首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latent inhibition (LI) is a behavioral paradigm in which animals learn to ignore a repeatedly presented stimulus not followed by meaningful consequences. We previously reported that LI was disrupted following the administration of 1.5 mg/kg dl-amphetamine. The present experiments investigated the effects of 6 mg/kg dl-amphetamine administration on LI in a conditioned emotional response (CER) procedure consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; conditioning, in which the pre-exposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. The three stages were conducted 24 h apart. In Experiment 1, the drug was administered in a 2×2 design, i.e. drug-no drug in pre-exposure and drug-no drug in conditioning. LI was obtained in all conditions. In Experiment 2, animals were given either 5 days of 6 mg/kg amphetamine pretreatment and amphetamine in pre-exposure and conditioning or 7 days of saline. LI was not obtained under amphetamine, but this outcome reflected a state-dependency effect. In Experiment 3, animals received either 5 days of amphetamine pretreatment and amphetamine in pre-exposure, conditioning and test or 8 days of saline. LI was obtained in both the placebo and amphetamine conditions. Experiments 4a and 4b compared the effects of two drug doses, 1.5 (4a) and 6 mg/kg (4b), administered in pre-exposure and conditioning. LI was abolished with the 1.5 mg/kg dose but not with the 6 mg/kg dose.  相似文献   

2.
The animal amphetamine model of schizophrenia has been based primarily on stereotyped behavior. The present study sought to demonstrate an amphetamine-induced deficit in attentional processes. To this end, the effects of acute and chronic (14 days) 1.5 mg/kg dl-amphetamine administration on the ability of rats to ignore irrelevant stimuli were examined using the paradigm of latent inhibition (LI) in a conditioned emotional response (CER) procedure. The procedure consisted of three stages: pre-exposure, in which the to-be-conditoned stimulus, tone, was presented without being followed by reinforcement; acquisition, in which the pre-exposed tone was paired with shock; and test, in which LI was indexed by animals' suppression of licking during tone presentation. Experiment 1 showed that chronic but not acute treatment abolished LI. Experiment 2 showed that animals receiving chronic amphetamine pretreatment but pre-exposed and conditioned without the drug, exhibited normal LI. In Experiment 3, animals which received chronic amphetamine pretreatment and were pre-exposed under the drug but conditioned without it, also showed normal LI. The implications of these results for the animal amphetamine model of schizophrenia are discussed.  相似文献   

3.
In the latent inhibition (LI) paradigm, nonreinforced preexposure to a stimulus retards subsequent conditioning to that stimulus. Three experiments investigated the effects of acute amphetamine administration on LI in rats. Experiments 1 and 3 used a conditioned emotional response (CER) procedure and Experiment 2 used two-way active avoidance procedure. Experiments 1 and 2 showed that, in both the CER and avoidance procedures, 1.5 mg/kg dl-amphetamine administered either in the preexposure or the conditioning stage alone did not disrupt LI. In contrast, amphetamine administered in both of the stages abolished LI. Experiment 3 showed that the abolition of LI was obtained when the preexposure and conditioning were given 24 hr apart but not when the two stages were given in one session.  相似文献   

4.
Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 μg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates.  相似文献   

5.
In the present study we have examined the effect of clozapine, an atypical antipsychotic drug, on latent inhibition (LI) using the conditioned emotional response (CER) procedure. In this procedure, ten pre-exposures to the to-be-conditioned stimulus result in weak or no LI whereas 30 pre-exposures produce robust LI. Three different experimental protocols were used to study the effects of clozapine: facilitation of LI in animals subjected to ten pre-exposures to the to-be-conditioned stimulus; antagonism of the disruptive effect of amphetamine (1mg/kg, s.c.) on LI in animals receiving 30 pre-exposures; antagonism of the disruptive effect of nicotine (0.6mg/kg, s.c.) on LI in animals receiving 30 pre-exposures. High doses of clozapine (3 and 10mg/kg, s.c.) disrupted the CER in non pre-exposed animals. Despite this, clozapine significantly facilitated the development of LI at 1 and 10mg/kg and significantly attenuated the disruptive effects of nicotine at 0.3 and 1mg/kg and of amphetamine at 2 and 5mg/kg. These results demonstrate that clozapine is active in the LI model and further support the utility of this model in the study of mechanisms of action of antipsychotic drugs.  相似文献   

6.
Latent inhibition (LI) is a cognitive process whereby repeated exposure of a stimulus without consequence impedes the formation of subsequent associations with that stimulus. A number of studies in the rat have reported that LI is impaired by moderate systemic doses of amphetamine, an effect believed to be mediated via dopamine (DA) release in the nucleus accumbens. We and others have reported that nicotine has a selective effect in releasing DA in the accumbens rather than the caudate nucleus. We have therefore examined the ability of nicotine to disrupt LI, using a conditioned emotional response paradigm. Pre-exposure of a tone stimulus impaired subsequent conditioning between that stimulus and mild footshock, as indexed by suppression of licking by the tone subsequently presented alone. This LI effect was prevented, by an effect confined to the pre-exposed group, by doses of 0.4 or 0.6 mg/kg nicotine SC, which are accumbens selective, given before pre-exposure and before conditioning. The effect of nicotine in disrupting LI was prevented by prior administration of haloperidol at a dose (0.5 mg/kg) reported to reverse the disruptive effect of amphetamine on LI. Although the amphetamine effect requires two administrations, the effect of two administrations of nicotine was reproduced by a single dose of nicotine given before conditioning, but not by a single dose before pre-exposure. The results are discussed in relation to studies in human control and schizophrenic subjects, which suggest that increased DA activity in humans is also associated with impaired LI. The results indicate that nicotine does indeed increase functional DA activity in the rat accumbens; the consequent disruption of LI critically depends upon an action at the time of conditioning, and is independent of processes which occur during pre-exposure. In more general terms, this indicates the potential of drug experiments to complement behavioural studies on the mechanism of latent inhibition.  相似文献   

7.
Rationale: Withdrawal from chronic amphetamine administration is characterized by deficits in reward that resemble some symptoms of depression. Nevertheless, the effects of long-term administration and withdrawal from other drugs, such as fluoxetine, that have the potential to elevate mood in depressed individuals have not been characterized. Objectives: The purpose of this study was to characterize the effects of withdrawal from chronic amphetamine or fluoxetine administration on central reward function. Furthermore, the effects of acute or chronic pretreatment with fluoxetine on responsiveness to an acute amphetamine challenge were examined to identify potential interactions between the two drugs. Methods: A rate-independent discrete-trial threshold procedure was used to characterize self-stimulation behavior in rats prepared with bipolar electrodes in the medial forebrain bundle. Results: Elevations in intracranial self-stimulation (ICSS) thresholds, reflecting a decrease in the reward value of the stimulation, were associated with withdrawal from various chronic amphetamine treatment regimens (1–5 mg/kg, three injections per day for 1, 2, 4 or 6 days). The magnitude and duration of threshold elevations were proportional to the duration and dose of amphetamine treatment prior to withdrawal. In contrast, no alterations in ICSS thresholds were associated with withdrawal from chronic fluoxetine treatment (5 mg/kg/day for 15 days). While neither acute nor chronic administration of fluoxetine alone altered ICSS thresholds, chronic pretreatment with fluoxetine blocked the threshold-lowering effect of acute amphetamine administration (4 mg/kg), but acute pretreatment did not. Amphetamine-induced decreases in response latency, a measure of motor performance, were not affected by either chronic or acute fluoxetine pretreatment. Conclusions: The results of these experiments suggest that chronic fluoxetine treatment may induce adaptive changes in serotonergic transmission that, in themselves, do not alter the function of central reward processes, but may alter the ability of amphetamine to potentiate ICSS reward. In addition, the lack of change in ICSS thresholds during withdrawal from the chronic fluoxetine treatment regimen used suggests that withdrawal from all mood-altering drugs may not necessarily produce changes in central reward functions. Received: 10 September 1998 / Final version: 8 March 1999  相似文献   

8.
The mesoaccumbens dopamine pathway exhibits an enhanced dopaminergic response to a challenge injection of d-amphetamine or cocaine after repeated intermittent exposure to that drug. Much research has focused on the potential role of this sensitised response in the enhanced propensity of drug-associated stimuli to elicit relapse. However, the amygdala is acknowledged to play a critical role in stimulus-reward learning, and recent work suggests that the mesoamygdaloid dopamine pathway exerts a significant influence upon amygdala function. In the present study, rats were administered d-amphetamine (1 mg/kg, IP) or vehicle once per day, for 14 days. After 11 untreated days, a locomotor assay showed that prior repeated administration of d-amphetamine led to a markedly enhanced locomotor response to 0.5 mg/kg d-amphetamine. There was no effect of d-amphetamine pretreatment upon the response to a novel environment, or to injection with vehicle. Following a total of 14 days in the home cage, subjects were implanted with microdialysis probes within the amygdala, and for comparison also within the nucleus accumbens. Baseline and d-amphetamine-stimulated (0.5 mg/kg) levels of extracellular dopamine were assessed for each brain region. Results showed that baseline levels of dopamine were very similar in sensitised and control animals. By contrast, prior treatment with d-amphetamine enhanced dopamine overflow in response to a challenge with d-amphetamine both in the nucleus accumbens and amygdala. These results indicate that changes in the pattern of dopamine transmission both in the nucleus accumbens, and the amygdala, accompany the behavioural sensitisation observed after repeated exposure to d-amphetamine. Hence, an enhanced propensity of drug-associated stimuli to elicit relapse may not depend solely upon changes relating to the mesoaccumbens dopamine projection. Received: 24 October 1996/Final version: 28 February 1997  相似文献   

9.
The performance of healthy volunteer subjects on an auditory latent inhibition (LI) paradigm was assessed following administration of a single oral dose ofd-amphetamine or placebo. It was predicted that a low (5 mg), but not a high (10 mg), dose ofd-amphetamine would disrupt LI. The prediction was supported with left ear presentation of the preexposed stimulus only. When the preexposed stimulus was presented to the right ear the predicted pattern of findings was not obtained. It is concluded that the dopaminergic system is involved in the mediation of LI in man and it is speculated that the interaction between amphetamine dose and ear of presentation of the preexposed stimulus may reflect normally occurring dopaminergic hemisphere asymmetry.  相似文献   

10.
Rationale Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its inconsequential preexposure. Amphetamine-induced disruption of LI and its potentiation by antipsychotic drugs (APDs) in the adult rat are well-established models of schizophrenia and antipsychotic drug action, respectively. It is not clear whether LI can be similarly modulated at prepubertal age.Objectives In view of the notion that schizophrenia is a neurodevelopmental disorder whose overt expression depends on postpubertal brain maturational processes, we investigated whether several manipulations known to modulate LI in adult rats, including systemic administration of amphetamine and the atypical APD clozapine, are capable of producing the same effects in prepubertal (35-day-old) rats.Methods LI was measured in a thirst motivated conditioned emotional response (CER) procedure in which rats received 10 or 40 tone preexposures followed by 2 or 5 tone-footshock pairings.Results Like in adults, LI was present with 40 preexposures and 2 conditioning trials. In contrast to findings in adults, LI was resistant to disruption by amphetamine at a dose (1 mg/kg) that significantly increased locomotor activity, as well as by reducing the number of preexposures to ten, increasing the number of conditioning trials to five, or changing the context between preexposure and conditioning. Clozapine (5 mg/kg) and the selective 5HT2A antagonist M100907 (0.3 mg/kg) administered in conditioning were without an effect on "persistent" LI with extended conditioning, but were capable of disrupting LI when administered in the preexposure stage, as found in adults.Conclusion The results point to functionality within brain systems regulating LI acquisition but not those regulating LI expression in periadolescent rats, further suggesting that postpubertal maturation of the latter systems may underlie schizophrenia-mimicking LI disruption reported in adult rats following perinatal manipulations and possibly disrupted LI observed in schizophrenia.  相似文献   

11.
Repeated amphetamine treatment results in sensitisation both of its behavioural effects, and of its dopamine (DA)-releasing effects on which the former largely depend. Understanding the nature of the sensitised response may help to explain behaviours which emerge only with repeated treatment, such as particular stereotypies and effects on social behaviour in animals, and links between these effects and the emergence of dependence and psychotic symptoms in humans. We show here that a single pretreatment with amphetamine (1mg/kg) is sufficient to sensitise the locomotor response to amphetamine challenge (1mg/kg) 24h later. We have used in vivo microdialysis in the nucleus accumbens in unrestrained rats to demonstrate a corresponding potentiation in the DA response; the marked increase in accumbens dialysate DA following amphetamine (to 427% of basal) was significantly potentiated (to 675% of basal) by the pretreatment, without any alteration in the basal DA. There was also no change in the expected reduction in DA metabolites. Replacement of perfusate calcium by magnesium left the response to acute amphetamine challenge substantially unaffected, as expected from previous reports; however, the potentiation of the DA response by amphetamine pretreatment was prevented. Similarly the potentiated response was attenuated by administration of ondansetron, a 5HT-3 antagonist, (0.01mg/kg) before each amphetamine treatment. The ability of amphetamine to disrupt latent inhibition (L1), which is also disrupted in acute schizophrenia, has been suggested to provide a model of schizophrenia linking underlying cognitive deficits with the DA theory of the disorder. Since LI is disrupted by two systemic administrations of amphetamine 24h apart, but not by one, the present results are consistent with the concept that it is the calcium, and hence impulse, dependence of increased accumbal DA release, rather than its magnitude, which is critical for the disruption of LI.  相似文献   

12.
The effects of d-amphetamine, morphine, and naloxone on visual discrimination were investigated using a two-choice discrete-trial procedure in which rats were trained to discriminate the position of a lightflash. Morphine (0.3–5.6 mg/kg) but not amphetamine (0.1–1.0 mg/kg) caused a significant dose-dependent disruption in discriminative performance. Both amphetamine and morphine increased response latencies. Naloxone (1.0 mg/kg) prevented the disruption of any aspect of performance by up to 100 mg/kg morphine. Performance after naloxone/amphetamine co-administration was not significantly different from that observed after amphetamine alone. Naloxone alone (0.3–10 mg/kg) had no effect on discrimination, spatial bias or response latencies. These results suggest that morphine and amphetamine affect different components of discrimination performance. Offprint requests to: S.G. Holzman  相似文献   

13.
In the latent inhibition (LI) paradigm, nonreinforced preexposure to a stimulus retards subsequent conditioning to that stimulus. The administration of haloperidol in both the preexposure and the conditioning stages was found to enhance LI in the conditioned emotional response (CER) procedure (Weiner and Feldon, 1986). The present experiments investigated the effects of 0.1 mg/kg haloperidol administration on LI in a two-way avoidance procedure, consisting of two stages: preexposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; and conditioning, in which the animals acquired a two-way avoidance response with the tone serving as the warning signal. Experiments 1 and 2 tested whether the administration of haloperidol confirmed to the preexposure stage, where learning to ignore the nonreinforced stimulus takes place, would suffice to enhance the LI effect. In Experiment 1, preexposure and conditioning were conducted 24 hr apart. LI was obtained in both the placebo and haloperidol conditions, but the effect was not more pronounced under the drug. In addition, haloperidol-treated animals exhibited impaired avoidance performance. In Experiment 2, preexposure and conditioning were given 72 hr apart. With this interval, haloperidol did not affect avoidance performance. However, also under these conditions, the magnitude of the LI effect was not larger in the haloperidol-treated groups, indicating that the administration of the drug in the preexposure stage alone did not suffice to enhance LI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Latent inhibition (LI) is a measure of retarded conditioning to a previously presented non-reinforced stimulus, that is impaired in schizophrenic patients and in rats treated with amphetamine. Neuroleptic drugs are known to produce two effects in this paradigm: to antagonize amphetamine-induced disruption of LI, and to facilitate the development of LI when administered on their own. The present experiments tested the effects on LI of the new neuroleptic, sertindole. The experiments used a conditioned emotional response procedure in rats licking for water, consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus (a tone) was repeatedly presented without being followed by reinforcement; conditioning, in which the pre-exposed stimulus was paired with reinforcement (a foot shock); and test, in which LI was indexed by degree of suppression of licking during tone presentation. In Experiment 1 the effects of 0.31, 1.3 and 5.0mg/kg sertindole were assessed following pre-exposure to 40 non-reinforced tones. Experiment 2 tested the effects of 5mg/kg on LI following pre-exposure to 10 non-reinforced tones. Experiment 3 investigated antagonism of amphetamine-induced disruption of LI by 5.0mg/kg sertindole. The results demonstrated that sertindole (5.0mg/kg) possesses a neuroleptic-like profile in the LI model: it facilitates the development of LI and antagonizes amphetamine-induced disruption of LI.  相似文献   

15.
Rationale: We have previously shown that during the acute response to amphetamine, a stimulant that released dopamine, behavioral sensitivity to the drug undergoes dynamic changes, as evident in the altered behavioral profile expressed to the subsequent administration of a low dose of the drug. Objective: The present studies were designed to determine if these dynamic changes in sensitivity occur with amphetamine-like stimulants that act primarily by blocking dopamine uptake. Methods: Groups of animals were primed with 40 mg/kg cocaine or 30 mg/kg methylphenidate, then during the acute response, a low, locomotor-stimulant dose of amphetamine (1.5 mg/kg) was administered to probe for changes in sensitivity. Conversely, to determine whether the manifestation of the increased responsivity is idiosyncratic to amphetamine, animals were also primed with amphetamine (4 mg/kg), then probed with low doses of cocaine (10 and 20 mg/kg) or methylphenidate (10 mg/kg). Parallel microdialysis studies were performed to assess the caudate-putamen and nucleus accumbens extracellular dopamine responses. Results: Priming with the uptake blockers each resulted in a stereotypy response to the subsequent low-dose amphetamine probe. Likewise, after priming with amphetamine, the uptake blockers each induced a pronounced stereotypy response. In each case, these changes in behavioral responsivity were expressed in the absence of corresponding changes in the probe-induced regional dopamine responses. Conclusions: Dynamic changes in behavioral sensitivity during the response to acute stimulant administration are a characteristic common to both dopamine releasers and uptake blockers. These rapid changes in sensitivity may contribute to the behaviors associated with binge patterns of drug abuse. Received: 5 April 1999 / Final version: 28 May 1999  相似文献   

16.
Latent inhibition (LI) is a phenomenon observed when repeated, non-reinforced presentation of a stimulus results in a retardation of subsequent conditioning to that stimulus. Several recent experiments have suggested that LI is abolished in conditioned suppression paradigms following acute, low doses of amphetamine given during pre-exposure and conditioning. Experiment 1 sought to increase the generality of this finding in an appetitive LI paradigm, using a dose of amphetamine previously shown to disrupt the LI effect in an aversive paradigm (Killcross and Robbins 1993). However, no evidence for any disruption of LI was found. Experiment 2 extended this investigation to additional, higher doses ofd-amphetamine, and also examined the role of reinforcer magnitude in the effect. A non-significant trend towards an attenuated LI effect was found, which was reversed by decreases in the concentration of the sucrose reinforcer. Experiments 3 and 4 investigated the influence of systemic amphetamine in aversive paradigms, with specific attention to the increased response to the aversive footshock reinforcer found in amphetamine-treated animals. These experiments revealed that the influence of amphetamine on the LI effect in conditioned suppression paradigms could be reversed by reducing the intensity of footshock used in conditioning, thereby paralleling the effect found in the appetitive paradigm. Therefore it is unlikely that a simple attentional account of the abolition of the LI effect in previous experiments can be sustained.  相似文献   

17.
Latent inhibition (LI) is a measure of retarded conditioning to a previously-presented nonreinforced stimulus, that is impaired in schizophrenic patients and in rats treated with amphetamine. Neuroleptic drugs are known to produce two effects in this test paradigm: to antagonise amphetamine-induced disruption of LI, and to enhance LI when administered on their own. The present experiments tested the effects on LI of a potential antipsychotic, sigma ligand BMY-14802. The experiments used a conditioned emotional response (CER) procedure in rats licking for water, consisting of three stages: preexposure, in which the to-be-conditioned stimulus (a tone) was repeatedly presented without being followed by reinforcement; conditioning, in which the preexposed stimulus was paired with reinforcement (a foot shock); and test, in which LI was indexed by animals' degree of suppression of licking during tone presentation. In Experiment 1, 20 tone preexposures and two conditioning trials were given and the effects of 5, 15, and 30mg/kg BMY-14802 were assessed. Experiment 2 tested the effects of 15 and 30mg/kg on LI using ten preexposures and two conditioning trials. Experiment 3 investigated the effects of 15 and 30mg/kg on LI using 40 preexposures and extended conditioning consisting of five tone-shock pairings. Experiments 4 and 5 investigated antagonism of amphetamine-induced disruption of LI by 15 and 30mg/kg BMY-14802, respectively. BMY-14802 was found to antagonise amphetamine-induced disruption of LI and enhance LI when low numbers of preexposures and two conditioning trials were given, but not following extended conditioning. These results provide partial support for the suggestion that BMY-14802 may possess antipsychotic properties.  相似文献   

18.
Latent inhibition (LI) is a phenomenon in which repeated non-reinforced exposure to a stimulus retards subsequent conditioning to that stimulus; it reflects a process whereby irrelevant stimuli become ignored, and has been the subject of study concerning attentional abnormalities in schizophrenia. Low doses of the indirect dopamine (DA) agonists, amphetamine and nicotine, disrupt LI in the rat. These drugs are believed to disrupt LI via DA release in the nucleus accumbens; LI in amphetamine- and nicotine-treated rats is reinstated by administration of the DA antagonist haloperidol. In human subjects, low doses of amphetamine abolish LI, and more recently haloperidol has been shown to potentiate LI. The present study investigated the effects of nicotine on LI in human subjects, and also attempted to replicate the abolition of LI by amphetamine. Nicotine failed to affect LI when administered either subcutaneously or by cigarette smoking. LI was, however, abolished in a group of subjects given 5 mg amphetamine 90 min before testing. Supplementary analyses of the data pooled from all three experiments showed that, in contrast to an earlier report, LI was no weaker in smokers than in non-smokers.  相似文献   

19.
Rationale. Psychomotor stimulants can induce psychotic states in humans that closely resemble those observed in patients with idiopathic schizophrenia. Attentional and sensorimotor gating impairments are observed in schizophrenic patients using the latent inhibition (LI) and prepulse inhibition (PPI) behavioral assays, respectively. Our previous studies demonstrated that after 4 days of withdrawal from a period of amphetamine (AMPH) administration, animals exhibited disrupted LI but normal PPI. Objective. The aim of the present study was to test PPI in AMPH-withdrawn rats under experimental conditions similar to those used to best demonstrate locomotor sensitization following AMPH withdrawal. Methods. We examined the effects on PPI of (1) pairing drug injections with PPI test-associated cues, (2) administration of a low-dose dopamine agonist challenge and (3) testing following longer withdrawal periods (23, 30, 60 days). Results. Although none of these conditions revealed a disruption of PPI in AMPH-withdrawn rats, we did observe that the acoustic startle response was reduced during a restricted time period following AMPH withdrawal. Similar to our previous findings, AMPH-withdrawn animals showed disrupted LI on day 16 of withdrawal and locomotor sensitization to a challenge injection of AMPH after 62 days of withdrawal. Conclusion. We conclude that the effects of repeated AMPH on PPI are not modulated by the same experimental parameters known to be important for eliciting locomotor sensitization and that withdrawal from the schedule of AMPH administration used in this study models only specific cognitive dysfunctions linked to schizophrenic symptoms, since LI was disrupted but PPI was not affected.  相似文献   

20.
The effects of amphetamine on central and peripheral catecholamines have been studied in guinea pigs, since in this species, unlike several others, amphetamine is not metabolized by p-hydroxylation. Twenty mg/kg of dl-amphe-tamine-sulphate given intraperitoneally caused a 40 % decrease in brain and heart noradrenaline, a 13 % decrease in brain dopamine and a 60 % decrease in homo-vanillic acid in the caudate nucleus, four hours after its administration. The changes in tissue catecholamine levels and the increase in motor activity followed the time-course of the amphetamine concentrations both in the brain and plasma. After chronic administration of amphetamine at 12 hourly intervals for 7 or 18 days, there was a further decrease in brain and heart catecholamine and homovanillic acid levels. A 4-fold increase in the 3-O-methylated metabolites of noradrenaline and dopamine in brain after the administration of amphetamine to guinea pigs pretreated with nialamide and an increase in the urinary excretion of NA (13-fold) and adrenaline (3-fold) provided evidence for an amphetamine induced release of central and peripheral catecholamines as has previously been reported in rats and cats. Amphetamine disappeared from brain and plasma with an apparent half-life of 2.5–3.1 hours. Only amphetamine and hippuric acid were recovered in the urine after the administration of radioactively labelled amphetamine. No p- or βhydroxylated metabolites of amphetamine were present in the brain or heart tissues in the guinea pig. The results show that acute and chronic amphetamine administration causes changes in endogenous catecholamines in guinea pigs similar to those found previously in rats in spite of differences in the metabolism of amphetamine between the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号