首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imaging agents targeting beta-amyloid (Abeta) may be useful for diagnosis and treatment of patients with Alzheimer's disease (AD). Compounds 3e and 4e are fluorinated stilbene derivatives displaying high binding affinities for Abeta plaques in AD brain homogenates (Ki = 15 +/- 6 and 5.0 +/- 1.2 nM, respectively). In vivo biodistributions of [18F]3e and [18F]4e in normal mice exhibited excellent brain penetrations (5.55 and 9.75% dose/g at 2 min), and rapid brain washouts were observed, especially for [18F]4e (0.72% dose/g at 60 min). They also showed in vivo plaque labeling in APP/PS1 or Tg2576 transgenic mice, animal models for AD. Autoradiography of postmortem AD brain sections and AD homogenate binding studies confirmed the selective and specific binding properties to Abeta plaques. In conclusion, the preliminary results strongly suggest that these fluorinated stilbene derivatives, [18F]3e and [18F]4e, are suitable candidates as Abeta plaque imaging agents for studying patients with AD.  相似文献   

2.
We report a series of radioiodinated styrylpyridines as single photon emission computed tomography probes for imaging Abeta plaques in the brain of patients with Alzheimer's disease (AD). In vitro binding showed that all of the styrylpyridines displayed very good binding affinities in postmortem AD brain homogenates (Ki = 3.6 to 15.5 nM). No-carrier-added samples of 13a, 13b, 16a, 16b, and 16e (radioiodinated with 125I) were successfully prepared. The in vivo biodistribution in normal mice, at 2 min after injection, showed excellent initial brain penetrations (4.03, 6.22, 5.43, and 8.04% dose/g for [125I]13a, 13b, 16a, and 16b, respectively). Furthermore, in vitro autoradiography of AD brain sections showed that the high binding signal was specifically due to the presence of Abeta plaques. Taken together, these results strongly suggest that these styrylpyridines are useful for imaging Abeta plaques in the living human brain.  相似文献   

3.
Accumulation of beta-amyloid aggregates (Abeta) in the brain is linked to the pathogenesis of Alzheimer's disease (AD). We report a novel approach for producing 1,4-diphenyltriazoles as probes for targeting Abeta aggregates in the brain. The imaging probes, a series of substituted tricyclic 1,4-diphenyltriazoles showing excellent binding affinities to Abeta aggregates (Ki = 4-30 nM), were conveniently assembled by "click chemistry." Two radioiodinated probes, [125I]10a and [125I]10b, and two radiofluorinated probes, [18F]17a and [18F]17b, exhibited moderate lipophilicities and showed excellent initial brain penetrations and fast washouts from the normal mouse brain. In vitro autoradiography of postmortem AD brain sections and homogenates showed that these triazoles were binding to Abeta plaques. Preliminary results strongly suggest that use of click chemistry, which led to a 1,4-diphenyltriazole-based core, is a highly convenient and flexible approach for assembling novel imaging agents for targeting Abeta aggregates in senile plaques in the living human brain.  相似文献   

4.
[18F]AV-45 (florbetapir f18, Amyvid) is an FDA-approved PET imaging agent targeting Aβ plaques in the brain for diagnosis of Alzheimer’s disease (AD). Its metabolites led to a high background in the brain and large bone uptake of [18F]F, produced from dealkylation of the PEG chain. To slow down the in vivo metabolism, we report the design, synthesis, and evaluation of a highly deuterated derivative, [18F]D15FSP, and compared it with N-methyl-deuterated [18F]D3FSP and nondeuterated [18F]AV-45. D15FSP displayed excellent binding affinity (Ki = 7.52 nM) to Aβ aggregates. In vitro autoradiography of [18F]D15FSP, [18F]D3FSP, and [18F]AV-45 showed excellent binding to Aβ plaques in human AD brain sections. Biodistribution studies displayed lower bone uptake at 120 min for [18F]D15FSP compared to that for [18F]D3FSP and [18F]AV-45 (1.44 vs 4.23 and 4.03%ID/g, respectively). As the highly deuterated [18F]D15FSP displayed excellent Aβ binding affinity, high initial brain penetration, and lower bone retention, it might be suitable for PET imaging in detecting Aβ plaques.  相似文献   

5.
Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates   总被引:12,自引:0,他引:12  
We report for the first time that small molecule-based radiodiodinated ligands, showing selective binding to Abeta aggregates, cross the intact blood-brain barrier by simple diffusion. Four novel ligands showing preferential labeling of amyloid aggregates of Abeta(1-40) and Abeta(1-42) peptides, commonly associated with plaques in the brain of people with Alzheimer's disease (AD), were developed. Two 125I-labeled styrylbenzenes, (E,E)-1-iodo-2,5-bis(3-hydroxycarbonyl-4-hydroxy)styrylbenzene, 12 (ISB), and (E,E)-1-iodo-2,5-bis(3-hydroxycarbonyl-4-methoxy)styrylbenzene, 13 (IMSB), and two 125I-labeled thioflavins, 2-[4'-(dimethylamino)phenyl]-6-iodobenzothiazole, 18a (TZDM), and 2-[4'-(4'-methylpiperazin-1-yl)phenyl]-6-iodobenzothiazole, 18b (TZPI), were prepared at a high specific activity (2200 Ci/mmol). In vitro binding studies of these ligands showed excellent binding affinities with Kd values of 0.08, 0.13, 0.06, and 0.13 nM for aggregates of Abeta(1-40) and 0.15, 0.73, 0.14, and 0.15 nM for aggregates of Abeta(1-42), respectively. Interestingly, under a competitive-binding assaying condition, different binding sites on Abeta(1-40) and Abeta(1-42) aggregates, which are mutually exclusive, were observed for styrylbenzenes and thioflavins. Autoradiography studies of postmortem brain sections of a patient with Down's syndrome known to contain primarily Abeta(1-42) aggregates in the brain showed that both [(125)I]18a and [125I]18b labeled these brain sections, but [125I]13, selective for Abeta(1-40) aggregates, exhibited very low labeling of the comparable brain section. Biodistribution studies in normal mice after an iv injection showed that [125I]18a and [(125)I]18b exhibited excellent brain uptake and retention, the levels of which were much higher than those of [125I]12 and [125I]13. These findings strongly suggest that the new radioiodinated ligands, [125I]12 (ISB), [125I]13 (IMSB), [125I]18a (TZDM), and [125I]18b (TZPI), may be useful as biomarkers for studying Abeta(1-40) as well as Abeta(1-42) aggregates of amyloidogenesis in AD patients.  相似文献   

6.
Development of fluorine-18-labeled 5-HT1A antagonists   总被引:2,自引:0,他引:2  
We have synthesized five fluorinated derivatives of WAY 100635, N-{2-[4-(2-methoxyphenyl)piperazino]ethyl}-N-(2-pyridyl)cyclohe xaneca rboxamide (4a), using various acids in place of the cyclohexanecarboxylic acid (CHCA, 2a) in the reaction scheme. The five acids are 4-fluorobenzoic acid (FB, 2b), 4-fluoro-3-methylbenzoic acid (MeFB, 2c), trans-4-fluorocyclohexanecarboxylic acid (FC, 2d), 4-(fluoromethyl)benzoic acid (FMeB, 2e), and 3-nitro-4-(fluoromethyl)benzoic acid (NFMeB, 2f) (see Scheme 1). These compounds were radiolabeled with fluorine-18, and their biological properties were evaluated in rats and compared with those of [11C]carbonyl WAY 100635 ([carbonyl-11C]4a). [Carbonyl-11C]4a cleared the brain with a biological half-life averaging 41 min. The metabolite-corrected blood radioactivity had a half-life of 29 min. [18F]FCWAY ([18F]4d) gave half-lives and intercepts comparable to [carbonyl-11C]4a in the brain, but the blood clearance was faster. [18F]FBWAY ([18F]4b) showed an early rapid net efflux from the whole brain, clearing with a biological half-life of 35 min. The metabolite-corrected blood half-life was 41 min. The comparable whole brain and blood half-lives for Me[18F]FBWAY ([18F]4c) were 16 and 18 min, respectively. For each compound, the corresponding carboxylic acid was identified as a major metabolite in blood. Fluoride was also found after injection of [18F]4d. However, for all compounds there was a good correlation (R > 0.97) between the differential uptake ratio (DUR, (%ID/g) x body weight (g)/100) in individual rat brain regions at 30 min after injection and the concentration of receptors as determined by in vitro quantitative autoradiography in rat. Specific binding ratios [region of interest (ROI)/cerebellum-1] in control studies for cortex (Ctx) and hippocampus (H) were higher for [carbonyl-11C]4a and [18F]4d compared to [18F]4b and [18F]4c. [18F]4d has similar pharmacokinetic properties and comparable specific binding ratios to [carbonyl-11C]4a. Fifty nanomoles of 4a blocked only 30% of the specific binding of [18F]4d, while complete blockade was obtained from co-injection of 200 nmol of 4a (H/Cb-1 from 17.2 to 0.6). [18F]4b and [18F]4c showed lower specific binding ratios than [carbonyl-11C]4a and [18F]4d. [18F]4c was superior to [18F]4b since its specific binding was more readily blocked by 4a. These studies suggest that [18F]4c should be a useful compound to assess dynamic changes in serotonin levels while [18F]4d, with its high contrast and F-18 label, should provide better statistics and quantification for static measurement of 5-HT1A receptor distribution.  相似文献   

7.
Alzheimer's disease (AD) is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain, and thus, the in vivo imaging of plaques and tangles would be beneficial for the early diagnosis of AD. It has been suggested that 5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one (curcumin) may be responsible for low age-adjusted prevalence of AD in India. In the present study, eight novel derivatives of curcumin and 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one (dehydrozingerone) were synthesized and their binding affinities for beta-amyloid (Abeta) aggregates were measured. Of these ligands, fluoropropyl-substituted curcumin (8) showed the highest binding affinity (Ki=0.07 nM), and therefore, 8 was radiolabeled and evaluated as a potential probe for Abeta plaque imaging. Partition coefficient measurement and biodistribution in normal mice demonstrated that [18F]8 has a suitable lipophilicity and reasonable initial brain uptake. Metabolism studies also indicated that [18F]8 is metabolically stable in the brain. These results suggest that [18F]8 is a suitable radioligand for Abeta plaque imaging.  相似文献   

8.
This study evaluated (18)F-labeled IMPY [6-iodo-2-(4'-N,N-dimethylamino)phenylimidazo[1,2-a]pyridine] derivatives as agents for imaging beta-amyloid plaque with positron emission tomography (PET). The precursor for radiolabeling and reference compounds was synthesized in up to five steps from commercially accessible starting materials. One of the two N-methyl groups of IMPY was substituted with either a 3-fluoropropyl (FPM-IMPY) or a 2-fluoroethyl (FEM-IMPY) group. FPM-IMPY and FEM-IMPY were found to have moderate affinity for Abeta-aggregates with K(i) = 27 +/- 8 and 40 +/- 5 nM, respectively. A "one-pot" method for (18)F-2-fluoroethylation and (18)F-3-fluoropropylation of the precursor was developed. The overall decay-corrected radiochemical yields were 26-51%. In PET experiments with normal mouse, high uptake of activity was obtained in the brain after iv injection of each probe: 6.4% ID/g for [(18)F]FEM-IMPY at 1.2 min, and 5.7% ID/g for [(18)F]FPM-IMPY at 0.8 min. These values were similar to those of [(123)I/(125)I]IMPY (7.2% ID/g at 2 min). Polar and nonpolar radioactive metabolites were observed in both plasma and brain homogenates after injection of [(18)F]FEM or [(18)F]FPM-IMPY. In contrast to the single-exponential washout of [(123)I/(125)I]IMPY, the washouts of brain activity for the two fluorinated analogues were biphasic, with an initial rapid phase over 20 min and a subsequent much slower phase. Residual brain activity at 2 h, which may represent polar metabolites trapped in the brain, was 4.5% ID/g for [(18)F]FEM-IMPY and 2.1% ID/g for [(18)F]FPM-IMPY. Substantial skull uptake of [(18)F]fluoride was also clearly observed. With a view to slow the metabolism of [(18)F]FEM-IMPY, an analogue was prepared with deuteriums substituted for the four ethyl hydrogens. However, D(4)-[(18)F]FEM-IMPY showed the same brain uptake and clearance as the protio analogue. Metabolism of the [(18)F]FEM-IMPY was appreciably slower in rhesus monkey than in mouse. Autoradiography of postmortem brain sections of human Alzheimer's disease patients with [(18)F]FEM-IMPY showed high displaceable uptake in gray matter and low nonspecific binding in the white matter. This study demonstrates that the IMPY derivatives have favorable in vivo brain pharmacokinetics and a moderate affinity for imaging beta-amyloid plaques; however, further improvements are needed to reduce radioactive metabolites, increase binding affinity, and reduce lipophilicity.  相似文献   

9.
syn- and anti-1-amino-3-[18F]fluoromethyl-cyclobutane-1-carboxylic acid (FMACBC, 16 and 17), analogues of anti-1-amino-3-[18F]fluorocyclobutyl-1-carboxylic acid (FACBC), were prepared to evaluate the contributions of C-3 substitution and configuration on the uptake of these radiolabeled amino acids in a rodent model of brain tumors. Radiofluorinated targets [18F]16 and [18F]17 were prepared by no-carrier-added radiofluorination from their corresponding methanesulfonyl esters 12 and 13, respectively, with decay-corrected radiochemical yields of 30% for [18F]16 and 20% for [18F]17. In amino acid transport assays performed in vitro using 9L gliosarcoma cells, both [18F]16 and [18F]17 were substrates for L type amino acid transport, while [18F]17 but not [18F]16 was a substrate for A type transport. Biodistribution studies in normal Fischer rats with [18F]16 and [18F]17 showed high uptake of radioactivity (>2.0% dose/g) in the pancreas while other tissues studied, including liver, heart, lung, kidney, blood, muscle, and testis, showed relatively low uptake of radioactivity (<1.0% dose/g). In rats implanted intracranially with 9L gliosarcoma cells, the retention of radioactivity in tumor tissue was high at 5, 60, and 120 min after intravenous injection of [18F]16 and [18F]17 while the uptake of radioactivity in brain tissue contralateral to the tumor remained low (<0.3% dose/g). Ratios of tumor uptake to normal brain uptake for [18F]16 were 7.5:1, 7:1, and 5:1 at 5, 60, and 120 min, respectively, while for [18F]17 the ratios were 7.5:1, 9:1, and 9:1 at the same time points. This work demonstrates that like anti-[18F]FACBC, [18F]16 and [18F]17 are excellent candidates for imaging brain tumors.  相似文献   

10.
11.
In vivo imaging of β-amyloid plaques in the brain may lead to the early diagnosis of Alzheimer's disease (AD) and monitoring of the progression and effectiveness of treatment. In the present study, we report on the development of two potential PET probes, [(18)F]FPYBF-2 ([(18)F]10) and [(18)F]FPHBF-2 ([(18)F]21), for imaging of β-amyloid plaques in AD brain. In experiments in vitro, 10 and 21 displayed high affinity for Aβ(1-42) aggregates (K(i) = 2.41 and 3.85 nM, respectively). In biodistribution experiments using normal mice, they displayed high uptake in the brain (7.38 and 8.18%?ID/g at 2 min postinjection, respectively), and the radioactivity washed out from the brain rapidly (3.15 and 3.87%?ID/g at 60 min postinjection, respectively), which is highly desirable for β-amyloid imaging agents. In vivo, they clearly labeled β-amyloid plaques in Tg2576 mice. Furthermore, the specific labeling of β-amyloid plaques by 10 and 21 was observed in autoradiographs of sections of autopsied AD brain. These new fluorinated benzofuran derivatives are promising PET probes for imaging cerebral β-amyloid plaques.  相似文献   

12.
Amyloid-β (Aβ) plaques are a pathological hallmark of Alzheimer's disease and a current target for positron emission tomography (PET) imaging agents. Whilst [11C]-PiB is currently the most widely used PET ligand in clinic, a novel family of benzoxazole compounds have shown promise as Aβ imaging agents; particularly BF227. We characterised the in vitro binding of [18F]-BF227 toward α-synuclein to address its selectivity for Aβ pathology, to establish whether [18F]-BF227 binds to α-synuclein/Lewy bodies, in addition to Aβ plaques. In vitro [18F]-BF227 saturation studies were conducted with 200 nM α-synuclein or Aβ1−42 fibrils or 100 μg of Alzheimer's disease, pure dementia with Lewy bodies or control brain homogenates. Non-specific binding was established with PiB (1 μM). In vitro binding studies indicated that [18F]-BF227 binds with high affinity to two binding sites on Aβ1−42 fibrils (KD1 = 1.31 and KD2 = 80 nM, respectively) and to one class of binding sites on α-synuclein fibrils (KD = 9.63nM). [18F]-BF227 bound to Aβ-containing Alzheimer's disease brain (KD = 25 ± 0.5 nM), but failed to bind to Aβ-free dementia with Lewy bodies or age-matched control homogenates. Moreover, BF227 labelled both Aβ plaques and Lewy bodies in immunohistochemical/fluorescence analysis of human Alzheimer's disease and Parkinson's disease brain sections, respectively. This study suggests that [18F]-BF227 is not Aβ-selective. Evaluation of BF227 as a potential biomarker for Parkinson's disease is warranted.  相似文献   

13.
A novel series of ligands with substitutions at the 5-position on phenyl ring A and at the 4'-position on phenyl ring B of 2-(2'-((dimethylamino)methyl)-4'-(fluoroalkoxy)phenylthio)benzenamine (4'-2-fluoroethoxy derivatives 28-31 and 4'-3-fluoropropoxy derivatives 40-42) were prepared and tested as serotonin transporter (SERT) imaging agents. The new ligands displayed high binding affinities to SERT (Ki ranging from 0.03 to 1.4 nM). The corresponding 18F labeled compounds, which can be prepared readily, showed excellent brain uptake and retention after iv injection in rats. The hypothalamus region showed high uptake values between 0.74% and 2.2% dose/g at 120 min after iv injection. Significantly, the hypothalamus to cerebellum ratios (target to nontarget ratios) at 120 min were 7.8 and 7.7 for [18F]28 and [18F]40, respectively. The selective uptake and retention in the hypothalamus, which has a high concentration of SERT binding sites, demonstrated that [18F]28 and [18F]40 are promising positron emission computed tomography imaging agents for mapping SERT binding sites in the brain.  相似文献   

14.
15.
A new and extensive set of 4-(6-iodo-H-imidazo[1,2-a]pyridin-2-yl)-N-dimethylbenzeneamine (IMPY) derivatives was synthesized and assayed for affinity toward human Abeta plaques. 6-Ethylthio- (12h), 6-cyano- (12e), 6-nitro- (12f), and 6-p-methoxybenzylthio- (15d) analogues were discovered to have high affinity (KI < 10 nM). However, introduction of a hydrophilic thioether group in the 6-position (15a-c, 15e-g) reduced or abolished affinity. In secondary N-methyl analogues, a bromo substituent in the adjacent ring position (14a) imparted high affinity (KI = 7.4 nM) whereas a methyl substituent did not (14c). The tolerance for nonhydrophilic thioether substituents in the 6-position opens up the possibility of developing new sensitive positron emission tomography radioligands for imaging human Abeta plaques in Alzheimer's disease, especially in view of the amenability of thioethers to be labeled with carbon-11 or fluorine-18 through S-alkylation reactions. The structure-activity relationships revealed in this study extends insight into the topography of the binding site for IMPY-like ligands in human Abeta plaques.  相似文献   

16.
Positron emission tomography imaging of serotonin transporter (SERT) is useful for studying brain diseases with altered serotonergic function. A deuterated imaging agent, ([18F]2‐((2‐((bis(methyl‐d3)amino)methyl)‐4‐(3‐fluoropropoxy‐1,1,2,2,3,3‐d6)phenyl)thio)aniline, [18F]D12FPBM, [18F] 1 ), was prepared as a new chemical entity. The deuterated agent, 1 , showed excellent binding affinity to SERT; Ki was 0.086 nM, comparable with the undeuterated FPBM. In vivo biodistribution studies in rats with [18F] 1 showed good brain uptake (1.09% dose/g at 2 min post injection) and high specific uptake into the hypothalamus (HY) as compared with cerebellum (CB) (HY/CB = 7.55 at 120 min), suggesting a specific localization to SERT binding sites. Regional brain distribution in rats provided clear indication that [18F] 1 concentrated in the hypothalamus, hippocampus, and striatum, areas with a high SERT density. Results indicate that very little D to H substitution effect was found; [18F]FPBM and [18F] 1 showed very similar SERT binding. [18F] 1 might be an excellent candidate for SERT imaging.  相似文献   

17.
In the present study, a styryltriazole and four resveratrol derivatives were synthesized as candidates for β-amyloid (Aβ) plaque imaging. On the basis of their binding affinities to Aβ(1-42) aggregates, the styryltriazole (1, K(i) = 12.8 nM) and one resveratrol derivative (5, K(i) = 0.49 nM) were labeled with (18)F. In normal mice, tissue distribution of [(18)F]5 showed good initial brain uptake (3.26% ID/g at 2 min) but slow wash-out from brains (2-to-60 min uptake ratio: 2.9). Furthermore, it underwent in vivo metabolic defluorination (1.88% ID/g at 2 min and 9.73% ID/g at 60 min). In contrast, [(18)F]1 displayed high initial brain uptake (5.38% ID/g at 2 min) with rapid wash-out from brains (0.52% ID/g at 60 min; 2-to-60 min uptake ratio: 10.3). These results indicate that [(18)F]1 has in vivo kinetics comparable to PET radiopharmaceuticals currently under commercial development, demonstrating that [(18)F]1 is a desirable PET radioligand for Aβ plaque imaging.  相似文献   

18.
Uncharged derivatives of thioflavin‐T have known in vitro and in vivo affinity for amyloid β. We synthesized and evaluated two derivatives with a fluorine‐18 labelled fluoropropoxy substituent either at the 6‐position or at the 2′‐position of the 2‐(4′‐aminophenyl)‐1,3‐benzothiazole core with the aim to get suitable radiotracers to perform amyloid plaque imaging. The fluorine‐18 labelled compounds were obtained by nucleophilic substitution of the corresponding tosyl precursors with [18F]fluoride with a radiochemical yield of 50%, yielding 6‐(3′′‐[18F]fluoropropoxy)‐2‐(4′‐aminophenyl)‐1,3‐benzothiazole ([18F]2) and 2‐[2′‐(3′′‐[18F]fluoropropoxy)‐4′‐aminophenyl]‐1,3‐benzothiazole ([18F]3) with a specific activity between 33 and 51 GBq/µmol. The identity of the radiolabelled compounds was confirmed using radio‐LC‐MS and by comparing retention times on RP‐HPLC. Biodistribution studies in healthy mice showed for both compounds a relatively high initial brain uptake, which was significantly higher for [18F]2 than for [18F]3 (4.5% ID/g versus 3.0% ID/g, p<0.05). Wash‐out from control brain was faster for [18F]3. In vitro binding affinity tests using human AD brain homogenates revealed that only compound 2 has affinity for fibrillar amyloid β (Ki=14.5 nM). This was confirmed by the incubation of transgenic APP mouse brain sections with the cold compounds, where 3 did not stain any structure whereas 2 stained amyloid plaques present in APP mouse brain. These data suggest that [18F]2 may be a useful tracer for in vivo visualization of fibrillar amyloid β. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Two of the main pathological hallmarks of Alzheimer's disease (AD) are neuritic plaques and neurofibrillary tangles. Significant evidence supports a critical and probable causative role of beta amyloid (Abeta) plaque formation. Since neuroprotective treatments are typically most effective at early stages of injury, the detection and measurement of Abeta load in living brain should be performed at early and perhaps even presymptomatic stages of AD. Two primary targets of molecular imaging research with positron emission tomography (PET) are to develop surrogate markers (radioligands) for assessing disease progression and for monitoring the efficacy of developmental therapeutics. Here, we review the current status of radioligand development for PET imaging of Abeta aggregates. General structure-activity relationships have emerged, including the identification of at least three different ligand binding sites in various Abeta aggregates and recognition of the general structural requirements for ligand binding at each site. Also a few radioligands applicable to imaging Abeta plaques in living human brain with positron emission tomography (PET) have emerged, including [(11)C]PIB, [(11)C]SB-13 and [(18)F]FDDNP.  相似文献   

20.
目的  7 氮杂吲哚的衍生物L 74 5 ,870是一个新的、高亲和性 (Ki=0 4 3nmol·L-1)的多巴胺D4受体选择性配体 ,我们放化合成了其类似结构的新化合物 3 [4 (4 [18F]氟苯甲基 )哌嗪 1 基 ] 甲基 1H 吡咯并 [2 ,3 b]吡啶 ([18F]C) ,并作了大鼠体内生物学评价。方法  ([18F]C)的放化合成是通过 3 (哌嗪 1 基 )甲基 1H 吡咯并 [2 ,3 b]吡啶和 4 氟[18F]苯甲醛的胺烷基化反应完成 ,放化产率为 9 0 %~12 0 % ,放化纯度大于 98% ,比活度高于 37GBq·mol-1。结果 额叶皮质、海巴和延髓等脑区有较高的放射性摄取率 ,分别为 0 4 3%ID/ g和 0 35 %ID/g ;而纹状体、小脑处放射性摄取率较低。结论 大鼠体内的组织分布和代谢物研究表明 :[18F]C在大鼠脑组织区域有特异性分布 ,暗示其可能作为适合的显像剂用于多巴胺D4受体的体内研究  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号