首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The emerging role of single-nucleotide polymorphisms (SNPs) in clinical association and pharmacogenetic studies has created a need for high-throughput genotyping technologies. We describe a novel method for multiplexed genotyping of SNPs that employs PCR amplification on microspheres. Oligonucleotide PCR primers were designed for each polymorphic locus such that one of the primers contained a recognition site for BbvI (a type IIS restriction enzyme), followed by 11 nucleotides of locus-specific sequence, which reside immediately upstream of the polymorphic site. Following amplification, this configuration allows for any SNP to be exposed by BbvI digestion and interrogated via primer extension, four-color minisequencing. Primers containing 5' acrylamide groups were attached covalently to the solid support through copolymerization into acrylamide beads. Highly multiplexed solid-phase amplification using human genomic DNA was demonstrated with 57 beads in a single reaction. Multiplexed amplification and minisequencing reactions using bead sets representing eight polymorphic loci were carried out with genomic DNA from eight individuals. Sixty-three of 64 genotypes were accurately determined by this method when compared to genotypes determined by restriction-enzyme digestion of PCR products. This method provides an accurate, robust approach toward multiplexed genotyping that may facilitate the use of SNPs in such diverse applications as pharmacogenetics and genome-wide association studies for complex genetic diseases.  相似文献   

2.
Single nucleotide polymorphisms (SNPs) are currently being identified and mapped at a remarkable pace, providing a rich genetic resource with vast potential for disease gene discovery, pharmacogenetics, and understanding the origins of modern humans. High-throughput, cost effective genotyping methods are essential in order to make the most advantageous and immediate use of these SNP data. We have incorporated the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) in our laboratory as a tool for differentiating genotypes based on the mass of the variant DNA sequence, and have utilized this method for production scale SNP genotyping. We have combined a 4 microl PCR amplification reaction using 3 ng of genomic DNA with a secondary enzymatic reaction (mini-sequencing) containing oligonucleotide primers that anneal immediately upstream of the polymorphic site, dideoxynucleotides, and a thermostable polymerase used to extend the PCR product by a single base pair. Mass spectrometry (MS) analysis of mini-sequencing reactions was performed using a MALDI-TOF instrument (Voyager-DE, Perseptive Biosystems, Framingham, MA). We performed both single and multiplex PCR and mini-sequencing reactions, and genotyped seven different variant sites in a random sample of 989 individuals. Genotypes generated with MS methods were compared with genotypes produced using a 5' exonuclease fluorescence-based assay (Taqman, Applied Biosystems, Foster City, CA) and a gel-based genotyping protocol. Because multiple polymorphisms can be detected in a single reaction, the MS technique provides a cost-effective and efficient method for high-throughput genotyping.  相似文献   

3.
Large-scale pharmacogenetics and complex disease association studies will require typing of thousands of single-nucleotide polymorphisms (SNPs) in thousands of individuals. Such projects would benefit from a genotyping system with accuracy >99% and a failure rate <5% on a simple, reliable, and flexible platform. However, such a system is not yet available for routine laboratory use. We have evaluated a modification of the previously reported Invader SNP-typing chemistry for use in a genotyping laboratory and tested its automation. The Invader technology uses a Flap Endonuclease for allele discrimination and a universal fluorescence resonance energy transfer (FRET) reporter system. Three hundred and eighty-four individuals were genotyped across a panel of 36 SNPs and one insertion/deletion polymorphism with Invader assays using PCR product as template, a total of 14,208 genotypes. An average failure rate of 2.3% was recorded, mostly associated with PCR failure, and the typing was 99.2% accurate when compared with genotypes generated with established techniques. An average signal-to-noise ratio (9:1) was obtained. The high degree of discrimination for single base changes, coupled with homogeneous format, has allowed us to deploy liquid handling robots in a 384-well microtitre plate format and an automated end-point capture of fluorescent signal. Simple semiautomated data interpretation allows the generation of approximately 25,000 genotypes per person per week, which is 10-fold greater than gel-based SNP typing and microsatellite typing in our laboratory. Savings on labor costs are considerable. We conclude that Invader chemistry using PCR products as template represents a useful technology for typing large numbers of SNPs rapidly and efficiently.  相似文献   

4.
A high-throughput SNP typing system for genome-wide association studies   总被引:16,自引:2,他引:16  
One of the most difficult issues to be solved in genome-wide association studies is to reduce the amount of genomic DNA required for genotyping. Currently available technologies require too large a quantity of genomic DNA to genotype with hundreds or thousands of single-nucleotide polymorphisms (SNPs). To overcome this problem, we combined the Invader assay with multiplex polymerase chain reaction (PCR), carried out in the presence of antibody to Taq polymerase, as well as using a novel 384-well card system that can reduce the required reaction volume. We amplified 100 genomic DNA fragments, each containing one SNP, in a single tube, and analyzed each SNP with the Invader assay. This procedure correctly genotyped 98 of the 100 SNP loci examined in PCR-amplified samples from ten individuals; the genotypes were confirmed by direct sequencing. The reproducibility and universality of the method were confirmed with two additional sets of 100 SNPs. Because we used 40 ng of genomic DNA as a template for multiplex PCR, the amount needed to assay one SNP was only 0.4 ng; therefore, theoretically, more than 200,000 SNPs could be genotyped at once when 100 μg of genomic DNA is available. Our results indicate the feasibility of undertaking genome-wide association studies using blood samples of only 5–10 ml. Received: May 18, 2001 / Accepted: May 21, 2001  相似文献   

5.
Inflammation as a risk factor for myocardial infarction   总被引:2,自引:0,他引:2  
  相似文献   

6.
Single nucleotide polymorphisms (SNP) in the human IL-6, IL-10, TNFalpha and TNFbeta genes have been associated with gene function and susceptibility to disease. In this study, primers containing mismatches at 1-3 nucleotide positions were designed to incorporate a new restriction site recognized by endonucleases AlwNI, BcgI, BglI, BsaBI, BslI, BstXI, EcoNI or XcmI for genotyping SNPs in the IL-6 gene (position - 174), IL-10 gene (positions -592 and -1082), TNFalpha gene (positions -238, - 308 and -863) and TNFbeta gene (position + 249) by mismatched polymerase chain reaction and restriction fragment length polymorphism (PCR/RFLP). Our results show that appropriately designed BslI-based mismatched PCR/RFLP assays can be successfully used to determine the genotypes for approximately 40% of SNPs. The mismatched PCR strategy can be coupled with multiplex-amplification to enable simple and rapid determination of several SNP genotypes in a single reaction.  相似文献   

7.
Large scale human genetic studies require technologies for generating millions of genotypes with relative ease but also at a reasonable cost and with high accuracy. We describe a highly parallel method for genotyping single nucleotide polymorphisms (SNPs), using generic high-density oligonucleotide arrays that contain thousands of preselected 20-mer oligonucleotide tags. First, marker-specific primers are used in PCR amplifications of genomic regions containing SNPs. Second, the amplification products are used as templates in single base extension (SBE) reactions using chimeric primers with 3' complementarity to the specific SNP loci and 5' complementarity to specific probes, or tags, synthesized on the array. The SBE primers, terminating one base before the polymorphic site, are extended in the presence of labeled dideoxy NTPs, using a different label for each of the two SNP alleles, and hybridized to the tag array. Third, genotypes are deduced from the fluorescence intensity ratio of the two colors. This approach takes advantage of multiplexed sample preparation, hybridization, and analysis at each stage. We illustrate and test this method by genotyping 44 individuals for 142 human SNPs identified previously in 62 candidate hypertension genes. Because the hybridization results are quantitative, this method can also be used for allele-frequency estimation in pooled DNA samples.  相似文献   

8.
6号染色体HLA区域的128个SNPs与肠炎相关性的研究   总被引:1,自引:0,他引:1  
目的:为了探讨6号染色体的HLA区域与肠道性疾病(IBD)的发病和发展的关系,实验通过对某些基因的单核苷酸多态进行扫描,希望获得IBD易感基因。方法:本实验抽取了200份IBD病人血液和200份为正常对照血液,提取DNA,采用相关分析法和TaqMan技术,对6号染色体HLA-I,HLA-Ⅱ,HLA-Ⅲ区域附近的128个SNP标签进行鉴定。结果:我们得到85个真实的SNP;30个为假阳性;7个是本实验室发现的。选择其中26个单核苷酸多态在UC病人中进行SNPs扫描,获得的P值有些在统计学上有显著差异,如MOG。但是有些P值却没有统计学意义,如MICA和MICB。结论:证实了该区域的一些SNP与IBD密切相关,但是有些被认为与IBD密切相关的单核苷酸多态在本实验中统计学上没有明显差异。  相似文献   

9.
Single nucleotide polymorphisms (SNPs) can significantly affect human phenotypes. Detection of allelic variant carriers has become a major goal for clinical pharmacologists in order to study phenotype-genotype relationships. However, there is a crucial need for rapid, and validated pharmacogenetic tests. The aim of the study was to validate a new fluorescence PCR strategy for cytochrome P450 2C9 (CYP2C9) and multidrug resistance gene (MDR1) genotyping. Results of CYP2C9 and MDR1 genotypes determined with reference techniques were compared to those obtained by allelic discrimination assays employing fluorescent TaqMan probes. Sixteen subjects carrying CYP2C9*2 and CYP2C9*3 allelic variants (heterozygous and homozygous) previously identified by sequencing and 55 subjects previously genotyped for MDR1 exon 26 (C3435T) SNP by conventional PCR-RFLP were genotyped with fluorescent PCR. Fluorescent PCR gave 100 % accuracy with the results obtained with reference genotyping strategies for each of the 3 SNPs. Genotyping results with fluorescent PCR repeated on three consecutive occasions remained constant over time for each of the 3 SNPs. Allelic discrimination assays based on fluorescent PCR gave entire satisfaction for CYP2C9 and MDR1 genotyping. This reliable genotyping strategy can be easily used in clinical practice and should be further developed for additional SNPs identification.  相似文献   

10.
We have developed a new method for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The technique involves PCR amplification of genomic DNA with two tailed allele-specific primers that introduce priming sites for universal energy-transfer-labeled primers. The output of red and green light is conveniently scored using a fluorescence plate reader. The new method, which was validated on nine model SNPs, is well suited for high-throughput, automated genotyping because it requires only one reaction per SNP, it is performed in a single tube with no post-PCR handling, the same energy-transfer-labeled primers are used for all analyses, and the instrumentation is inexpensive. Possible applications include multiple-candidate gene analysis, genomewide scans, and medical diagnostics.  相似文献   

11.
The optimal method to be used for tSNP selection, the applicability of a reference LD map to unassayed populations, and the scalability of these methods to genome-wide analysis, all remain subjects of debate. We propose novel, scalable matrix algorithms that address these issues and we evaluate them on genotypic data from 38 populations and four genomic regions (248 SNPs typed for approximately 2000 individuals). We also evaluate these algorithms on a second data set consisting of genotypes available from the HapMap database (1336 SNPs for four populations) over the same genomic regions. Furthermore, we test these methods in the setting of a real association study using a publicly available family data set. The algorithms we use for tSNP selection and unassayed SNP reconstruction do not require haplotype inference and they are, in principle, scalable even to genome-wide analysis. Moreover, they are greedy variants of recently developed matrix algorithms with provable performance guarantees. Using a small set of carefully selected tSNPs, we achieve very good reconstruction accuracy of "untyped" genotypes for most of the populations studied. Additionally, we demonstrate in a quantitative manner that the chosen tSNPs exhibit substantial transferability, both within and across different geographic regions. Finally, we show that reconstruction can be applied to retrieve significant SNP associations with disease, with important genotyping savings.  相似文献   

12.
SNP Subset Selection for Genetic Association Studies   总被引:3,自引:1,他引:3  
Association studies for disease susceptibility genes rely on the high density of SNPs within candidate genes. However, the linkage disequilibrium between SNPs imply that not all SNPs identified in the candidate region need be genotyped. Here we develop several approaches to SNP subset selection, which can substantially reduce the number of SNPs to be genotyped in an association study. We apply clustering algorithms to pairwise linkage disequilibrium measures, with SNP subsets determined for different cut‐off values of Δ using nearest and furthest neighbour clusters. Alternatively, SNP subsets may be determined by the proportion of haplotypes they identify. We also show how power calculations, based on the average power to identify a SNP as the disease susceptibility mutation using haplotype‐based or logistic regression based statistical analyses, can be used to choose SNP subsets. All these methods provide a ranking method for subsets of a specific size, but do not provide criteria for overall choice of SNP subset size. We develop such criteria by incorporating power calculations into a decision analysis, where the choice of SNP subset size depends on the genotyping costs and the perceived benefits of identifying association. These methods are illustrated using eleven SNPs in the MMP2 gene.  相似文献   

13.
目的高分辨熔解曲线技术(HRM)检测多药耐药基因(MDR1)外显子12单核苷酸多态性(SNP)。方法采用高分辨熔解技术对MDR1基因外显子12的SNP C1236T位点进行基因分型,以其-401C〉T位点为例设计PCR扩增引物,按PCR扩增效率和熔解曲线进行退火温度、升温速度等条件的优化,并用此优化体系基因分型20例外周血标本,以测序验证。结果 20例标本经测序与检测结果一致。结论高分辨熔解曲线技术检测SNP是一种低成本、简便易行、常规化,高通量的基因分型方法,能用于大规模临床筛查。  相似文献   

14.
Automation in genotyping of single nucleotide polymorphisms   总被引:1,自引:0,他引:1  
Gut IG 《Human mutation》2001,17(6):475-492
Automation for genotyping of single nucleotide polymorphisms (SNPs) can be split into the automation of the sample preparation and the automation of the analysis technology. SNP genotyping methods are reviewed and solutions for their automation discussed. A panacea for SNP genotyping does not exist. Different scientific questions require adapted solutions. The choice of a technology for SNP genotyping depends on whether few different SNPs are to be genotyped in many individuals, or many different SNPs are to be genotyped in few individuals. The requirements of throughput and the ease of establishing an SNP genotyping operation are important, as well as the degree of integration. The potential and state-of-the-art of different solutions are outlined.  相似文献   

15.
Inexpensive, high-throughput genotyping methods are needed for analyzing human genetic variations. We have successfully applied the regular bioluminometric assay coupled with modified primer extension reactions (BAMPER) method to single-nucleotide polymorphism (SNP) typing as well as the allele frequency determination for various SNPs. This method includes the production of single-strand target DNA from a genome and a primer extension reaction coupled with inorganic pyrophosphate (PPi) detection by a bioluminometric assay. It is an efficient way to get accurate allele frequencies for various SNPs, while single-strand DNA preparation is labor intensive. The procedure can be simplified in the typing of SNPs. We demonstrate that a modified BAMPER method in which we need not prepare a single-strand DNA can be carried out in one tube. A PCR product is directly used as a template for SNP typing in the new BAMPER method. Generally, tremendous amounts of PPi are produced in a PCR process, as well as many residual dNTPs, and residual PCR primers remain in the PCR products, which cause a large background signal in a bioluminometric assay. Here, shrimp alkaline phosphatase (SAP) and E. coli exonuclease I were used to degrade these components prior to BAMPER detection. The specific primer extension reactions in BAMPER were carried out under thermocycle conditions. The primers were extended to produce large amounts of PPi only when their bases at 3'-termini were complementary to the target. The extension products, PPis, were converted to ATP to be analyzed using the luciferin-luciferase detection system. We successfully demonstrated that PCR products can be directly genotyped by BAMPER in one tube for SNPs with various GC contents. As all reactions can be carried out in a single tube, the method will be useful for realizing a fully automated genotyping system.  相似文献   

16.
Human genetic analysis, including population genetic studies, increasingly calls for cost-effective, high-throughput methods for the rapid screening of single nucleotide polymorphisms (SNPs) across many individuals. The modified single-base extension assay described here (arrayed SBE) is a highly accurate and robust method for SNP genotyping that can deliver genotypes at 3.5 cents each, following PCR. Specifically, amino-modified probe/target pairs were prehybridized, then co-spotted in a microarray format prior to enzymatic addition of allele-specific nucleotides. Probe/target identity was determined solely by its physical location on the array rather than by hybridization to a complementary target, resulting in a call rate of 99-100%. These innovations result in an inexpensive, accurate assay with exceptional signal-to-noise ratios, depending on the glass surface employed. Comparison of glass slides from three different manufacturers indicated that aldehyde-based Zyomyx slides provided superior performance for this assay. Arrayed SBE was applied to study the geographic distribution of three African-specific haplotypes in the human ATM gene. Four selectively neutral markers, which define the haplotypes H5, H6, and H7, were screened in a total of 415 individuals. Region-specific haplotype frequencies were consistent with patterns of human migration across and outside of Africa, suggesting a possible haplotype origin in East Africa. Arrayed SBE was a robust tool for this analysis that could be applied to any situation requiring the genotyping of a few SNPs in many individuals.  相似文献   

17.
One approach to microbial genotyping is to make use of sets of single-nucleotide polymorphisms (SNPs) in combination with binary markers. Here we report the modification and automation of a SNP-plus-binary-marker-based approach to the genotyping of Staphylococcus aureus and its application to 391 S. aureus isolates from southeast Queensland, Australia. The SNPs used were arcC210, tpi243, arcC162, gmk318, pta294, tpi36, tpi241, and pta383. These provide a Simpson's index of diversity (D) of 0.95 with respect to the S. aureus multilocus sequence typing database and define 61 genotypes and the major clonal complexes. The binary markers used were pvl, cna, sdrE, pT181, and pUB110. Two novel real-time PCR formats for interrogating these markers were compared. One of these makes use of "light upon extension" (LUX) primers and biplexed reactions, while the other is a streamlined modification of kinetic PCR using SYBR green. The latter format proved to be more robust. In addition, automated methods for DNA template preparation, reaction setup, and data analysis were developed. A single SNP-based method for ST-93 (Queensland clone) identification was also devised. The genotyping revealed the numerical importance of the "South West Pacific" and "Queensland" community-acquired methicillin-resistant S. aureus (MRSA) clones and the clonal complex 239 "Aus-1/Aus-2" hospital-associated MRSA. There was a strong association between the community-acquired clones and pvl.  相似文献   

18.
Anopheles arabiensis Patton is one of the principal vectors of malaria in sub-Saharan Africa, occupying a wide variety of ecological zones. This species is increasingly responsible for malaria transmission in Africa and is becoming the dominant vector species in some localities. Despite its growing importance, little is known about genetic polymorphisms in this species. Multiple sequences of various gene fragments from An. arabiensis isolates from Cameroon were obtained from GenBank. In total, 20 gene fragments containing single-nucleotide polymorphisms (SNPs) at moderate density were selected for direct sequencing from field collected specimens from Tanzania and Zambia. We obtained 301 SNPs in total from the 20 gene fragments, 60 of which were suitable for Illumina GoldenGate SNP genotyping. A greater number of SNPs (n = 185) was suitable for analysis using Sequenom iPLEX, an alternative high-throughput genotyping technology using mass spectrometry. An SNP was present every 59 (+/- 44.5) bases on average. Overall, An. arabiensis from Tanzania and Zambia are genetically closer (mean F(ST) = 0.075) than either is to populations in Cameroon (F(ST, TZ-CM) = 0.250, F(ST,ZA-CM) = 0.372). A fixed polymorphism between East/southern and Central Africa was identified on AGAP000574, a gene on the X chromosome. We have identified SNPs in natural populations of An. arabiensis. SNP densities in An. arabiensis were higher than Anopheles gambiae s.s., suggesting a greater challenge in the development of high-throughput SNP analysis for this species. The SNP markers provided in this study are suitable for a high-throughput genotyping analysis and can be used for population genetic studies and association mapping efforts.  相似文献   

19.
20.
Many associated single-nucleotide polymorphisms (SNPs) have been identified by association studies for numerous diseases. However, the association between a SNP and a disease can result from a causal variant in linkage disequilibrium (LD) with the considered SNP. Assuming that the true causal variant is among the genotyped SNPs, other authors demonstrated that the power to discriminate between it and other SNPs in LD is low. Here, we propose to take advantage of the information provided by family data to improve the inference on the causal variant: we exploit the linkage information provided by affected sib pairs to discriminate the causal variant from the associated SNPs. The family-based approach improves discrimination power requiring up to five times less individuals than its case–control equivalent. However, the main advantage of family design is the possibility to carry out the procedure one step further: the linkage information allows inference on causal variants, which are not genotyped but in LD with tag-SNPs displaying association, which is impossible with case–control design. By means of Bayesian methods, we estimate the LD between the observed SNPs and an unobserved causal variant, as well as the allelic odds ratio at the unobserved causal variant. The proposed procedure is illustrated on a multiple sclerosis (MS) family data set including genotypes of SNPs in IL2RA, confirming the advantage of using a family design to identify causal variants. The results of our method on this data suggest the existence of two distinct causal variants in this gene for the MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号