首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic Analyses of the Microsomal Biotransformation of thePhosphorothioate Insecticides Chlorphyrifos and Parathion. Sultatos,L.G. and Murphy, S.D. (1983). Fundam. and Appl. Toxicol. 3:16-21.Chlorpyrifos [0,0-diethyl-0-(3,5,6-trichloro-2-pyridyl) phosphorothioate]was metabolized to chlorpyrifos oxon [0,0-diethyl-0-(3,5,6-trichloro-2-pyridyl)phosphate] and to 3,5,6-trichloro-2-pyridinol by mouse hepaticmicrosomes. Formation of both chlorpyrifos oxon and 3,5,6-trichloro-2-pyridinolrequired NADPH, and was inhibited by carbon monoxide. Kineticanalyses using direct linear plots determined the appKm's forformation of chlorpyrifos oxon and 3,5,6-trichloro-2-pyridinolto be 20.9 ± 3.3 µM and 16.1 ± 3.4 µMrespectively, while the appVmax's for the same reactions were3.9 ± 0.2 nmols/100 mg liver/min and 8.1 ± 0.3nmols/100 mg liver/min respectively. Incubation of parathion[0,0-diethyl-0-(4-nitrophenyl) phosphorothioate] with mousehepatic microsomes produced paraoxon [0,0-diethyl-0-(4-nitrophenyl)phosphate] and p-nitrophenol. The appKm's for the formationof paraoxon and p-nitrophenol were 29.6 ± 4.2 µMand 26.5 ± 3.8 µM respectively, with appVmax'sof 5.8 ± 0.6 nmols/100 mg liver/min and 6.7 ±0.5 nmols/100 mg liver/min, respectively. Incubation of bothparathion and chlorpyrifos at various concentrations with mousehepatic microsomes resulted in inhibition of production of paraoxon,p-nitrophenol, chlorpyrifos oxon, and 3,5,6-trichloro-2-pyridinol,which was characteristic of mixed type inhibition. This complexkinetic behavior could arise as a result of competitive interactionsof parathion and chlorpyrifos with multiple forms of microsomalcytochrome P-450.  相似文献   

2.
Although numerous previous reports have characterized the mammalian biotransformation of the organophosphorus insecticides parathion and methyl parathion, questions still remain regarding the toxicological significance of certain metabolic pathways in vivo. The present study utilized rat liver perfusions in order to better characterize the hepatic biotransformation of parathion and methyl parathion in intact liver. Single-pass liver perfusions with parathion and methyl parathion over a range of perfusate concentrations of 10-80 microM resulted in the appearance of paraoxon and methyl paraoxon, respectively, in effluent. Furthermore, rat blood did not have the capacity to prevent transport of paraoxon and methyl paraoxon to extrahepatic tissues, suggesting that oxon produced hepatically can distribute to extrahepatic tissues. In addition, striking sex differences were noted in the metabolite profile of parathion and methyl parathion in perfused livers. However, these differences could not account for the observation that females are more susceptible to parathion, but less susceptible to methyl parathion, compared to males. And finally, S-methyl glutathione or S-p-nitrophenyl glutathione could not be detected in effluent or bile of livers from either sex perfused with methyl parathion, suggesting that glutathione-dependent detoxification of this insecticide does not occur to any significant degree in intact rat liver.  相似文献   

3.
We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequential dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less capable than adults at detoxifying many organophosphorus insecticides including chlorpyrifos and parathion, toxicant-selective differences in detoxification play a role in sequence-dependent toxicity in both neonatal and adult rats with these two insecticides.  相似文献   

4.
For many decades it has been thought that oxygen analogs (oxons) of organophosphorus insecticides phosphorylate the catalytic site of acetylcholinesterase by a mechanism that follows simple Michaelis-Menten kinetics. More recently, the interactions of at least some oxons have been shown to be far more complex and likely involve binding of oxons to a second site on acetylcholinesterase that modulates the inhibitory capacity of other oxon molecules at the catalytic site. The current study has investigated the interactions of chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Both chlorpyrifos oxon and methyl paraoxon were found to have k(i)'s that change as a function of oxon concentration. Furthermore, 10 nM chlorpyrifos oxon resulted in a transient increase in acetylthiocholine hydrolysis, followed by inhibition. Moreover, in the presence of 100 nM chlorpyrifos oxon, acetylthiocholine was found to influence both the K(d) (binding affinity) and k(2) (phosphorylation constant) of this oxon. Collectively, these results demonstrate that the interactions of chlorpyrifos oxon and methyl paraoxon with acetylcholinesterase cannot be described by simple Michaelis-Menten kinetics but instead support the hypothesis that these oxons bind to a secondary site on acetylcholinesterase, leading to activation/inhibition of the catalytic site, depending on the nature of the substrate and inhibitor. Additionally, these data raise questions regarding the adequacy of estimating risk of low levels of insecticide exposure from direct extrapolation of insecticide dose-response curves since the capacity of individual oxon molecules at low oxon levels could be greater than individual oxon molecules in vivo associated with the dose-response curve.  相似文献   

5.
The primary mechanism of action for organophosphorus (OP) insecticides, like chlorpyrifos and parathion, is to inhibit acetylcholinesterase (AChE) by their oxygenated metabolites (oxons), due to the phosphorylation of the serine hydroxyl group located in the active site of the molecule. The rate of phosphorylation is described by the bimolecular inhibitory rate constant (k(i)), which has been used for quantification of OP inhibitory capacity. It has been proposed that a peripheral binding site exists on the AChE molecule, which, when occupied, reduces the capacity of additional oxon molecules to phosphorylate the active site. The aim of this study was to evaluate the interaction of chlorpyrifos oxon (CPO) and paraoxon (PO) with rat brain AChE to assess the dynamics of AChE inhibition and the potential role of a peripheral binding site. The k(i) values for AChE inhibition determined at oxon concentrations of 1-100 nM were 0.206 +/- 0.018 and 0.0216 nM(-1)h(-1) for CPO and PO, respectively. The spontaneous reactivation rates of the inhibited AChE for CPO and PO were 0.084-0.087 (two determinations) and 0.091 +/- 0.023 h(-1), respectively. In contrast, the k(i) values estimated at a low oxon concentration (1 pM) were approximately 1,000- and 10,000-fold higher than those determined at high CPO and PO concentrations, respectively. At low concentrations, the k(i) estimates were approximately similar for both CPO and PO (150-180 [two determinations] and 300 +/- 180 nM(-1)h(-1), respectively). This implies that, at low concentrations, both oxons exhibited similar inhibitory potency in contrast to the marked difference exhibited at higher concentrations. These results support the potential importance of a secondary peripheral binding site associated with AChE kinetics, particularly at low, environmentally relevant concentrations.  相似文献   

6.
The aim of the present study was to evaluate the in vitro modulation of muscarinic autoreceptor function by the organophosphorus (OP) anticholinesterases chlorpyrifos oxon, paraoxon, and methyl paraoxon. Acetylcholine (ACh) release was studied by preloading slices from rat striatum with [3H]choline and depolarizing with potassium (20 mM) in perfusion buffer containing hemicholinium-3 (to prevent reuptake of radiolabeled choline). Under these conditions, chlorpyrifos oxon, paraoxon, and methyl paraoxon (0.1-10 microM) all reduced ACh release in a concentration-dependent manner. Addition of the carbamate acetylcholinesterase (AChE) inhibitor physostigmine (20 microM) to the perfusion buffer also decreased ACh release. When physostigmine was present, the three oxons had no additional effect on ACh release. Concentration-dependent inhibition of AChE activity in striatal slices perfused with chlorpyrifos oxon (0.1, 1, and 10 microM) suggested AChE inhibition was responsible for oxon-mediated alterations in ACh release. To differentiate between direct and indirect actions of the OP toxicants on muscarinic autoreceptors, we compared the effects of the oxons on ACh release under two conditions, i.e., tissues were perfused with buffer containing only hemicholinium-3 or with buffer containing hemicholinium-3, physostigmine, and the nonselective muscarinic receptor blocker atropine (100 nM). In the presence of only hemicholinium-3, concentration-dependent inhibition of ACh release was again noted for all oxons, similar to the effects of the muscarinic agonists carbachol and cis-dioxolane. In the presence of physostigmine and atropine, the relative potencies of all agents were markedly reduced. Interestingly, carbachol, cis-dioxolane, paraoxon, and methyl paraoxon all decreased ACh release as before, but chlorpyrifos oxon (100-300 microM) actually increased ACh release. Together, the results suggest that chlorpyrifos oxon, paraoxon, and methyl paraoxon can activate muscarinic autoreceptors indirectly through inhibition of AChE. Both paraoxon and methyl paraoxon also directly activate whereas chlorpyrifos oxon blocks muscarinic autoreceptor function. Qualitative differences in the direct actions of these oxons at this presynaptic regulatory site could contribute to differential toxicity with high-dose exposures.  相似文献   

7.
Mutch E  Williams FM 《Toxicology》2006,224(1-2):22-32
This research describes both the activation and detoxification of diazinon, chlorpyrifos and parathion by recombinant P450 isozymes and by human liver microsomes that had been characterised for P450 marker activities. Wide variations in activity were found for diazinon (50 microM; 500 microM) activation to diazoxon, chlorpyrifos (100 microM) to chlorpyrifos oxon and parathion (5 microM, 20 microM and 200 microM) to paraoxon in NADPH-dependent reactions. In parallel, the dearylated metabolites pyrimidinol (IHMP), trichloro-2-pyridinol (TCP) and p-nitrophenol (PNP) were produced from diazinon, chlorpyrifos and parathion, respectively, with similarly wide variations in activity. There were significant correlations between diazoxon formation from diazinon (50 microM; 500 microM) with the three CYP3A4/5 marker reactions, while IHMP formation correlated significantly with the three CYP3A4/5 reactions, the CYP2C8 marker reaction (p<0.05) and the CYP2C19 marker (p<0.01). Chlorpyrifos oxon formation from chlorpyrifos did not correlate with any of the P450 markers but TCP formation correlated with one of the CYP3A4/5 reactions (p<0.01) and CYP2C8 (p<0.01), CYP2C19 (p<0.01) and CYP1A2 (p<0.01) mediated reactions. There were significant relationships between paraoxon formation from parathion (5 microM, 20 microM and 200 microM) and the CYP3A4/5, CYP2C8 and CYP1A2 mediated reactions, although only the latter two isoforms correlated significantly with the lowest parathion concentration. Recombinant CYPs 2D6, 2C19, 3A5, 3A4 were most efficient in producing diazoxon and IHMP from diazinon; CYPs 2D6, 3A5, 2B6 and 3A4 were best at producing chlorpyrifos-oxon and CYPs 2C19, 2D6, 3A5 and 3A4 at producing TCP from chlorpyrifos (100 microM). These data strongly suggest that CYPs 3A4/5, 2C8, 1A2, 2C19 and 2D6 are primarily involved in the metabolism of all three OPs, although the profile of participating isoforms was different for each of the pesticides suggesting that chemical structure influences which P450s mediate the reaction. The marked inter-individual variation in expression of the various P450 isozymes may result in sub-populations of individuals that produce higher systemic oxon levels with increased susceptibility to OP toxicity.  相似文献   

8.
Binding of parathion and paraoxon to bovine serum albumin (BSA) and human serum albumin (HSA) was studied by using equilibrium dialysis. The concentration of unbound organophosphate was determined from its anticholinesterase activity.Binding of parathion to BSA was shown to be reversible. The organophosphates interact with only one type of binding sites in BSA and HSA. The affinity constants at pH 7.2 and 4° C for the interaction of BSA or HSA and parathion were found to be 2.7×106 and 1.5×106 M–1, respectively. The affinity constants for the interaction of the serum albumins and paraoxon were considerably lower, 6.0×103 and 1.6×104 M–1, respectively. Lowering the pH from 7.2 to 4.8 did not significantly affect the binding parameters. The great difference of affinity of the serum albumins to parathion and paraoxon is discussed with respect to the fate of parathion in the body.  相似文献   

9.
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.  相似文献   

10.
Organophosphorus insecticides elicit toxicity by inhibiting acetylcholinesterase. Young animals are generally more sensitive than adults to these toxicants. A number of studies reported that some organophosphorus agents also bind directly to muscarinic receptors, in particular the m(2) subtype, in tissues from adult rats. As both the density and agonist affinity states of cardiac muscarinic receptors (primarily m(2)) have been reported to change in an age-related manner, we evaluated the relative in vitro sensitivity of cardiac muscarinic receptors in tissues from neonatal (7-11 days of age) and adult (90 days of age) rats to selected organophosphorus compounds (chlorpyrifos, parathion, methyl parathion and their oxygen analogs or oxons). The effects of the cholinergic agonist carbachol (100 pM-5 microM) or an organophosphorus toxicant (50 pM-10 microM) on muscarinic receptor binding were determined using the nonselective muscarinic ligand [3H]quinuclidinyl benzilate or the m(2)-preferential ligand [3H]oxotremorine-M acetate. Carbachol displaced [3H]oxotremorine labeling in adult and neonatal membranes in a relatively similar manner (IC(50)=7-20 nM). The oxons all displaced [3H]oxotremorine binding in a concentration-dependent manner, with chlorpyrifos oxon being the most potent (IC(50): neonates, 15 nM; adults, 7 nM) and efficacious (maximum displacement: neonates, 42%; adults, 56%). Interestingly, methyl parathion was an extremely potent displacer of [3H]oxotremorine binding in adult tissues (IC(50)=0.5 nM, maximum displacement=37%) but had no effect in neonatal tissues. The displacement of [3H]oxotremorine binding by chlorpyrifos oxon (10 microM) was still apparent after washing the tissues, suggesting the oxon irreversibly blocked agonist binding to the receptor while interaction with MePS appeared reversible. As effective concentrations of the oxons were relatively similar to their anticholinesterase potencies, these findings suggest that direct interaction with cardiac muscarinic receptors by some organophosphorus agents may occur at relevant exposure levels and contribute to cardiac toxicity.  相似文献   

11.
Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders.  相似文献   

12.
Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC50 values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon > paraoxon > methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (kinact/KI) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC50 values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon > paraoxon > methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1 and CES2 respectively. Together, the results define the kinetics of inhibition of three important hydrolytic enzymes by activated metabolites of widely used agrochemicals.  相似文献   

13.
Phosphorothioate pesticides (OP) such as diazinon, chlorpyrifos, and parathion are activated to highly toxic oxon metabolites by the cytochromes P450 (P450s), mainly in the liver. Simultaneously, the P450s catalyze detoxification of OP to nontoxic dearylated metabolites. The oxon is then detoxified to the dearylated metabolite by PON1, an A-esterase present in the liver and blood serum. The aims of this study were to define the influence of PON1-192 genotype and phenotype on the capacity of human liver microsomes (n = 27) to detoxify the oxons diazoxon, chlorpyrifos-oxon, and paraoxon. Near physiological assay conditions were used to reflect as closely as possible metabolism in vivo and because the hydrolytic activity of the allelic variants of PON1-192 are differentially affected by a number of conditions. The rates of hydrolysis of diazoxon, chlorpyrifos-oxon, and paraoxon varied 5.7-, 16-, and 56-fold, respectively, regardless of PON1-192 genotype. Individuals with the PON1-192RR genotype preferentially hydrolyzed paraoxon (p < 0.01), and the R allele was associated with higher hydrolytic activity toward chlorpyrifos-oxon, but not diazoxon. There were strongly significant relationships between phenylacetate and paraoxon hydrolysis (p < 0.001) and phenylacetate and chlorpyrifos-oxon hydrolysis (p < 0.001), but not between phenylacetate and diazoxon hydrolysis. These data highlight the importance of PON1 phenotype for efficient hydrolysis of paraoxon and chlorpyrifos-oxon, but environmental and yet unknown genetic factors are more important than PON1-192 genotype in determining capacity to hydrolyze diazoxon.  相似文献   

14.
Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY?R of alpha tubulin, and Tyr 281 in GSQQY?R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.  相似文献   

15.
The peripheral anionic site of acetylcholinesterase, when occupied by a ligand, is known to modulate reaction rates at the active site of this important enzyme. The current report utilized the peripheral anionic site specific fluorogenic probe thioflavin t to determine if the organophosphates chlorpyrifos oxon and dichlorvos bind to the peripheral anionic site of human recombinant acetylcholinesterase, since certain organophosphates display concentration-dependent kinetics when inhibiting this enzyme. Incubation of 3 nM acetylcholinesterase active sites with 50 nM or 2000 nM inhibitor altered both the B(max) and K(d) for thioflavin t binding to the peripheral anionic site. However, these changes resulted from phosphorylation of Ser203 since increasing either inhibitor from 50 nM to 2000 nM did not alter further thioflavin t binding kinetics. Moreover, the organophosphate-induced decrease in B(max) did not represent an actual reduction in binding sites, but instead likely resulted from conformational interactions between the acylation and peripheral anionic sites that led to a decrease in the rigidity of bound thioflavin t. A drop in fluorescence quantum yield, leading to an apparent decrease in B(max), would accompany the decreased rigidity of bound thioflavin t molecules. The organophosphate-induced alterations in K(d) represented changes in binding affinity of thioflavin t, with diethylphosphorylation of Ser203 increasing K(d), and dimethylphosphorylation of Ser203 decreasing K(d). These results indicate that chlorpyrifos oxon and dichlorvos do not bind directly to the peripheral anionic site of acetylcholinesterase, but can affect binding to that site through phosphorylation of Ser203.  相似文献   

16.
The dimethyl-substituted organothiophosphate insecticides methyl parathion and azinphos-methyl are thought to undergo glutathione-mediated detoxification in mammals. In the present study, depletion of hepatic glutathione in the mouse by pretreatment with diethyl maleate potentiated the acute toxicities of methyl parathion and azinphos-methyl, whereas depletion of hepatic glutathione by pretreatment with buthionine sulfoximine did not. Furthermore incubation of 50 microM methyl parathion with mouse hepatic microsomes for 5 min in the presence of 1 mM diethyl maleate led to significantly greater (p less than 0.05) production of methyl paraoxon, compared to incubations in the absence of diethyl maleate. Conversely, 1 mM diethyl maleate had no effect on metabolic activation of azinphos-methyl by mouse hepatic microsomes, while 10 mM inhibited slightly production of azinphos-methyl oxon from azinphos-methyl. These results suggest normal levels of hepatic glutathione are not required for detoxification of methyl parathion or azinphos-methyl in the mouse. Moreover the potentiation of the acute toxicity of methyl parathion following diethyl maleate pretreatment could result, at least in part, from enhanced production of methyl paraoxon. However, diethyl maleate likely acts through another mechanism(s) as well since it did not enhance the metabolic activation of azinphos-methyl in vitro. These data raise serious doubts about the participation of glutathione in the detoxification of methyl parathion and azinphos-methyl in vivo in the mouse.  相似文献   

17.
Binding of the endocannabinoid anandamide or of Delta(9)-tetrahydrocannabinol to the agonist site of the cannabinoid receptor (CB1) is commonly assayed with [3H]CP 55,940. Potent long-chain alkylfluorophosphonate inhibitors of agonist binding suggest an additional, important and closely-coupled nucleophilic site, possibly undergoing phosphorylation. We find that the CB1 receptor is also sensitive to inhibition in vitro and in vivo by several organophosphorus pesticides and analogs. Binding of [3H]CP 55,940 to mouse brain CB1 receptor in vitro is inhibited 50% by chlorpyrifos oxon at 14 nM, chlorpyrifos methyl oxon at 64 nM and paraoxon, diazoxon and dichlorvos at 1200-4200 nM. Some 15 other organophosphorus pesticides and analogs are less active in vitro. The plant defoliant tribufos inhibits CB1 in vivo, without cholinergic poisoning signs, by 50% at 50 mg/kg intraperitoneally with a recovery half-time of 3-4 days, indicating covalent derivatization. [3H-ethyl]Chlorpyrifos oxon may be suitable for radiolabeling and characterization of this proposed nucleophilic site.  相似文献   

18.
A tissue/blood partition coefficient, defined as the ratio of tissue chemical concentration to that of the venous outflow of the tissue when at equilibrium, is an important parameter required for physiological based pharmacokinetic models. While many techniques have been developed to quantify tissue/blood partition coefficients for various chemicals, there is no single best approach for their determination. In the current study, equilibrium dialysis of the organophosphorus insecticide parathion and its active metabolite paraoxon was undertaken to assess their partitioning into rat liver. A mass balance analysis of the contents of the dialysis cells suggested that significant levels of parathion and paraoxon were bound to the dialysis membranes. There was no evidence of metabolism of either parathion or paraoxon by the very dilute liver homogenate utilized in the dialysis. In order to investigate the potential impact of binding of a chemical to dialysis membrane during determination of partition coefficients, a computer model of a dialysis system was constructed. The model assumed that all processes occurring within the dialysis cell were first or second order in nature, and that binding to the dialysis membrane occurred symmetrically on both sides of the membrane. Variations in the total number of simulated binding sites on dialysis membrane revealed that increasing the degree of membrane binding resulted in decreased compound on the homogenate and buffer sides of the dialysis cells. However, the final tissue/buffer partition coefficient was unaffected by these alterations in membrane binding, although increased membrane binding prolonged the incubation time required to achieve equilibrium. These simulations suggest that loss of a compound to membrane binding does not preclude the use of equilibrium dialysis for determination of tissue/buffer, and therefore tissue/blood, partition coefficients, provided the dialysis system is allowed to proceed to equilibrium.  相似文献   

19.
Single-pass perfusion of mouse livers in situ with the phosphorothioate pesticide parathion resulted in formation of paraoxon, p-nitrophenol, p-nitrophenyl sulfate, and p-nitrophenyl-beta-D-glucuronide. At a perfusate bovine serum albumin (BSA) concentration of 4% (fraction of unbound parathion = 0.04), and a flow rate of 3.2 ml/min/liver, the half-life associated with the approach to steady state of parathion was 6.2 min (SD = 0.4), whereas at steady state the extraction ratio of parathion was 0.19 (SD = 0.03). Alterations in perfusate flow rates had no discernable effects on metabolism of parathion. However, lowering the BSA perfusate concentration to 1.0% (fraction of unbound parathion = 0.12) significantly prolonged the half-life for the approach to steady state while increasing the steady state extraction ratio to 0.49 (SD = 0.08). At perfusate BSA concentrations below 1%, steady state conditions with respect to parathion could not be achieved during the 50-min perfusions. These results suggest that binding of parathion to BSA hinders its biotransformation by mouse livers perfused in situ, probably by limiting the availability of free pesticide to metabolic sites. Consequently, its elimination by the liver is insensitive to changes in hepatic blood flow. However, exclusion of BSA from the perfusate resulted in partitioning of all parathion in perfusate into the liver, leading to high concentrations of parathion within liver and preventing biotransformation of this pesticide.  相似文献   

20.
Pregnant Sprague-Dawley rats (14-18 d of gestation) were treated with either a single dermal subclinical dose of 30 mg/kg (15% of dermal LD50) chlorpyrifos (O,O-diethyl-O-[3,5,6-trichloro-2-pyridinyl] phosphorothioate) or a single dermal subclinical dose of 10 mg/kg (15% of dermal LD50) methyl parathion (O,O-dimethyl O-4-nitrophenyl phosphorothioate) or the two in combination. Chlorpyrifos inhibited maternal and fetal brain acetylcholinesterase (AChE) activity within 24 h of dosing, (48% and 67% of control activity, respectively). Following application of methyl parathion, peak inhibition of maternal and fetal brain AChE activity occurred at 48 h and 24 h after dosing (17% and 48% of control activity, respectively). A combination of chlorpyrifos and methyl parathion produced peak inhibition of maternal and fetal brain AChE activity at 24 h postdosing (35% and 73% of control activity, respectively). Maternal and fetal brain AChE activity recovered to various degrees of percentage of control 96 h after dosing. Application of methyl parathion or chlorpyrifos alone or in combination significantly inhibited maternal plasma butyrylcholinesterase (BuChE) activity. No significant inhibition of fetal plasma BuChE activity was detected. Peak inhibition of maternal liver BuChE occurred 24 h after application of methyl parathion or chlorpyrifos alone or in combination (64%, 80%, and 61% of control activity, respectively). Significant inhibition of placental AChE occurred within 24 h after application of methyl parathion or chlorpyrifos alone or in combination. The results suggest that methyl parathion and chlorpyrifos, alone or in combination, were rapidly distributed in maternal and fetal tissues, resulting in rapid inhibition of cholinesterase enzyme activities. The lower inhibitory effect of the combination could be due to competition between chlorpyrifos and methyl parathion for cytochrome P-450 enzymes, resulting in inhibition of the formation of the potent cholinesterase inhibitor oxon forms. The faster recovery of fetal plasma BuChE is attributed to the de novo synthesis of cholinesterase by fetal tissues compared to maternal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号