首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
CD4(+)8(+) double positive (DP) thymocytes differentiate into CD4(+) and CD8(+) mature T cells in response to TCR signals. However, TCR signals that are initiated in DP thymocytes are unlikely to persist throughout all subsequent differentiation steps, suggesting that other signals must sustain thymocyte differentiation after TCR signaling has ceased. Using an in vitro experimental system, we now demonstrate that cytokine receptor signals, such as those transduced by IL-7 receptors, are required for differentiation of signaled DP thymocytes into functionally mature CD8(+) T cells as they: (a) up-regulate Bcl-2 expression to maintain thymocyte viability; (b) enhance CD4 gene silencing; (c) promote functional maturation;and (d) up-regulate surface expression of glucose transporter molecules, which improve nutrient uptake and increase metabolic activity. IL-7Rs appear to be unique among cytokine receptors in maintaining the viability of newly generated CD4(-)8(+) thymocytes, whereas several different cytokine receptors can provide the trophic/differentiative signals for subsequent CD8(+) thymocyte differentiation and maturation. Thus, cytokine receptors provide both survival and trophic/differentiative signals with varying degrees of redundancy that are required for differentiation of signaled DP thymocytes into functionally mature CD8(+) T cells.  相似文献   

4.
Antigen-binding diversity is generated by site-specific V(D)J recombination of the T cell receptor (TCR) and immunoglobulin loci in lymphocyte precursors. Coordinate expression of two structurally distinct recombinase activating genes, RAG-1 and RAG-2, is necessary for activation of site-specific V(D)J recombination. In mice bearing targeted disruptions of either the RAG-1 or RAG-2 genes, T and B lymphocyte development is arrested at the CD4-8- double negative (DN) thymocyte or B220+/CD43+ pro-B cell stage. Development of CD4+CD8+ double positive (DP) thymocytes is restored by expression of a functionally rearranged TCR beta transgene, suggesting that TCR beta expression is critical for this developmental transition. We have found that treatment of adult or newborn RAG-deficient mice with a single sublethal dose of gamma-irradiation rescues the DN to DP transition in early thymocytes, and this is accompanied by a dramatic increase in thymus cellularity. In contrast to the observed induction of thymocyte maturation, there was no phenotypic or functional evidence of coincident B lymphocyte development in irradiated RAG-deficient mice. Interestingly, maturation of DP thymocytes occurred without expression of TCR beta protein in the cytoplasm or on the cell surface. These results suggest an in vivo pathway for DP thymocyte development which is TCR beta chain independent.  相似文献   

5.
The asymmetric disposition of T cell receptor (TCR) Cbeta and Calpha ectodomains creates a cavity with a side-wall formed by the rigid Cbeta FG loop. To investigate the significance of this conserved structure, we generated loop deletion (betaDeltaFG) and betawt transgenic (tg) mice using the TCR beta subunit of the N15 CTL. N15betawt and N15betaDeltaFG H-2(b) animals have comparable numbers of thymocytes in S phase and manifest developmental progression through the CD4(-)CD8(-) double-negative (DN) compartment. N15betaDeltaFG facilitates transition from DN to CD4(+)8(+) double-positive (DP) thymocytes in recombinase activating gene (RAG)-2(-/-) mice, showing that pre-TCR function remains. N15betaDeltaFG animals possess approximately twofold more CD8(+) single-positive (SP) thymocytes and lymph node T cells, consistent with enhanced positive selection. As an altered Valpha repertoire observed in N15betaDeltaFG mice may confound the deletion's effect, we crossed N15alphabeta TCR tg RAG-2(-/-) with N15betaDeltaFG tg RAG-2(-/-) H-2(b) mice to generate N15alphabeta RAG-2(-/-) and N15alphabeta.betaDeltaFG RAG-2(-/-) littermates. N15alphabeta.betaDeltaFG RAG-2(-/-) mice show an 8-10-fold increase in DP thymocytes due to reduced negative selection, as evidenced by diminished constitutive and cognate peptide-induced apoptosis. Compared with N15alphabeta, N15alphabeta.betaDeltaFG T cells respond poorly to cognate antigens and weak agonists. Thus, the Cbeta FG loop facilitates negative selection of thymocytes and activation of T cells.  相似文献   

6.
Recent data indicate that the cell surface glycoprotein CD5 functions as a negative regulator of T cell receptor (TCR)-mediated signaling. In this study, we examined the regulation of CD5 surface expression during normal thymocyte ontogeny and in mice with developmental and/or signal transduction defects. The results demonstrate that low level expression of CD5 on CD4CD8 (double negative, DN) thymocytes is independent of TCR gene rearrangement; however, induction of CD5 surface expression on DN thymocytes requires engagement of the pre-TCR and is dependent upon the activity of p56lck. At the CD4+CD8+ (double positive, DP) stage, intermediate CD5 levels are maintained by low affinity TCR–major histocompatibility complex (MHC) interactions, and CD5 surface expression is proportional to both the surface level and signaling capacity of the TCR. High-level expression of CD5 on DP and CD4+ or CD8+ (single positive, SP) thymocytes is induced by engagement of the α/β-TCR by (positively or negatively) selecting ligands. Significantly, CD5 surface expression on mature SP thymocytes and T cells was found to directly parallel the avidity or signaling intensity of the positively selecting TCR–MHC-ligand interaction. Taken together, these observations suggest that the developmental regulation of CD5 in response to TCR signaling and TCR avidity represents a mechanism for fine tuning of the TCR signaling response.  相似文献   

7.
Maturational changes at the CD4(-)CD8(-) double negative (DN) to CD4(+)CD8(+) double positive (DP) transition are dependent on signals generated via the pre-T cell receptor (TCR) and the nonreceptor protein tyrosine kinase p56(lck) (Lck). How Lck activities are stimulated or relayed after pre-TCR formation remains obscure. Our structure-function mapping of Lck thymopoietic properties reveals that the noncatalytic domains of Lck are specialized to signal efficient cellular expansion at DN to DP transition. Moreover, although substitution of the Lck catalytic domain with FynT sequences minimally impacts DP development, single positive thymocytes are most efficiently produced in the presence of kinases containing both the NH(2)-terminal and catalytic regions of Lck. These findings demonstrate that the Lck structure is uniquely adapted to mediate signals at both major transitions in thymopoiesis.  相似文献   

8.
Signaling via the pre-T cell receptor (TCR) is required for the proliferative expansion and maturation of CD4(-)CD8(-) double-negative (DN) thymocytes into CD4(+)CD8(+) double-positive (DP) cells and for TCR-beta allelic exclusion. The adaptor protein SH2 domain-containing leukocyte protein (SLP)-76 has been shown to play a crucial role in thymic development, because thymocytes of SLP-76(-/-) mice are arrested at the CD25(+)CD44(-) DN stage. Here we show that SLP-76(-/-) DN thymocytes express the pre-TCR on their surfaces and that introduction of a TCR-alpha/beta transgene into the SLP-76(-/-) background fails to cause expansion of DN thymocytes or developmental progression to the DP stage. Moreover, analysis of TCR-beta rearrangement in SLP-76(-/-) TCR-transgenic mice or in single CD25(+)CD44(-) DN cells from SLP-76(-/-) mice indicates an essential role of SLP-76 in TCR-beta allelic exclusion.  相似文献   

9.
10.
Although T cell receptor (TCR) signals are essential for intrathymic T cell-positive selection, it remains controversial whether they only serve to initiate this process, or whether they are required throughout to promote thymocyte differentiation and survival. To address this issue, we have devised a novel approach to interfere with thymocyte TCR signaling in a developmental stage-specific manner in vivo. We have reconstituted mice deficient for Zap70, a tyrosine kinase required for TCR signaling and normally expressed throughout T cell development, with a Zap70 transgene driven by the adenosine deaminase (ADA) gene enhancer, which is active in CD4(+)CD8(+) thymocytes but inactive in CD4(+) or CD8(+) single-positive (SP) thymocytes. In such mice, termination of Zap70 expression impaired TCR signal transduction and arrested thymocyte development after the initiation, but before the completion, of positive selection. Arrested thymocytes had terminated Rag gene expression and up-regulated TCR and Bcl-2 expression, but failed to differentiate into mature CD4 or CD8 SP thymocytes, to be rescued from death by neglect or to sustain interleukin 7R alpha expression. These observations identify a TCR-dependent proofreading mechanism that verifies thymocyte TCR specificity and differentiation choices before the completion of positive selection.  相似文献   

11.
The SH2 domain containing leukocyte phosphoprotein of 76 kD (SLP-76) is critical for pre-TCR-mediated maturation to the CD4+CD8+ double positive (DP) stage in the thymus. The absolute block in SLP-76null mice at the CD4-CD8-CD44-CD25+ (double-negative 3, DN3) stage has hindered our understanding of the role of this adaptor in alphabeta TCR-mediated signal transduction in primary thymocytes and peripheral T lymphocytes. To evaluate the requirements for SLP-76 in these events, we used a cre-loxP approach to generate mice that conditionally delete SLP-76 after the DN3 checkpoint. These mice develop DP thymocytes that express the alphabeta TCR on the surface, but lack SLP-76 at the genomic DNA and protein levels. The DP compartment has reduced cellularity in young mice and fails to undergo positive selection to CD4+ or CD8+ single positive (SP) cells in vivo or activation-induced cell death in vitro. A small number of CD4+SP thymocytes are generated, but these cells fail to flux calcium in response to an alphabeta TCR-generated signal. Peripheral T cells are reduced in number, lack SLP-76 protein, and have an abnormal surface phenotype. These studies show for the first time that SLP-76 is required for signal transduction through the mature alphabeta TCR in primary cells of the T lineage.  相似文献   

12.
The evolutionarily conserved, secreted protein Twisted gastrulation (Tsg) modulates morphogenetic effects of decapentaplegic (dpp) and its orthologs, the bone morphogenetic proteins 2 and 4 (BMP2/4), in early Drosophila and vertebrate embryos. We have uncovered a role for Tsg at a much later stage of mammalian development, during T cell differentiation in the thymus. BMP4 is expressed by thymic stroma and inhibits the proliferation of CD4(-)CD8(-) double-negative (DN) thymocytes and their differentiation to the CD4(+)CD8(+) double-positive (DP) stage in vitro. Tsg is expressed by thymocytes and up-regulated after T cell receptor signaling at two developmental checkpoints, the transition from the DN to the DP and from the DP to the CD4(+) or CD8(+) single-positive stage. Tsg can synergize with the BMP inhibitor chordin to block the BMP4-mediated inhibition of thymocyte proliferation and differentiation. These data suggest that the developmentally regulated expression of Tsg may allow thymocytes to temporarily withdraw from inhibitory BMP signals.  相似文献   

13.
We have recently identified a dominant wave of CD4-CD8- (double- negative [DN]) thymocytes in early murine fetal development that express low affinity Fc gamma receptors (Fc gamma RII/III) and contain precursors for Ti alpha/beta lineage T cells. Here we show that Fc gamma RII/III is expressed in very immature CD4low single-positive (SP) thymocytes and that Fc gamma RII/III expression is downregulated within the DN subpopulation and before the CD3-CD8low SP stage in T cell receptor (TCR)-alpha/beta lineage-committed thymocytes. DN Fc gamma RII/III+ thymocytes also contain a small fraction of TCR-gamma/delta lineage cells in addition to TCR-alpha/beta progenitors. Fetal day 15.5 DN TCR-alpha/beta lineage progenitors can be subdivided into three major subpopulations as characterized by cell surface expression of Fc gamma RII/III vs. CD2 (Fc gamma RII/III+CD2-, Fc gamma RII/III+CD2+, Fc gamma RII/III-CD2+). Phenotypic analysis during fetal development as well as adoptive transfer of isolated fetal thymocyte subpopulations derived from C57B1/6 (Ly5.1) mice into normal, nonirradiated Ly5.2 congenic recipient mice identifies one early differentiation sequence (Fc gamma RII/III+CD2(-)-->Fc gamma RII/III+CD2(+)-->Fc gamma RII/III- CD2+) that precedes the entry of DN thymocytes into the CD4+CD8+ double- positive (DP) TCRlow/- stage. Unseparated day 15.5 fetal thymocytes develop into DP thymocytes within 2.5 d and remain at the DP stage for > 48 h before being selected into either CD4+ or CD8+ SP thymocytes. In contrast, Fc gamma RII/III+CD2- DN thymocytes follow this same developmental pathway but are delayed by approximately 24 h before entering the DP compartment, while Fc gamma RII/III-CD2+ display accelerated development by approximately 24 h compared with total day 15.5 thymocytes. Fc gamma RII/III-CD2+ are also more developmentally advanced than Fc gamma RII/III+CD2- fetal thymocytes with respect to their TCR beta chain V(D)J rearrangement. At day 15.5 in gestation, beta chain V(D)J rearrangement is mostly, if not entirely, restricted to the Fc gamma RII/III-CD2+ subset of DN fetal thymocytes. Consistent with this analysis in fetal thymocytes, > 90% of adult thymocytes derived from mice carrying a disrupting mutation at the recombination- activating gene 2 locus (RAG-2-/-) on both alleles are developmentally arrested at the DN CD2- stage. In addition, there is a fivefold increase in the relative percentage of thymocytes expressing Fc gamma RII/III in TCR and immunoglobulin gene rearrangement-incompetent homozygous RAG-2-/- mice (15% Fc gamma RII/III+) versus rearrangement- competent heterozygous RAG-2+/- mice (< 3% Fc gamma RII/III+). Thus, Fc gamma RII/III expression defines an early DN stage preceding V beta(D beta)I beta rearrangement, which in turn is followed by surface expression of CD2. Loss of Fc gamma RII/III and acquisition of CD2 expression characterize a late DN stage immediately before the conversion into DP thymocytes.  相似文献   

14.
Recent studies have shown that maturation of CD4-8- double negative (DN) thymocytes to the CD4+8+ double positive (DP) stage is dependent on expression of the T cell receptor (TCR)-beta polypeptide. The exact mechanism by which the TCR-beta chain regulates this maturation step remains unknown. Previous experiments had suggested that in the presence of some TCR+ thymocytes, additional DN thymocytes not expressing a TCR-beta chain may be recruited to mature to the DP stage. The recent demonstration of an immature TCR-beta-CD3 complex on early thymocytes lead to the alternative hypothesis that signal transduction through an immature TCR-CD3 complex may induce maturation to the DP stage. In the latter case, maturation to the DP stage would depend on the expression of TCR-beta-CD3 in the same cell. We examined these two hypotheses by studying the expression of the intra- and extracellular CD3 epsilon, CD3 zeta, and TCR-beta polypeptides in intrathymic subpopulations during embryogenesis. CD3 epsilon and CD3 zeta were expressed intracellularly 2 and 1 d, respectively, before intracellular expression of the TCR-beta chain, potentially allowing immediate surface expression of an immature TCR-beta-CD3 complex as soon as functional rearrangement of a TCR-beta gene locus has been accomplished. Calcium mobilization could be induced by stimulation with anti-CD3 epsilon mAb as soon as intracellular TCR-beta was detectable, suggesting that a functional TCR-beta-CD3 complex is indeed expressed on the surface of early thymocytes. From day 17 on, most cells were in the DP stage, and over 95% of the DP cells expressed on the TCR-beta chain intracellularly. At day 19 of gestation, extremely low concentrations of TCR-beta chain and CD3 epsilon were detectable on the cell surface of nearly all thymocytes previously thought to be TCR-CD3 negative. These findings strongly support the hypothesis that maturation to the DP stage depends on surface expression of and subsequent signal transduction through an immature TCR-beta-CD3 complex and suggest that maturation to the DP stage by recruitment, if it occurs at all, is of minor relevance.  相似文献   

15.
PD-1 is an immunoglobulin superfamily member bearing an immunoreceptor tyrosine-based inhibitory motif, and disruption of the PD-1 gene results in the development of lupus-like autoimmune diseases. In this study, we examined effects of the PD-1 deficiency on the thymocyte differentiation at the clonal level using T cell receptor (TCR)-beta (Vbeta8) and TCR-alpha/beta (H-Y and 2C) transgenic mice. In these TCR transgenic lines, PD-1 expression in the thymus was variably augmented, but as in the normal mice, confined largely to the CD4(-)CD8(-) thymocytes. The transgenic mice crossed with PD-1(-/)- mice in the neutral genetic backgrounds exhibited selective increase in the CD4(+)CD8(+) (DP) population with little effect on other thymocytes subsets. Similarly, the absence of PD-1 facilitated expansion of DP thymocytes in recombination activating gene (RAG)-2(-/)- mice by anti-CD3epsilon antibody injection. On the other hand, H-Y or 2C transgenic PD-1(-/)- mice with the positively selecting background showed significantly reduced efficiency for the generation of CD8(+) single positive cells bearing the transgenic TCR-alpha/beta in spite of the increased DP population. These results collectively indicate that PD-1 negatively regulates the beta selection and modulates the positive selection, and suggest that PD-1 deficiency may lead to the significant alteration of mature T cell repertoire.  相似文献   

16.
17.
18.
Because survivin-null embryos die at an early embryonic stage, the role of survivin in thymocyte development is unknown. We have investigated the role by deleting the survivin gene only in the T lineage and show here that loss of survivin blocks the transition from CD4- CD8- double negative (DN) thymocytes to CD4+ CD8+ double positive cells. Although the pre-T cell receptor signaling pathway is intact in survivin-deficient thymocytes, the cells cannot respond to its signals. In response to proliferative stimuli, cycling survivin-deficient DN cells exhibit cell cycle arrest, a spindle formation defect, and increased cell death. Strikingly, loss of survivin activates the tumor suppressor p53. However, the developmental defects caused by survivin deficiency cannot be rescued by p53 inactivation or introduction of Bcl-2. These lines of evidence indicate that developing thymocytes depend on the cytoprotective function of survivin and that this function is tightly coupled to cell proliferation but independent of p53 and Bcl-2. Thus, survivin plays a critical role in early thymocyte development.  相似文献   

19.
As a result of interaction with epithelial cells in the thymic cortex, immature CD4(+)8(+) (double positive, DP) thymocytes express relatively few T cell receptors (TCRs) and contain diminished numbers of coreceptor-associated p56(lck) (lck) PTK molecules. As a result, TCR signal transduction in DP thymocytes is significantly impaired, despite its importance for repertoire selection. We report here that, in DP thymocytes, tyrosine phosphorylation of TCR signaling motifs (ITAMs) by lck, an early event in TCR signal transduction, is dependent upon ZAP-70 protein independent of ZAP-70's kinase activity. Furthermore, the dependence on ZAP-70 protein for ITAM phosphorylation diminishes as available lck increases. Importantly, ZAP-70's role in ITAM phosphorylation in DP thymocytes is not limited to protecting phosphorylated ITAMs from dephosphorylation. Rather, this study indicates that ZAP-70 protein augments ITAM phosphorylation in DP thymocytes and so compensates in part for the relative deficiency of coreceptor-associated lck.  相似文献   

20.
The T cell receptor (TCR)gammadelta and the pre-TCR promote survival and maturation of early thymocyte precursors. Whether these receptors also influence gammadelta versus alphabeta lineage determination is less clear. We show here that TCRgammadelta gene rearrangements are suppressed in TCRalphabeta transgenic mice when the TCRalphabeta is expressed early in T cell development. This situation offers the opportunity to examine the outcome of gammadelta versus alphabeta T lineage commitment when only the TCRalphabeta is expressed. We find that precursor thymocytes expressing TCRalphabeta not only mature in the alphabeta pathway as expected, but also as CD4(-)CD8(-) T cells with properties of gammadelta lineage cells. In TCRalphabeta transgenic mice, in which the transgenic receptor is expressed relatively late, TCRgammadelta rearrangements occur normally such that TCRalphabeta(+)CD4(-)CD8(-) cells co-express TCRgammadelta. The results support the notion that TCRalphabeta can substitute for TCRgammadelta to permit a gammadelta lineage choice and maturation in the gammadelta lineage. The findings could fit a model in which lineage commitment is determined before or independent of TCR gene rearrangement. However, these results could be compatible with a model in which distinct signals bias lineage choice and these signaling differences are not absolute or intrinsic to the specific TCR structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号