首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We investigated the effect of the orally active non-peptide bradykinin B2 receptor antagonist, FR173657 (E)-3-(6-acetamido-3-pyridyl)-N-[N-[2.4-di-chloro-3-[(2-methyl-8-quinoli nyl)oxymethyl]phenyl]-N-methy-laminocarbonylmethyl] acrylamide), on plasma extravasation mediated by activation of sensory nerves in guinea pig airways. Plasma extravasation was assessed by the photometric measurement of the extravasated Evans blue after formamide extraction. We found that the increase in Evans blue dye extravasation evoked by an aerosol of bradykinin (0.1 mM, 2 min) in the presence of phosphoramidon (2.5 mg/kg, i.v.) was abolished completely by FR173657 (20 mg/kg, p.o.) in the trachea and main bronchi. In sensitized guinea pigs pretreated with phosphoramidon, FR173657 (20 mg/kg, p.o.) inhibited plasma extravasation evoked by ovalbumin aerosol (5%, 2 min) by 77+/-14.2% in the trachea and 65+/-11.2% in the main bronchi. FR173657 (20 mg/kg, p.o.) did not affect the plasma extravasation caused by aerosolised capsaicin. These findings suggest that FR173657 is an orally active, promising anti-inflammatory agent for kinin-dependent inflammation following antigen challenge.  相似文献   

2.
Toluene is a representative airborne occupational and domestic pollutant that causes eye and respiratory tract irritation. We investigated whether a single inhalation of toluene elicits microvascular leakage in the rat airway. We also evaluated the effects of CP-99,994, a tachykinin NK(1) receptor antagonist, and ketotifen, a histamine H1 receptor antagonist with mast cell-stabilizing properties, on the airway response. The content of Evans blue dye that extravasated into the tissues was measured as an index of plasma leakage. Toluene (18-450 ppm, 10 min) concentration-dependently induced dye leakage into the trachea and main bronchi of anesthetized and mechanically ventilated rats. Toluene at concentrations of ≥ 50 and ≥ 30 ppm caused significant responses in the trachea and main bronchi, respectively, which both peaked after exposure to 135 ppm toluene for 10 min. This response was abolished by CP-99,994 (5 mg/kg i.v.), but not by ketotifen (1mg/kg i.v.). Nebulized phosphoramidon (1 mM, 1 min), a neutral endopeptidase 24.11 inhibitor, significantly enhanced the response induced by toluene (135 ppm, 10 min) compared with nebulized 0.9% saline (1 min). These results show that toluene can rapidly increase airway plasma leakage that is predominantly mediated by tachykinins endogenously released from airway sensory nerves. However, mast cell activation might not be important in this airway response.  相似文献   

3.
1. To determine which mediators are involved in antigen-induced bronchospasm and microvascular leakage in the airways of ovalbumin sensitised Brown Norway rats we investigated the effect of a histamine H(1) receptor antagonist, mepyramine, a 5-HT receptor antagonist, methysergide, and a cys-leukotriene-1 receptor antagonist, montelukast. 2. Ovalbumin at 1 mg kg(-1) i.v. caused a significant increase in microvascular leakage in the airways and at 3 mg kg(-1) i.v. caused a significant increase in airways resistance. 3. Histamine (1 mg kg(-1) i.v.), 5-HT (0.1 mg kg(-1) i.v.) and leukotriene D(4) (LTD(4), 50 microg kg(-1) i.v.) caused a significant increase in microvascular leakage in the airways. 4. Mepyramine (1 mg kg(-1) i.v.), methysergide (0.1 mg kg(-1) i.v.), or montelukast (30 mg kg(-1) i.v.) inhibited histamine, 5-HT or LTD(4) -induced microvascular leakage respectively. 5. Methysergide (0.1 mg kg(-1) i.v.) reduced ovalbumin-induced microvascular leakage in the trachea and at 0.3 mg kg(-1) i.v. inhibited bronchospasm (38 and 58%, respectively). Montelukast (30 mg kg(-1) p.o.) reduced ovalbumin-induced microvascular leakage in airway tissue to basal levels (78%) and inhibited ovalbumin-induced bronchospasm (50%). Mepyramine (3 mg kg(-1) i.v.) had no effect on ovalbumin-induced leakage or bronchospasm. 6. A combination of all three compounds (mepyramine, methysergide and montelukast) reduced ovalbumin-induced microvascular leakage in airway tissue to basal levels (70 - 78%) and almost completely inhibited bronchospasm (92%). 7. Antigen-induced bronchospasm appears to equally involve the activation of 5-HT and cys-leukotriene-1 receptors whereas ovalbumin-induced microvascular leakage appears to be predominantly mediated by cys-leukotriene-1 receptors.  相似文献   

4.
组胺气雾剂,辣椒素和电刺激迷走神经引起豚鼠...   总被引:3,自引:0,他引:3  
  相似文献   

5.
1. The mechanisms behind bradykinin-induced effects in the airways are considered to be largely indirect. The role of cholinergic nerves and eicosanoids, and their relationship in these mechanisms were investigated in guinea-pigs. 2. The role of cholinergic nerves was studied in animals given atropine (1 mg kg-1, i.v.), hexamethonium (2 mg kg-1, i.v.), or vagotomized. To study the role of eicosanoids, animals were pretreated with a thromboxane A2 (TxA2) receptor antagonist (ICI 192,605; 10(-6) mol kg-1, i.v.) or with a leukotriene (LT) receptor C4/D4/E4 antagonist (ICI 198,615; 10(-6) mol kg-1, i.v.). 3. After pretreatment with a drug, bradykinin (150 nmol) was instilled into the tracheal lumen. We measured both airway insufflation pressure (Pi), to assess airway narrowing, and the content of Evans blue dye in airway tissue, to assess plasma exudation. 4. Bradykinin instillation into the trachea caused an increase in Pi and extravasation of Evans blue dye. The increase in Pi was significantly attenuated by atropine or the TxA2 receptor antagonist, but not by hexamethonium, vagotomy or the LT receptor antagonist. 5. The bradykinin-induced exudation of Evans blue dye was significantly attenuated in the intrapulmonary airways by the TxA2 receptor antagonist, but not by atropine, hexamethonium, cervical vagotomy or the LT receptor antagonist. 6. A thromboxane-mimetic U-46619 (20 nmol kg-1, i.v. or 10 nmol intratracheally), caused both an increase in Pi and extravasation of Evans blue dye at all airway levels. Atropine pretreatment slightly attenuated the peak Pi after the intratracheal administration of U-46619, but not after i.v. administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. The effect of montelukast or MEN91507, selective leucotriene CysLT1 receptor antagonists, on antigen-induced airway inflammation and bronchoconstriction were compared in anaesthetized guinea-pigs. 2. In sensitized animals, ovalbumin (0.3 mg kg(-1), i.v.)-induced microvascular leakage in trachea, intrapulmonary airways, total lung (parenchyma and intrapulmonary airways) and urinary bladder was reduced by MEN91507 (0.01-1 micromol kg(-1), i.v.), whereas montelukast (0.01-1 micromol kg(-1), i.v.) antagonized the effect of the antigen only in the lung and urinary bladder. 3. Ovalbumin (1 mg kg(-1), i.v.)-induced bronchoconstriction was dose dependently antagonized by MEN91507 (10-30 micromol kg(-1), i.v.), whereas the effect of montelukast (0.1-30 micromol kg(-1), i.v.) was marginal (15-30% inhibition). Neither MEN91507 nor montelukast (30 micromol kg(-1), i.v.) affected the bronchoconstrictor response induced by acetylcholine (0.3 micromol kg(-1), i.v.) in sensitized animals. 4. It is concluded that montelukast and MEN91507 display a differential activity against the effect of endogenous leucotrienes, despite the fact that both compounds show a similar antagonist profile against exogenous leucotrienes acting through CysLT1 receptors.  相似文献   

7.
速激肽受体拮抗剂抗豚鼠过敏性哮喘的作用   总被引:2,自引:1,他引:1  
实验目的是研究速激肽与哮喘的关系,评价速激肽受体拮抗剂对哮喘的治疗作用。结果表明,ip速激肽NK-1受体拮抗剂CP-96345,NK- 2受体拮抗剂SR-48968或两药合用,均可有效减少清醒致敏豚鼠吸入抗原引起的喘息反应,降低过敏性休克死亡率。SR-48968减轻麻醉豚鼠抗原引起的气道收缩,并浓度依赖性降低抗原引起的气管和支气管平滑肌收缩幅度。CP-96345可抑制抗原诱导的支气管和肺叶伊文思蓝渗出,仅对支气管平滑肌收缩有部分抑制作用。结果提示,速激肽参与哮喘发病,速激肽受体拮抗剂可抑制抗原诱导的气道平滑肌收缩(NK-2受体)和微血管渗漏(NK-1受体)而减轻哮喘反应。  相似文献   

8.
Bradykinin can be inactivated by the peptidases angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), both of which are present in the airways. We evaluated the role of these enzymes in bradykinin-induced airway microvascular leakage and lung resistance in anesthetized and mechanically ventilated guinea pigs. We studied the effects of captopril (inhaled; 350 nmol), a specific ACE inhibitor, and phosphoramidon (inhaled; 7.5 nmol), a specific NEP inhibitor. Airway microvascular leakage was measured with the albumin marker Evans Blue dye (20 mg/kg i.v.), and airflow obstruction was measured as lung resistance (RL). Bradykinin was given by inhalation (0.1, 0.3 and 1 mM; 45 breaths), and caused a dose-dependent increase in both RL and airway microvascular leakage. Inhibition of NEP or ACE potentiated the bradykinin-induced microvascular leakage in main bronchi and proximal and distal intrapulmonary airways. However, only NEP inhibition significantly potentiated the extravasation of Evans Blue dye into the tracheal wall and lumen. The combined inhibition of NEP and ACE significantly potentiated plasma leakage at all airway levels, as well as the increase in RL induced by inhaled bradykinin. Recovery RL after one lung inflation significantly correlated with the extravasation of Evans Blue dye in the tissue at all airway levels, indicating that airway edema may have contributed to airway narrowing. We conclude that in the guinea pig, both NEP and ACE modulate bradykinin-induced airway microvascular leakage.  相似文献   

9.
The airways of the genetically hypertensive rat (GH) are hyperinnervated by substance P-containing sensory nerves and exhibit reduced inflammatory responsiveness to substance P and to capsaicin. The present study measured tracheal inflammation to resiniferatoxin (1.0 microgram/kg i.v.), a capsaicin analogue, which lacks the hypotensive action of capsaicin itself, alone or after the neuronal nitric oxide synthase inhibitor 1-(2-trifluoromethylphenyl)imidazole (TRIM) (50 mg/kg i.p.). The inflammatory response to resiniferatoxin alone was 50% lower in untreated GH than in control rats, a similar strain difference to that seen previously with capsaicin. Pre-treatment with TRIM had no effect on inflammation in either strain. Binding kinetics of the tachykinin NK(1) receptor antagonist [3H](S)-1-(2-[3-(3, 4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)piperidin-3-yl]ethyl)-4- phenyl-l-azoniabicyclo[2,2,2,]octane chloride ([3H]SR140333)(0.125-16.0 nM) showed 50% reduction of B(max) in GH versus control tracheae (74+/-13 cf.165+/-26 fmol/mg protein). Our results indicate that the reduced neurogenic inflammatory responsiveness in GH rats can be attributed entirely to reduced tachykinin NK(1) receptor numbers.  相似文献   

10.
1. Gastro-oesophageal acid reflux may cause airway responses such as cough, bronchoconstriction and inflammation in asthmatic patients. Our previous results suggest that microvascular leakage induced, in the guinea-pig airways, by intra-oesophageal hydrochloric acid (HCl) infusion was mainly dependent on the release of tachykinins. Nociceptin, an endogenous ligand of the opioid receptor NOP, has been shown to inhibit bronchoconstriction and cough in guinea-pig or cat by inhibiting tachykinin release. 2. The purpose of this study was to investigate the effects of nociceptin on the intra-oesophageal HCl-induced airway microvascular leakage evaluated by Evans blue dye extravasation measurement in anaesthetised guinea-pigs pretreated with propranolol, atropine and phosphoramidon. 3. Infusion of intra-oesophageal HCl led to a significant increase in plasma extravasation in the main bronchi and trachea. This increase was abolished when animals underwent a bilateral vagotomy. 4. Airway microvascular leakage was inhibited by nociceptin (3-30 microg x kg(-1) i.v.) in a dose-dependent manner (maximal inhibition at the dose of 30 microg x kg(-1): 19.76+/-1.13 vs 90.92+/-14.00 ng x mg(-1) tissue for nociceptin and HCl infusion, respectively, in the main bronchi, P<0.01). The NOP receptor agonist [Arg(14),Lys(15)]N/OFQ mimicked the inhibitory effect of nociceptin, but at a 10-fold lower dose (3 microg x kg(-1) i.v). The NOP receptor antagonist J-113397 had no effect on plasma protein extravasation by itself, but was able to block the inhibitory effect of nociceptin. 5. Morphine (1 mg x kg(-1)) had a similar inhibitory effect as that of nociceptin. Naloxone pretreatment abolished the effect of morphine, but was enable to block the inhibitory effect of nociceptin. 6. Under similar conditions, nociceptin, in the previous range of concentration, was unable to counteract the airway microvascular leakage induced by substance P (SP). 7. These results suggest that airway plasma extravasation induced by intra-oesophageal HCl instillation might be inhibited by specific stimulation of the NOP receptor with nociceptin. Nociceptin is likely to act at a pre-junctional level, by inhibiting tachykinin release, since it was unable to prevent SP-induced airway plasma extravasation.  相似文献   

11.
阿托品预先处理的豚鼠,电刺激迷走神经(10Hz,5ms,2V或10V,90s)引起气道阻力增高,气管、主支气管和肺内气道的依文思蓝渗出量增加,并随刺激强度加大而增强。白细胞三烯拮抗剂ONO-1078(0.03,0.1mg·kg-1,iv)对气道阻力的增高无明显影响;但显著抑制微血管渗漏,在刺激强度低(2V)时更明显。结果提示白细胞三烯类参与神经原性炎症时的气道微血管渗漏反应。  相似文献   

12.
1. Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide ligand for a specific G-protein coupled receptor, the N/OFQ peptide receptor (NOP). The N/OFQ-NOP receptor system has been reported to play an important role in pain, anxiety and appetite regulation. In airways, N/OFQ was found to inhibit the release of tachykinins and the bronchoconstriction and cough provoked by capsaicin. 2. Here we evaluated the effects of NOP receptor activation in bronchoconstriction and airway microvascular leakage induced by intraesophageal (i.oe.) hydrochloric acid (HCl) instillation in rabbits. We also tested the effects of NOP receptor activation in SP-induced plasma extravasation and bronchoconstriction. 3. In anesthetized New Zealand rabbits bronchopulmonary function (total lung resistance (R(L)) and dynamic compliance (C(dyn))) and airway microvascular leakage (extravasation of Evans blue dye) were evaluated. 4. Infusion of i.oe. HCl (1 N) led to a significant increase in bronchoconstriction and plasma extravasation in the main bronchi and trachea of rabbits pretreated with propranolol, atropine and phosphoramidon. 5. Bronchoconstriction and airway microvascular leakage were inhibited by N/OFQ (3-30 microg kg(-1) i.v.) in a dose-dependent manner. The NOP receptor agonist [Arg14,Lys15]N/OFQ mimicked the inhibitory effect of N/OFQ, being 10-fold more potent, UFP-101, a peptide selective NOP receptor antagonist, blocked the inhibitory effects of both agonists. 6. Under the same experimental conditions, N/OFQ and [Arg14,Lys15]N/OFQ did not counteract the bronchoconstriction and airway microvascular leakage induced by substance P. 7. These results suggest that bronchoconstriction and airway plasma extravasation induced by i.oe. HCl instillation are inhibited by activation of prejunctional NOP receptors.  相似文献   

13.
The effect of two beta 2-adrenoceptor agonists, salbutamol (100 micrograms/kg i.v.) and broxaterol (100 micrograms/kg i.v.), on airway microvascular leakage induced by vagal stimulation was studied in anaesthetised guinea pigs. Airway microvascular leakage was measured by Evans blue extravasation. Broxaterol, but not salbutamol, inhibited Evans blue dye extravasation at all airway levels, an effect prevented by pretreatment with propranolol (1 mg/kg). Neither of the beta 2-agonists had any effect on substance P-induced Evans blue dye extravasation. Broxaterol inhibits the prejunctional release of tachykinins from airway sensory nerves by stimulation of beta-receptors. The mechanism by which beta-adrenoceptor agonists prevent airway microvascular leakage deserves further study.  相似文献   

14.
Kinins have been suggested to be involved in human airway diseases such as asthma and rhinitis. MEN16132 is a non-peptide kinin B(2) receptor antagonist able to inhibit the responses produced by intravenous bradykinin into the airways, as bronchoconstriction and microvascular leakage; we tested the effect of MEN16132 on endogenously generated bradykinin through the dextran sulfate-induced contact activation of kinin-kallikrein cascade in guinea-pigs. After dextran sulfate administration (1.5 mg/kg i.v.), the pulmonary insufflation pressure was monitored and the microvascular leakage of upper and lower airways was assessed using Evans blue as tracer of plasma protein extravasation. Our results demonstrated that topical MEN16132 strongly inhibited the dextran sulfate-induced bronchoconstriction (0.3 mM solution aerosol for 5 min) and plasma protein extravasation in both lower airways (3-10 microM solution aerosol for 5 min) and nasal mucosa (0.3 nmol/nostril); Icatibant, the peptide antagonist of kinin B(2) receptor, exerted a 3-30-fold less potent inhibitory effect than MEN16132. We conclude that local application of MEN16132 into the airways abolishes the responses produced by the endogenous generation of bradykinin and it can be useful as new pharmacological tool to check the role of kinins in human diseases.  相似文献   

15.
We investigated the effects of a novel platelet-activating factor (PAF) receptor antagonist, CIS-19 [cis-2-(3, 4-dimethoxyphenyl)-6-isopropoxy-7-methoxy-1-(N-methylformamido)-1, 2, 3, 4-tetrahydronaphthalene], on PAF-, histamine-, substance P- and antigen-induced bronchoconstriction and microvascular leakage, as well as PAF- and antigen-induced bronchial hyperreactivity to methacholine in urethane-anesthetized guinea-pigs. Administration of CIS-19 (0.5–5 mg/kg, i.v.) inhibited the increase in lung resistance induced by PAF (30 ng/kg, i.v.) in a dose-dependent manner, but failed to inhibit the increase induced by histamine (30 μg/kg, i.v.) or substance P (6.5 μg/kg, i.v.). CIS-19 (5 mg/kg, i.v.) did not inhibit the increase in lung resistance induced by ovalbumin (2 mg/kg, i.v.) in actively sensitized guinea-pigs. PAF (30 ng/kg, i.v.)-induced microvascular leakage, measured by the extravasation of Evans blue dye, was dose-dependently inhibited by CIS-19 (0.5–5 mg/kg, i.v.) in the trachea, main bronchi and intrapulmonary airways, but it did not affect histamine (30 μg/kg, i.v.)- or substance P (6.5 μg/kg, i.v.)-induced microvascular leakage at all airway levels. CIS-19 (2.5 and 5 mg/kg) did not affect ovalbumin (2 mg/kg, i.v.)-induced microvascular leakage in all airway levels in actively sensitized guinea-pigs. CIS-19 (2.5 and 5 mg/kg, i.v.) significantly inhibited PAF-induced enhancement of the bronchial response to methacholine, but had no effect on ovalbumin (0.05 mg/kg, i.v.)-induced bronchial hyperreactivity in actively sensitized guinea-pigs. It is concluded that CIS-19 is a potent PAF receptor antagonist which inhibits PAF- but not antigen-induced bronchoconstriction, microvascular leakage and bronchial hyperreactivity. These results suggest that PAF plays little or no role in early airway responses following antigen challenge. Received: 29 April 1996 / Accepted: 10 October 1996  相似文献   

16.
BACKGROUND: U-46619, a thromboxane A(2) (TXA(2)) mimetic, is shown to cause airway microvascular leakage, although the effects is weak when comparing with that to induce bronchoconstriction in guinea pigs. OBJECTIVE: In order to know the airway effect of TXA(2) more accurately, we have examined the effects of STA(2), a TXA(2) mimetic with higher affinity to TXA(2) (TP) receptors than U-46619, to induce airway microvascular leakage and airflow obstruction. METHODS: Anesthetized and ventilated guinea pigs were i.v. given STA(2) (3-30 nmol/kg) or U-46619 (3-100 nmol/kg) 1 min after i.v. Evans blue dye. STA(2)- and U-46619-induced increases in lung resistance (R(L)) was measured for 6 min. The amount of extravasated Evans blue dye in the lower airways was, then, examined as an index of leakage. In selected animals, specific TP receptor antagonists (10 microg/kg S-1452 or 10 mg/kg ONO-3708) were pretreated i.v. RESULTS: Both STA(2) and U-46619 induced significant increases in leakage and airflow obstruction. However, STA(2) induced a slow and significantly less increase in R(L) but caused a significantly greater increase in extravasation of Evans blue dye compared to U-46619. Specific TP receptor antagonists completely abolished both airway effects induced by STA(2) and U-46619. CONCLUSION: Our present results have supported a possibility that TXA(2) induces microvascular leakage as well as bronchoconstriction in the airways.  相似文献   

17.
Platelet activating factor (Paf, 0.02 micrograms/kg, i.v. bolus) caused an acute increase in airways responsiveness to histamine in anaesthetized guinea-pigs prepared for recording airways resistance (RL) and dynamic compliance (Cdyn). Aspirin pretreatment (10 mg/kg, i.v.) attenuated the return of airways responsiveness to prechallenge levels. Pretreatment with the combined cyclooxygenase/lipoxygenase inhibitors BW 755C (20 mg/kg, i.v.) and ETYA (20 mg/kg, i.v.), or with the putative cysteinyl-containing leukotriene antagonist FPL 55712 (0.25 mg/kg/min, i.v.), or a Paf antagonist SRI 63441 (2.5 mg/kg, i.v.), prevented Paf-induced increased airways responsiveness. Inhibitors of leukotriene synthesis, BW 755C and ETYA, or action, FPL 55712, had variable effects on Paf-induced bronchoconstriction. These data suggest that lipoxygenase metabolites, possibly leukotrienes, may mediate an acute increase in airways responsiveness to histamine after Paf exposure.  相似文献   

18.
1. The inbred genetically hypertensive strain (GH) of the Otago Wistar rat possesses more sensory neurons containing the neuropeptide substance P (SP) than does its genetically related control normotensive strain. 2. As SP contributes to airway inflammation by increasing microvascular permeability, we assessed the extravasation of Evans Blue dye in trachea and main bronchus of anaesthetized GH and control rats, in the presence of endogenous (capsaicin-liberated) or exogenous SP. 3. Following intravenous administration of either capsaicin (75 microg kg(-1)) or SP (3.3 nmol kg(-1)), extravasation of Evans Blue in airways from GH rats was only about 60% of that in airways of control rats. This difference was not gender-specific and responses to capsaicin were abolished by pretreatment with a selective NK1 receptor antagonist SR 140333 (360 nmol kg(-1)). 4. By contrast, the extravasation of dye caused by intravenous 5-hydroxytryptamine (0.5 micromol kg(-1)) was similar in magnitude in both GH and control strains. 5. Falls in systemic arterial blood pressure in response to exogenous SP (0.1-3 nmol kg(-1)) or acetylcholine (0.2-2 nmol kg(-1)) were also very similar between strains, but those in response to capsaicin (75 microg kg(-1)) in the GH rats were about double those in control rats. The hypotensive response to SP was abolished by SR 140333, but that to capsaicin was unaffected. 6. Our results indicate that the increased peripheral innervation density by SP-nerves in GH rats is accompanied by reduced inflammatory responses to SP. This does not involve decreased vasodilator potency of SP and is therefore probably related to altered endothelial responsiveness.  相似文献   

19.
Pharmacological actions of (6)-shogaol and capsaicin were studied. Both (6)-shogaol (0.5 mg/kg, i.v.) and capsaicin (0.1 mg/kg, i.v.) caused a triad such as a rapid fall in blood pressure, bradycardia and aponea in rats. Both drugs-induced marked pressor responses in blood pressure, which occurred after the rapid fall, were markedly reduced by a spinal destruction. In pithed rats, both drugs-induced peripheral pressor responses were markedly reduced with the combined treatment of [D-Arg1, D-Pro2, D-Trp7,9, Leu11]-substance P (0.5 mg/kg, i.v.), phentolamine (10 mg/kg, i.v.) and the section of sciatic nerves. In isolated guinea-pig trachea, (6)-shogaol (100 microM) and capsaicin (10 microM) induced contractile responses which were slightly inhibited by substance P antagonist (10 microM), but exhibited also a tachyphylaxis. Furthermore, although (6)-shogaol (3.6 microM) showed positive inotropic and chronotropic actions on isolated atria in rats, this effect of (6)-shogaol disappeared by repeated injections or pretreatment (100 mg/kg, s.c.) of (6)-shogaol. These results suggest that (6)-shogaol and capsaicin have similar actions, and that both drugs may cause a peripheral action by releasing an unknown active substance from nerve ends.  相似文献   

20.
The mechanisms involved in both local and systemic effects of Loxosceles intermedia (brown spider) venom (LIV) are still poorly understood. We show using rats treated with Evans blue dye (50 mg/kg, i.v.) that small doses of the LIV (0.1, 0.3, 1 and 3 microg/site) dose-dependently increase the vascular permeability in rats, an effect unchanged by indomethacin (5mg/kg, i.p.), atropine (1mg/kg, i.p.), HOE-140 (2mg/kg, s.c.) or SR140333 (0.3mg/kg, i.p.), but fully avoided by promethazine (15 mg/kg, i.p.), methysergide (2mg/kg, i.p.) and compound 48/80 (3mg/kg/day for 3 days). Addition of cumulative concentrations of LIV (0.1-5 microg) in phenylephrine-contracted aortic rings resulted in a partial ( approximately 40%) and endothelium-dependent relaxation, inhibited by the nitric oxide synthase inhibitors L-NAME (10 microM) and L-NMMA (1mM), and the guanylate cyclase inhibitors methylene blue (100 microM) and ODQ (10 microM). LIV-induced relaxation was abolished by compound 48/80 (10 microM) and pyrilamine (a selective histamine H1 receptor antagonist; 100 microM), but not by atropine (1 microM) and indomethacin (10 microM). Our results disclose that LIV increases vascular permeability and induces vascular relaxation. These effects occur due to its ability to degranulate mast cells and release mediators such as histamine and serotonin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号