首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autoimmune diseases (ADs) are a spectrum of diseases originating from loss of immunologic self-tolerance and T cell abnormal autoreactivity, causing organ damage and death. However, the pathogenic mechanism of ADs remains unclear. The current treatments of ADs include nonsteroidal anti-inflammatory drugs (NSAIDS), antimalarials, corticosteroids, immunosuppressive drugs, and biological therapies. With the need to prevent side effects resulting from current treatments and acquire better clinical remission, developing a novel pharmaceutical treatment is extremely urgent. The concept of T cell vaccination (TCV) has been raised as the finding that immunization with attenuated autoreactive T cells is capable of inducing T cell-dependent inhibition of autoimmune responses. TCV may act as an approach to control unwanted adaptive immune response through eliminating the autoreactive T cells. Over the past decades, the effect of TCV has been justified in several animal models of autoimmune diseases including experimental autoimmune encephalomyelitis (EAE), murine autoimmune diabetes in nonobese diabetic (NOD) mice, collagen-induced arthritis (CIA), and so on. Meanwhile, clinical trials of TCV have confirmed the safety and efficacy in corresponding autoimmune diseases ranging from multiple sclerosis (MS) to systemic lupus erythematosus (SLE). This review aims to summarize the ongoing experimental and clinical trials and elucidate possible molecule mechanisms of TCV.  相似文献   

2.
Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults. When MS is not treated, it leads to irreversible and severe disability. The etiology of MS and its pathogenesis are not fully understood. The recent discovery that MS‐associated genetic variants code for molecules related to the function of specific immune cell subsets is consistent with the concept of MS as a prototypic, T‐cell‐mediated autoimmune disease targeting the CNS. While the therapeutic efficacy of the currently available immunomodulatory therapies further strengthen this concept, differences observed in responses to MS treatment as well as additional clinical and imaging observations have also shown that the autoimmune pathogenesis underlying MS is much more complex than previously thought. There is therefore an unmet need for continued detailed phenotypic and functional analysis of disease‐relevant adaptive immune cells and tissues directly derived from MS patients to unravel the immune etiology of MS in its entire complexity. In this review, we will discuss the currently available MS treatment options and approved drugs, including how they have contributed to the understanding of the immune pathology of this autoimmune disease.  相似文献   

3.
Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system (CNS); it affect millions of patients worldwide and the number of patients is on the rise. Current treatment options are fairly limited and there is a strong unmet need for disease-targeted therapies for MS. The most widely accepted hypothesis for the pathogenesis of MS is that it is a primary autoimmune disease in which myelin-specific T cells play a central role in the progression of demyelination. According to this hypothesis, a powerful immune suppression or a reconstruction of the immune system to abrogate disease-specific leukocytes early in the development of the disease is expected to halt or even reverse the disease, since remyelination is an exceptionally efficient regenerative process in the CNS. However, recent neuropathological studies have provided evidence of primary oligodendrogliopathy as a cause of demyelination, suggesting that immune reactions may be a mere secondary event in the course of MS. On the other hand, some recent clinical trial results of new immune-suppressive treatments showed a nearly complete blockade of relapses and significant, albeit incomplete, neurological improvement. Therefore, which hypothesis—autoimmunity or oligodendrogliopathy—lights the correct path to a “cure” for MS?  相似文献   

4.
Toward cell-based therapy of type I diabetes   总被引:2,自引:0,他引:2  
Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of insulin-producing pancreatic islet cells owing to the aggressive effector function of autoreactive T cells. In addition to lifetime supply of exogenous insulin, whole-pancreas or islet transplantation is presently the only alternative therapy for severely ill patients. Here, we discuss the current status of the development of cell-based therapies that are based on essentially two options, i.e. replacement of islet cells by islet-like cells derived from embryonic or adult stem cells, and re-establishment of immunological tolerance to islet self-antigens through regulatory T cells and/or tolerance-promoting monocyte-derived cells. A combination of both approaches will be required to turn cell-based therapy of T1D into clinical success.  相似文献   

5.
Autoreactive T cells that escape negative selection in the thymus do not normally cause productive immune responses to self-antigens because of a number of regulatory mechanisms. Studies with anti-CD3 monoclonal antibodies (mAbs) have suggested that immune regulatory mechanisms are induced by drug treatments that are able to stop on-going unwanted immune responses, such as type 1 diabetes, involving induction of regulatory T cells. TGF-beta dependent and independent mechanisms have been described involving CD4(+) as well as CD8(+) T cells. The challenge is now to apply these mechanisms in an antigen-specific manner and so that lasting tolerance to the autoimmune responses can be maintained. We discuss recent data concerning the mechanisms of anti-CD3 mAb treatment and the ways in which our understanding of these mechanisms can be used to develop adoptive immune therapy with regulatory T cells to treat patients with type 1 diabetes or other autoimmune diseases.  相似文献   

6.
Myelin-reactive T cells are considered to play an essential role in the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. We have previously studied the effects of T cell vaccination (TCV), a procedure by which MS patients are immunized with attenuated autologous myelin basic protein (MBP)-reactive T cell clones. Because several myelin antigens are described as potential autoantigens for MS, T cell vaccines incorporating a broad panel of antimyelin reactivities may have therapeutic effects. Previous reports have shown an accumulation of activated T cells recognizing multiple myelin antigens in the cerebrospinal fluid (CSF) of MS patients. We conducted a pilot clinical trial of TCV with activated CD4+ T cells derived from CSF in five MS patients (four RR, one CP) to study safety, feasibility and immune effects of TCV. CSF lymphocytes were cultured in the presence of rIL-2 and depleted for CD8 cells. After 5-8 weeks CSF T cell lines (TCL) were almost pure TCR alpha beta+CD4+ cells of the Th1/Th0 type. The TCL showed reactivity to MBP, MOG and/or PLP as tested by Elispot and had a restricted clonality. Three immunizations with irradiated CSF vaccines (10 million cells) were administered with an interval of 2 months. The vaccinations were tolerated well and no toxicity or adverse effects were reported. The data from this small open-label study cannot be used to support efficacy. However, all patients remained clinically stable or had reduced EDSS with no relapses during or after the treatment. Proliferative responses against the CSF vaccine were observed in 3/5 patients. Anti-ergotypic responses were observed in all patients. Anti-MBP/PLP/MOG reactivities remained low or were reduced in all patients. Based on these encouraging results, we recently initiated a double-blind placebo-controlled trial with 60 MS patients to study the effects of TCV with CSF-derived vaccines in early RR MS patients.  相似文献   

7.
The etiology of multiple sclerosis (MS) is incompletely understood, and evidence suggests there may be more than one underlying cause in this disorder. Furthermore, this complex and heterogeneous autoimmune disease shows a high degree of clinical variability between patients. Therefore, in the absence of a single therapeutic target for MS, it is difficult to apply conventional drug design strategies in the search for new treatments. We review the potential mechanisms of action of several effective therapies for MS that are currently available or in development. The effects of each treatment are described in terms of their actions on key processes in a five-step model of MS pathogenesis. Conventional immunosuppressants targeting intracellular ligands (e.g. mitoxantrone) have broad cytotoxic effects on B cells, T cells, and macrophages. This suppresses the pathogenic immune response in MS with high efficacy but is also associated with high toxicity, limiting the long-term use of these agents. Monoclonal antibodies (e.g. natalizumab and alemtuzumab) are a new generation of immunosuppressants that act on immune-cell surface ligands. These agents have narrower immunosuppressive actions and different safety profiles compared with conventional immunosuppressants. Immunomodulators (interferon-beta and glatiramer acetate), which shift the immune balance toward an anti-inflammatory response, are at the frontline of treatments for MS. Immunomodulators have targeted actions on the immune system, but affect a greater number of immunopathogenic processes than monoclonal antibodies. Given the inherent heterogeneity of MS, such treatments, which act at many levels of the disease, may achieve the best clinical results. Using our understanding of the interplay between mechanism of action and clinical effects in MS therapies may help us to better design and select new treatments for the future.  相似文献   

8.
Multiple sclerosis (MS) is an autoimmune condition characterized by degeneration of nerve fibre myelin sheets. A candidate autoantigen, myelin basic protein (MBP), has especially attracted attention. The presence of anti-MBP antibodies is a predictor of definite MS, but their role in the pathogenesis remains obscure. T cells have long been known to play a pivotal role in the pathogenesis of MS. Recently, an important role for B cells as autoantigen-presenting cells has been demonstrated in other autoimmune diseases, including rheumatoid arthritis and diabetes. The uptake of MBP by B cells and the presentation of MBP-derive peptides to T helper (Th) cells by B cells may be promoted by the formation of complement (C) activating immune complexes (ICs) between MBP and natural autoantibodies in healthy individuals and disease-associated anti-MBP antibodies in MS patients, respectively. We have investigated the formation of MBP-containing IC, the binding of MBP to B cells, the MBP-elicited induction of Th-cell and B-cell proliferation and the cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors grown in the presence of intact or C-inactivated serum from healthy donors or patients with MS. While MBP did not induce measurable proliferation of B cells nor CD4+ T cells, we observed the production of TNF-α, IFN-γ and IL-10 by PBMC in response to incubation with MBP in the presence of sera from healthy controls as well as sera from MS patients. By contrast, no production of IL-2, IL-4 and IL-5 was detected. We are currently investigating the capability of MS sera to promote the formation of MBP-containing IC and thereby enhance the cytokine responses, by virtue of elevated anti-MBP contents.  相似文献   

9.
MHC class I and II molecules play a central role in the immune response against a variety of invading microorganisms and cells that have undergone malignant transformation by shaping the T cell repertoire in the thymus and by presenting peptide antigens from endogenous and exogenous antigens in the periphery to CD8+ cytotoxic T cells and CD4+ helper T cells. In certain situations MHC-peptide complexes may, however, also initiate and perpetuate an autoimmune attack mediated by autoaggressive T cells leading to diseases such as insulin dependent diabetes mellitus (IDDM), rheumatoid arthritis (RA) and multiple sclerosis (MS). Such MHC-peptide complexes are a desirable target for novel approaches in immunotherapy. Targeted delivery of toxins or other cytotoxic drugs to cells which express specific MHC-peptide complexes that are involved in the immune response against cancer or viral infections and specific masking of MHC-peptide complexes that are involved in autoimmune reactions would allow for a specific immunotherapeutic treatment of these diseases. We have recently demonstrated that antibodies with the antigen-specific, MHC restricted specificity of T cells can be readily generated by taking advantage of the selection power of phage display technology.  相似文献   

10.
Autoreactive T cells that escape negative selection in the thymus do not normally cause productive immune responses to self-antigens because of a number of regulatory mechanisms. Studies with anti-CD3 monoclonal antibodies (mAbs) have suggested that immune regulatory mechanisms are induced by drug treatments that are able to stop on-going unwanted immune responses, such as type 1 diabetes, involving induction of regulatory T cells. TGF-β dependent and independent mechanisms have been described involving CD4+ as well as CD8+ T cells. The challenge is now to apply these mechanisms in an antigen-specific manner and so that lasting tolerance to the autoimmune responses can be maintained. We discuss recent data concerning the mechanisms of anti-CD3 mAb treatment and the ways in which our understanding of these mechanisms can be used to develop adoptive immune therapy with regulatory T cells to treat patients with type 1 diabetes or other autoimmune diseases.  相似文献   

11.
T cells from patients with multiple sclerosis (MS) and normal controls were assessed for their ability to respond in the autologous mixed lymphocyte reaction (AMLR). Cells from stable MS patients demonstrated a significant defect in their proliferative response to non-T cells in comparison to normal controls. Despite the defective AMLR response, T cells from MS patients reacted as well as T cells from normal controls to allogeneic stimuli. Furthermore, MS non-T-cells were fully capable of stimulating allogeneic MLR responses by normal and MS T cells. Since the T4+ cell is the major subpopulation which proliferates in the AMLR, these studies suggest a functional defect in a subpopulation of T4+ cells in MS patients. Since the AMLR may represent an important mechanism by which immune responses are regulated, a defect in the ability of MS T cells to respond to autologous cells could account for several of the autoimmune features of the disease.  相似文献   

12.
The number of elderly multiple sclerosis (MS) patients is growing, mainly due to the increase in the life expectancy of the general population and the availability of effective disease-modifying treatments. However, current treatments reduce the frequency of relapses and slow the progression of the disease, but they cannot stop the disability accumulation associated with disease progression. One possible explanation is the impact of immunosenescence, which is associated with the accumulation of unusual immune cell subsets that are thought to have a role in the development of an early ageing process in autoimmunity. Here, we provide a recent overview of how senescence affects immune cell function and how it is involved in the pathogenesis of autoimmune diseases, particularly MS. Numerous studies have demonstrated age-related immune changes in experimental autoimmune encephalomyelitis models, and the premature onset of immunosenescence has been demonstrated in MS patients. Therefore, potential therapeutic strategies based on rejuvenating the immune system have been proposed. Senolytics and regenerative strategies using haematopoietic stem cells, therapies based on rejuvenating oligodendrocyte precursor cells, microglia and monocytes, thymus cells and senescent B and T cells are capable of reversing the process of immunosenescence and could have a beneficial impact on the progression of MS.  相似文献   

13.
Proper regulation of immune homeostasis is necessary to limit inflammation and prevent autoimmune and chronic inflammatory diseases. Many autoimmune diseases, such as psoriasis, are driven by vicious cycles of activated T cells that are unable to be suppressed by regulatory T cells. Effective suppression of auto-reactive T cells by regulatory T cells (Treg) is critical for the prevention of spontaneous autoimmune disease. Psoriatic Treg cells have been observed to a defect in their capacity to regulate, which clearly contributes to psoriasis pathogenesis. A challenge for translational research is the development of novel therapeutic interventions for autoimmune diseases that will result in durable remissions. Understanding the mechanism(s) of dysregulated T cell responses in autoimmune disease will allow for the development of future therapeutic strategies that may be employed to specifically target pathogenic, proinflammatory cells. Several reports have demonstrated a pathogenic role for Thl and Thl7 cells in psoriasis as well as other autoimmune diseases. Similarly, several laboratories have independently demonstrated functional defects in regulatory T cells isolated from patients with numerous divergent autoimmune diseases. One primary challenge of research in autoimmune diseases is therefore to restore the balance between chronic T cell activation and impairment of Treg suppressor mechanisms. To this end, it is critical to develop an understanding of the many suppressive mechanisms employed by Treg cells in hopes of developing more targeted therapeutic strategies for Treg-mediated autoimmune diseases.  相似文献   

14.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) of putative autoimmune origin. Recent evidence indicates that MS autoimmunity is linked to defects in regulatory T-cell function, which normally regulates immune responses to self-antigens and prevents autoimmune diseases. MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have long been regarded as a CD4(+) T-cell-mediated autoimmune disease. Studies addressing the role of CD8(+) T cells, however, have only recently begun to emerge. Pathogenic function was attributed to CD8(+) T cells because of their abundant presence or oligoclonal repertoire within MS lesions. However, CD8(+) T cells appeared to have important regulatory functions, as demonstrated in EAE or human MS studies. We here review the contribution of CD8(+) T cells to inflammation and immune regulation in CNS autoimmunity. The knowledge of distinct CD8(+) T-cell populations exerting destructive versus beneficial functions is summarized. The long-term goal is to delineate the exact phenotypic and functional characteristics of regulatory CD8(+) T-cell populations (natural as well as inducible) in humans. This knowledge may help to further develop concepts of reconstituting or enhancing endogenous mechanisms of immune tolerance in future therapeutic concepts for MS.  相似文献   

15.
The cause of multiple sclerosis (MS) is unknown. Recently reported abnormal T-cell responses to several myelin proteins and myelin basic protein (MBP) peptides in peripheral blood constitute one line of evidence that autoimmune mechanisms could be involved in the pathogenesis of the disease. Monosymptomatic unilateral optic neuritis (ON) is a common first manifestation of MS and important to examine for a possible restriction of the T-cell repertoire early in the disease. T-cell activities to MBP and the MBP amino acid sequences 63–88, 110–128 and 148–165 were examined by short-term cultures of mononuclear cells from cerebrospinal fluid (CSF) and blood in the presence of these antigens, and subsequent detection and counting of antigen-specific T cells that responded by interferon-gamma (IFN-γ) secretion. Most patients with MS and ON had MBP and MBP peptide-reactive T cells in CSF, amounting to mean values of between about 1 per 2000 and 1 per 7000 CSF cells and without immunodominance for any of the peptides. Numbers were 10-fold to 100-fold lower in the patients' blood. Values were similar in ON and MS, and no evidence was obtained for a more restricted T-cell repertoire in ON. The MBP peptide-recognizing T-cell repertoire was different in CSF than in blood in individual patients with ON and MS, thereby giving further evidence for an autonomy of the autoimmune T-cell response in the CSF compartment. No relations were observed between numbers of autoreactive T cells and presence of oligoclonal IgG bands in CSF or abnormalities on magnetic resonance imaging of the brain in ON or clinical variables of MS. The high numbers of MBP and MBP peptide-reactive T cells could play a role in the pathogenesis of ON via secretion of effector molecules, one of them being IFN-γ, as well as in the transfer of ON to MS.  相似文献   

16.
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS with presumed autoimmune origin. Pathogenic autoimmune responses in MS are thought to be the result of a breakdown of self tolerance. Several mechanisms account for the natural state of immunological tolerance to self antigens, including clonal deletion of self-reactive T cells in the thymus. However, autoimmune T cells are also part of the normal T-cell repertoire, supporting the existence of peripheral regulatory mechanisms that keep these potentially pathogenic T cells under control. One such mechanism involves active suppression by regulatory T cells. It has been indicated that regulatory T cells do not function properly in autoimmune disease. Immunization with attenuated autoreactive T cells, T-cell vaccination, may enhance or restore the regulatory immune networks to specifically suppress autoreactive T cells, as shown in experimental autoimmune encephalomyelitis, an animal model for MS. In the past decade, T-cell vaccination has been tested for MS in several clinical trials. This review summarizes these clinical trials and updates our current knowledge on the induction of regulatory immune networks by T cell vaccination.  相似文献   

17.
《Autoimmunity》2013,46(5-6):446-460
Experimental myasthenia gravis (MG) in animals, and in particular experimental autoimmune MG in rodents, serves as excellent models to study possible novel therapeutic modalities for MG. The current treatments for MG are based on cholinesterase inhibitors, general immunosuppressants, and corticosteroids, broad immunomodulatory therapies such as plasma exchange or intravenous immunoglobulins (IVIGs), and thymectomy for selected patients. This stresses the need for immunotherapies that would specifically or preferentially suppress the undesirable autoimmune response without widely affecting the entire immune system as most available treatments do. The available animal models for MG enable to perform preclinical studies in which novel therapeutic approaches can be tested. In this review, we describe the different therapeutic approaches that were so far tested in experimental models of MG and discuss their underlying mechanisms of action. These include antigen - acetylcholine receptor (AChR)-dependent treatments aimed at specifically abrogating the humoral and cellular anti-AChR responses as well as immunomodulatory approaches that could be used either alone or in conjunction with antigen-specific treatments or alternatively serve as steroid sparing agents. The antigen-specific treatments are based on fragments or peptides derived from the acetylcholine receptor (AChR) that would theoretically deviate the anti-AChR autoimmune response away from the muscle target or on ways to target AChR-specific T- and B- cell responses or antibodies. The immunomodulatory modalities include cell-based and non-cell-based ways to affect or manipulate key players in the autoimmune process such as regulatory T cells, dendritic cells, cytokine networks, and chemokine and costimulatory signaling as well as complement pathways. We also describe approaches that attempt to affect the cholinergic balance, which is impaired at the neuromuscular junction. In addition to enabling to test the feasibility of novel approaches, experimental MG enables to perform analyses of existing treatment modalities, which cannot be performed in human MG patients. These include studies on the mode of action of various immunosuppressants and on IVIGs. Hopefully, the vast repertoire of therapeutic approaches that are studied in experimental models of MG will pave the way to clinical studies that will eventually improve the management of MG.  相似文献   

18.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that affects about 0.1% of the worldwide population. This deleterious disease is marked by infiltration of myelin-specific T cells that attack the protective myelin sheath that surrounds CNS nerve axons. Upon demyelination, saltatory nerve conduction is disrupted, and patients experience neurologic deficiencies. The exact cause for MS remains unknown, although most evidence supports the hypothesis that both genetic and environmental factors contribute to disease development. Epidemiologic evidence supports a role for environmental pathogens, such as viruses, as potentially key contributors to MS induction. Pathogens can induce autoimmunity via several well-studied mechanisms with the most postulated being molecular mimicry. Molecular mimicry occurs when T cells specific for peptide epitopes derived from pathogens cross-react with self-epitopes, leading to autoimmune tissue destruction. In this review, we discuss an in vivo virus-induced mouse model of MS developed in our laboratory, which has contributed greatly to our understanding of the mechanisms underlying molecular mimicry-induced CNS autoimmunity.  相似文献   

19.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that affects millions of patients worldwide. The current disease-modifying therapies (DMTs) that are widely used to treat MS only show modest effects. Because MS is a chronic disease, it is important to develop treatments that have better long-term efficacy. Recently, several new-generation DMTs have been developed, most of which target specific immune molecules based on the assumption that MS is an autoimmune disease. These DMTs are designed to inhibit inflammation that is thought to directly cause demyelination. Preliminary studies suggest that these new therapies are likely to show a greater effect in reducing relapses in early MS patients, although their long-term efficacy is still unknown. In contrast, it was recently reported that the initial course of MS does not significantly influence long-term disability and that disability increases approximately at the same rate despite variable relapse frequencies. Furthermore, new neuropathological evidence now argues against the autoimmune hypothesis and suggests that MS is a primary oligodendrogliopathy disease in which the inflammatory response may be a mere epiphenomenon. So can we be optimistic about the unproven long-term outcomes of new DMTs or should we reconsider the pathogenesis of MS when developing more disease-specific treatments?  相似文献   

20.
《Autoimmunity reviews》2022,21(7):103104
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号