pigment formation which were only 2% of that seen in the male rat. No destruction of human microsomal cytochrome P-450 caused by norethindrone could be detected. The HPLC elution profile of the green pigments produced in the liver following the administration of norethindrone differed between species. Hepatic microsomal preparations in contrast, at least with short incubation times, formed only one green pigment. Results suggest that further metabolism of either norethindrone or the green pigment, involving a cytosolic factor(s), results in the varied HPLC patterns seen in vivo.  相似文献   

19.
The present studies were designed to investigate whether amiodarone (Am) is metabolized in the major organs and tissues of the rat and rabbit. Incubations using Am and tissue homogenates (600 g supernatant) of rabbit and rat lung, liver, kidney, and gut revealed formation of desethylamiodarone (DEA) by the liver and gut. Subsequent experiments using the post-mitochondrial, cytosolic, and microsomal fractions of these tissues indicated that metabolism of Am was greatest in the microsomal fractions. In both species, greater DEA formation was detected for microsomes of hepatic origin. The hepatic microsomal mediated production of DEA was altered by protein concentration in both the rabbit and rat preparations with protein concentrations of 5 mg providing the greatest DEA production. DEA formation by gut microsomes was greatest at 3 mg of protein for the rabbit but exhibited no significant change from 1 mg to 10 mg of protein for the rat. In vitro metabolism of Am by rabbit and rat hepatic microsomal preparations was significantly reduced by 1 mM piperonyl butoxide, SKF 525-A, n-octylamine, and carbon monoxide. Effects of these inhibitors on rabbit and rat gut microsomal incubations were inconclusive. HPLC analysis of incubation samples revealed a species difference in the metabolism of Am as demonstrated by the detection of three metabolites in addition to DEA. The unidentified metabolites (I, II, III) were detected in rabbit hepatic microsomal incubations. Metabolite II was also detected in incubations using rabbit duodenal tissue microsomes. No metabolites other than DEA were found in incubations using rat tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Styrene is pneumotoxic in mice. It is metabolized by pulmonary microsomes of both mouse and rat to styrene oxide (SO), presumed to be the toxic metabolite of styrene, and known to be genotoxic. To determine which pulmonary cell types are responsible for styrene metabolism, and which cytochromes P450 are associated with the bioactivation of styrene, we isolated enriched fractions of mouse and rat Clara and type II cells in order to determine the rate of styrene metabolism, with and without chemical inhibitors. Mouse Clara cells readily metabolized styrene to SO. Diethyldithiocarbamate, a CYP2E1 inhibitor, caused less inhibition of SO formation in Clara cells isolated from mice than previously found with pulmonary microsomes. As in microsomes, 5-phenyl-1-pentyne, a CYP2F2 inhibitor, inhibited the formation of both enantiomers. alpha-Naphthoflavone, a CYP1A inhibitor, did not inhibit SO formation in Clara cells. alpha-Methylbenzylaminobenzotriazole, a CYP2B inhibitor, exhibited minimal inhibition of SO production at 10 microM and less at 1 microM. The microsomal and isolated cell studies indicate that CYP2E1 and CYP2F2 are the primary cytochromes P450 involved in pulmonary styrene metabolism. Styrene metabolizing activity was much greater in Clara cells than in type II pneumocytes, which demonstrated essentially no activity. Styrene-metabolizing activity was several-fold higher in the mouse than in rat Clara cells. The more pneumotoxic and genotoxic form, R-SO, was preferentially formed in mice, and S-SO was preferentially formed in rats. These findings indicate the importance of Clara cells in styrene metabolism and suggest that differences in metabolism may be responsible for the greater susceptibility of the mouse to styrene-induced toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号