首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Joanisse MF  Gati JS 《NeuroImage》2003,19(1):64-79
Speech perception involves recovering the phonetic form of speech from a dynamic auditory signal containing both time-varying and steady-state cues. We examined the roles of inferior frontal and superior temporal cortex in processing these aspects of auditory speech and nonspeech signals. Event-related functional magnetic resonance imaging was used to record activation in superior temporal gyrus (STG) and inferior frontal gyrus (IFG) while participants discriminated pairs of either speech syllables or nonspeech tones. Speech stimuli differed in either the consonant or the vowel portion of the syllable, whereas the nonspeech signals consisted of sinewave tones differing along either a dynamic or a spectral dimension. Analyses failed to identify regions of activation that clearly contrasted the speech and nonspeech conditions. However, we did identify regions in the posterior portion of left and right STG and left IFG yielding greater activation for both speech and nonspeech conditions that involved rapid temporal discrimination, compared to speech and nonspeech conditions involving spectral discrimination. The results suggest that, when semantic and lexical factors are adequately ruled out, there is significant overlap in the brain regions involved in processing the rapid temporal characteristics of both speech and nonspeech signals.  相似文献   

2.
Healthy subjects show increased activation in left temporal lobe regions in response to speech sounds compared to complex nonspeech sounds. Abnormal lateralization of speech-processing regions in the temporal lobes has been posited to be a cardinal feature of schizophrenia. Event-related fMRI was used to test the hypothesis that schizophrenic patients would show an abnormal pattern of hemispheric lateralization when detecting speech compared with complex nonspeech sounds in an auditory oddball target-detection task. We predicted that differential activation for speech in the vicinity of the superior temporal sulcus would be greater in schizophrenic patients than in healthy subjects in the right hemisphere, but less in patients than in healthy subjects in the left hemisphere. Fourteen patients with schizophrenia (selected from an outpatient population, 2 females, 12 males, mean age 35.1 years) and 29 healthy subjects (8 females, 21 males, mean age 29.3 years) were scanned while they performed an auditory oddball task in which the oddball stimuli were either speech sounds or complex nonspeech sounds. Compared to controls, individuals with schizophrenia showed greater differential activation between speech and nonspeech in right temporal cortex, left superior frontal cortex, and the left temporal-parietal junction. The magnitude of the difference in the left temporal parietal junction was significantly correlated with severity of disorganized thinking. This study supports the hypothesis that aberrant functional lateralization of speech processing is an underlying feature of schizophrenia and suggests the magnitude of the disturbance in speech-processing circuits may be associated with severity of disorganized thinking.  相似文献   

3.
Gutschalk A  Uppenkamp S 《NeuroImage》2011,56(3):1578-1587
Several studies have shown enhancement of auditory evoked sustained responses for periodic over non-periodic sounds and for vowels over non-vowels. Here, we directly compared pitch and vowels using synthesized speech with a "damped" amplitude modulation. These stimuli were parametrically varied to yield four classes of matched stimuli: (1) periodic vowels (2) non-periodic vowels, (3) periodic non-vowels, and (4) non-periodic non-vowels. 12 listeners were studied with combined MEG and EEG. Sustained responses were reliably enhanced for vowels and periodicity. Dipole source analysis revealed that a vowel contrast (vowel-non-vowel) and the periodicity-pitch contrast (periodic-non-periodic) mapped to the same site in antero-lateral Heschl's gyrus. In contrast, the non-periodic, non-vowel condition mapped to a more medial and posterior site. The sustained enhancement for vowels was significantly more prominent when the vowel identity was varied, compared to a condition where only one vowel was repeated, indicating selective adaptation of the response. These results render it unlikely that there are spatially distinct fields for vowel and pitch processing in the auditory cortex. However, the common processing of vowels and pitch raises the possibility that there is an early speech-specific field in Heschl's gyrus.  相似文献   

4.
The separation of concurrent sounds is paramount to human communication in everyday settings. The primary auditory cortex and the planum temporale are thought to be essential for both the separation of physical sound sources into perceptual objects and the comparison of those representations with previously learned acoustic events. To examine the role of these areas in speech separation, we measured brain activity using event-related functional Magnetic Resonance Imaging (fMRI) while participants were asked to identify two phonetically different vowels presented simultaneously. The processing of brief speech sounds (200 ms in duration) activated the thalamus and superior temporal gyrus bilaterally, left anterior temporal lobe, and left inferior temporal gyrus. A comparison of fMRI signals between trials in which participants successfully identified both vowels as opposed to when only one of the two vowels was recognized revealed enhanced activity in left thalamus, Heschl's gyrus, superior temporal gyrus, and the planum temporale. Because participants successfully identified at least one of the two vowels on each trial, the difference in fMRI signal indexes the extra computational work needed to segregate and identify successfully the other concurrently presented vowel. The results support the view that auditory cortex in or near Heschl's gyrus as well as in the planum temporale are involved in sound segregation and reveal a link between left thalamo-cortical activation and the successful separation and identification of simultaneous speech sounds.  相似文献   

5.
Evoked magnetic fields were recorded from 18 adult volunteers using magnetoencephalography (MEG) during perception of speech stimuli (the endpoints of a voice onset time (VOT) series ranging from /ga/ to /ka/), analogous nonspeech stimuli (the endpoints of a two-tone series varying in relative tone onset time (TOT), and a set of harmonically complex tones varying in pitch. During the early time window (approximately 60 to approximately 130 ms post-stimulus onset), activation of the primary auditory cortex was bilaterally equal in strength for all three tasks. During the middle (approximately 130 to 800 ms) and late (800 to 1400 ms) time windows of the VOT task, activation of the posterior portion of the superior temporal gyrus (STGp) was greater in the left hemisphere than in the right hemisphere, in both group and individual data. These asymmetries were not evident in response to the nonspeech stimuli. Hemispheric asymmetries in a measure of neurophysiological activity in STGp, which includes the supratemporal plane and cortex inside the superior temporal sulcus, may reflect a specialization of association auditory cortex in the left hemisphere for processing speech sounds. Differences in late activation patterns potentially reflect the operation of a postperceptual process (e.g., rehearsal in working memory) that is restricted to speech stimuli.  相似文献   

6.
The neural substrates underlying speech perception are still not well understood. Previously, we found dissociation of speech and nonspeech processing at the earliest cortical level (AI), using speech and nonspeech complexity dimensions. Acoustic differences between speech and nonspeech stimuli in imaging studies, however, confound the search for linguistic-phonetic regions. Presently, we used sinewave speech (SWsp) and nonspeech (SWnon), which replace speech formants with sinewave tones, in order to match acoustic spectral and temporal complexity while contrasting phonetics. Chord progressions (CP) were used to remove the effects of auditory coherence and object processing. Twelve normal RH volunteers were scanned with fMRI while listening to SWsp, SWnon, CP, and a baseline condition arranged in blocks. Only two brain regions, in bilateral superior temporal sulcus, extending more posteriorly on the left, were found to prefer the SWsp condition after accounting for acoustic modulation and coherence effects. Two regions responded preferentially to the more frequency-modulated stimuli, including one that overlapped the right temporal phonetic area and another in the left angular gyrus far from the phonetic area. These findings are proposed to form the basis for the two subtypes of auditory word deafness. Several brain regions, including auditory and non-auditory areas, preferred the coherent auditory stimuli and are likely involved in auditory object recognition. The design of the current study allowed for separation of acoustic spectrotemporal, object recognition, and phonetic effects resulting in distinct and overlapping components.  相似文献   

7.
Evidence for speech-specific brain processes has been searched for through the manipulation of formant frequencies which mediate phonetic content and which are, in evolutionary terms, relatively "new" aspects of speech. Here we used whole-head magnetoencephalography and advanced stimulus reproduction methodology to examine the contribution of the fundamental frequency F0 and its harmonic integer multiples in cortical processing. The subjects were presented with a vowel, a frequency-matched counterpart of the vowel lacking in phonetic contents, and a pure tone. The F0 of the stimuli was set at that of a typical male (i.e., 100 Hz), female (200 Hz), or infant (270 Hz) speaker. We found that speech sounds, both with and without phonetic content, elicited the N1m response in human auditory cortex at a constant latency of 120 ms, whereas pure tones matching the speech sounds in frequency, intensity, and duration gave rise to N1m responses whose latency varied between 120 and 160 ms. Thus, it seems that the fundamental frequency F0 and its harmonics determine the temporal dynamics of speech processing in human auditory cortex and that speech specificity arises out of cortical sensitivity to the complex acoustic structure determined by the human sound production apparatus.  相似文献   

8.
The role of attention in speech comprehension is not well understood. We used fMRI to study the neural correlates of auditory word, pseudoword, and nonspeech (spectrally rotated speech) perception during a bimodal (auditory, visual) selective attention task. In three conditions, Attend Auditory (ignore visual), Ignore Auditory (attend visual), and Visual (no auditory stimulation), 28 subjects performed a one-back matching task in the assigned attended modality. The visual task, attending to rapidly presented Japanese characters, was designed to be highly demanding in order to prevent attention to the simultaneously presented auditory stimuli. Regardless of stimulus type, attention to the auditory channel enhanced activation by the auditory stimuli (Attend Auditory>Ignore Auditory) in bilateral posterior superior temporal regions and left inferior frontal cortex. Across attentional conditions, there were main effects of speech processing (word+pseudoword>rotated speech) in left orbitofrontal cortex and several posterior right hemisphere regions, though these areas also showed strong interactions with attention (larger speech effects in the Attend Auditory than in the Ignore Auditory condition) and no significant speech effects in the Ignore Auditory condition. Several other regions, including the postcentral gyri, left supramarginal gyrus, and temporal lobes bilaterally, showed similar interactions due to the presence of speech effects only in the Attend Auditory condition. Main effects of lexicality (word>pseudoword) were isolated to a small region of the left lateral prefrontal cortex. Examination of this region showed significant word>pseudoword activation only in the Attend Auditory condition. Several other brain regions, including left ventromedial frontal lobe, left dorsal prefrontal cortex, and left middle temporal gyrus, showed Attention x Lexicality interactions due to the presence of lexical activation only in the Attend Auditory condition. These results support a model in which neutral speech presented in an unattended sensory channel undergoes relatively little processing beyond the early perceptual level. Specifically, processing of phonetic and lexical-semantic information appears to be very limited in such circumstances, consistent with prior behavioral studies.  相似文献   

9.
In the present experiment, 25 adult subjects discriminated speech tokens ([ba]/[da]) or made pitch judgments on tone stimuli (rising/falling) under both binaural and dichotic listening conditions. We observed that when listeners performed tasks under the dichotic conditions, during which greater demands are made on auditory selective attention, activation within the posterior (parietal) attention system and at primary processing sites in the superior temporal and inferior frontal regions was increased. The cingulate gyrus within the anterior attention system was not influenced by this manipulation. Hemispheric differences between speech and nonspeech tasks were also observed, both at Broca's Area within the inferior frontal gyrus and in the middle temporal gyrus.  相似文献   

10.
Specht K  Reul J 《NeuroImage》2003,20(4):1944-1954
With this study, we explored the blood oxygen level-dependent responses within the temporal lobe to short auditory stimuli of different classes. To address this issue, we performed an attentive listening event-related fMRI study, where subjects were required to concentrate during the presentation of different types of stimuli. Because the order of stimuli was randomized and not predictable for the subject, the observed differences between the stimuli types were interpreted as an automatic effect and were not affected by attention. We used three types of stimuli: tones, sounds of animals and instruments, and words. We found in all cases bilateral activations of the primary and secondary auditory cortex. The strength and lateralization depended on the type of stimulus. The tone trials led to the weakest and smallest activations. The perception of sounds increased the activated network bilaterally into the superior temporal sulcus mainly on the right and the perception of words led to the highest activation within the left superior temporal sulcus as well as in left inferior frontal gyrus. Within the left temporal sulcus, we were able to distinguish between different subsystems, showing an extending activation from posterior to anterior for speech and speechlike information. Whereas posterior parts were involved in analyzing the complex auditory structure of sounds and speech, the middle and anterior parts responded strongest only in the perception of speech. In summary, a functional segregation of the temporal lobes into several subsystems responsible for auditory processing was visible. A lateralization for verbal stimuli to the left and sounds to the right was already detectable when short stimuli were used.  相似文献   

11.
We presented phonetically matching and conflicting audiovisual vowels to 10 dyslexic and 10 fluent-reading young adults during "clustered volume acquisition" functional magnetic resonance imaging (fMRI) at 3 T. We further assessed co-variation between the dyslexic readers' phonological processing abilities, as indexed by neuropsychological test scores, and BOLD signal change within the visual cortex, auditory cortex, and Broca's area. Both dyslexic and fluent readers showed increased activation during observation of phonetically conflicting compared to matching vowels within the classical motor speech regions (Broca's area and the left premotor cortex), this activation difference being more extensive and bilateral in the dyslexic group. The between-group activation difference in conflicting > matching contrast reached significance in the motor speech regions and in the left inferior parietal lobule, with dyslexic readers exhibiting stronger activation than fluent readers. The dyslexic readers' BOLD signal change co-varied with their phonological processing abilities within the visual cortex and Broca's area, and to a lesser extent within the auditory cortex. We suggest these findings as reflecting dyslexic readers' greater use of motor-articulatory and visual strategies during phonetic processing of audiovisual speech, possibly to compensate for their difficulties in auditory speech perception.  相似文献   

12.
The key question in understanding the nature of speech perception is whether the human brain has unique speech-specific mechanisms or treats all sounds equally. We assessed possible differences between the processing of speech and complex nonspeech sounds in the two cerebral hemispheres by measuring the magnetic equivalent of the mismatch negativity, the brain's automatic change–detection response, which was elicited by speech sounds and by similarly complex nonspeech sounds with either fast or slow acoustic transitions. Our results suggest that the right hemisphere is predominant in the perception of slow acoustic transitions, whereas neither hemisphere clearly dominates the discrimination of nonspeech sounds with fast acoustic transitions. In contrast, the perception of speech stimuli with similarly rapid acoustic transitions was dominated by the left hemisphere, which may be explained by the presence of acoustic templates (long-term memory traces) for speech sounds formed in this hemisphere.  相似文献   

13.
14.
The left superior temporal cortex shows greater responsiveness to speech than to non-speech sounds according to previous neuroimaging studies, suggesting that this brain region has a special role in speech processing. However, since speech sounds differ acoustically from the non-speech sounds, it is possible that this region is not involved in speech perception per se, but rather in processing of some complex acoustic features. "Sine wave speech" (SWS) provides a tool to study neural speech specificity using identical acoustic stimuli, which can be perceived either as speech or non-speech, depending on previous experience of the stimuli. We scanned 21 subjects using 3T functional MRI in two sessions, both including SWS and control stimuli. In the pre-training session, all subjects perceived the SWS stimuli as non-speech. In the post-training session, the identical stimuli were perceived as speech by 16 subjects. In these subjects, SWS stimuli elicited significantly stronger activity within the left posterior superior temporal sulcus (STSp) in the post- vs. pre-training session. In contrast, activity in this region was not enhanced after training in 5 subjects who did not perceive SWS stimuli as speech. Moreover, the control stimuli, which were always perceived as non-speech, elicited similar activity in this region in both sessions. Altogether, the present findings suggest that activation of the neural speech representations in the left STSp might be a pre-requisite for hearing sounds as speech.  相似文献   

15.
Yrttiaho S  May PJ  Tiitinen H  Alku P 《NeuroImage》2011,55(3):1252-1259
Most speech sounds are periodic due to the vibration of the vocal folds. Non-invasive studies of the human brain have revealed a periodicity-sensitive population in the auditory cortex which might contribute to the encoding of speech periodicity. Since the periodicity of natural speech varies from (almost) periodic to aperiodic, one may argue that speech aperiodicity could similarly be represented by a dedicated neuron population. In the current magnetoencephalography study, cortical sensitivity to periodicity was probed with natural periodic vowels and their aperiodic counterparts in a stimulus-specific adaptation paradigm. The effects of intervening adaptor stimuli on the N1m elicited by the probe stimuli (the actual effective stimuli) were studied under interstimulus intervals (ISIs) of 800 and 200 ms. The results indicated a periodicity-dependent release from adaptation which was observed for aperiodic probes alternating with periodic adaptors under both ISIs. Such release from adaptation can be attributed to the activation of a distinct neural population responsive to aperiodic (probe) but not to periodic (adaptor) stimuli. Thus, the current results suggest that the aperiodicity of speech sounds may be represented not only by decreased activation of the periodicity-sensitive population but, additionally, by the activation of a distinct cortical population responsive to speech aperiodicity.  相似文献   

16.
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.  相似文献   

17.
We investigated the perception and categorization of speech (vowels, syllables) and non-speech (tones, tonal contours) stimuli using MEG. In a delayed-match-to-sample paradigm, participants listened to two sounds and decided if they sounded exactly the same or different (auditory discrimination, AUD), or if they belonged to the same or different categories (category discrimination, CAT). Stimuli across the two conditions were identical; the category definitions for each kind of sound were learned in a training session before recording. MEG data were analyzed using an induced wavelet transform method to investigate task-related differences in time-frequency patterns. In auditory cortex, for both AUD and CAT conditions, an alpha (8-13 Hz) band activation enhancement during the delay period was found for all stimulus types. A clear difference between AUD and CAT conditions was observed for the non-speech stimuli in auditory areas and for both speech and non-speech stimuli in frontal areas. The results suggest that alpha band activation in auditory areas is related to both working memory and categorization for new non-speech stimuli. The fact that the dissociation between speech and non-speech occurred in auditory areas, but not frontal areas, points to different categorization mechanisms and networks for newly learned (non-speech) and natural (speech) categories.  相似文献   

18.
Four normally-hearing subjects were trained and tested with all combinations of a highly-degraded auditory input, a visual input via lipreading, and a tactile input using a multichannel electrotactile speech processor. The speech perception of the subjects was assessed with closed sets of vowels, consonants, and multisyllabic words; with open sets of words and sentences, and with speech tracking. When the visual input was added to any combination of other inputs, a significant improvement occurred for every test. Similarly, the auditory input produced a significant improvement for all tests except closed-set vowel recognition. The tactile input produced scores that were significantly greater than chance in isolation, but combined less effectively with the other modalities. The addition of the tactile input did produce significant improvements for vowel recognition in the auditory-tactile condition, for consonant recognition in the auditory-tactile and visual-tactile conditions, and in open-set word recognition in the visual-tactile condition. Information transmission analysis of the features of vowels and consonants indicated that the information from auditory and visual inputs were integrated much more effectively than information from the tactile input. The less effective combination might be due to lack of training with the tactile input, or to more fundamental limitations in the processing of multimodal stimuli.  相似文献   

19.
Osnes B  Hugdahl K  Specht K 《NeuroImage》2011,54(3):2437-2445
Several reports of premotor cortex involvement in speech perception have been put forward. Still, the functional role of premotor cortex is under debate. In order to investigate the functional role of premotor cortex, we presented parametrically varied speech stimuli in both a behavioral and functional magnetic resonance imaging (fMRI) study. White noise was transformed over seven distinct steps into a speech sound and presented to the participants in a randomized order. As control condition served the same transformation from white noise into a music instrument sound. The fMRI data were modelled with Dynamic Causal Modeling (DCM) where the effective connectivity between Heschl's gyrus, planum temporale, superior temporal sulcus and premotor cortex were tested. The fMRI results revealed a graded increase in activation in the left superior temporal sulcus. Premotor cortex activity was only present at an intermediate step when the speech sounds became identifiable but were still distorted but was not present when the speech sounds were clearly perceivable. A Bayesian model selection procedure favored a model that contained significant interconnections between Heschl's gyrus, planum temporal, and superior temporal sulcus when processing speech sounds. In addition, bidirectional connections between premotor cortex and superior temporal sulcus and from planum temporale to premotor cortex were significant. Processing non-speech sounds initiated no significant connections to premotor cortex. Since the highest level of motor activity was observed only when processing identifiable sounds with incomplete phonological information, it is concluded that premotor cortex is not generally necessary for speech perception but may facilitate interpreting a sound as speech when the acoustic input is sparse.  相似文献   

20.
Obleser J  Lahiri A  Eulitz C 《NeuroImage》2003,20(3):1839-1847
This study demonstrates by means of magnetic source imaging how consonants and vowels that constitute a syllable differently affect the neural processing within the auditory cortex. We recently identified a topographically separate processing for mutually exclusive place features in isolated vowels (Obleser et al., in press). Does this mapping principle also hold for stop consonants with differing places of articulation? How is the N100m response to consonant-vowel (CV) syllables affected by the congruency of place information in the consonant and the vowel? Moreover, how is the N100m affected by coarticulation, i.e., the spreading of place features to adjacent phonemes? By systematically varying phonological information in the consonant as well as in the vowel of CV syllables, we were able to reveal a difference in N100m syllable source location along the anterior-posterior axis due to mutually exclusive places of articulation in the vowel of the syllable. We also found a change in source orientation rather than source location due to the same mutually exclusive features in the onset of the syllable. Furthermore, the N100m time course of the brain response delivered important complementary information to identify the phonological features present in the speech signal. Responses to all syllable categories originated in the perisylvian region anterior to the source of a band-passed noise stimulus. The systematic variation of both consonantal and vocalic place features and the study of their interaction on auditory processing proves to be a valuable method to gain more insight into the elusive phenomenon of human speech recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号