首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human, G1P[8] rotavirus vaccine (Rotarix?) significantly reduced severe rotavirus gastroenteritis episodes in a clinical trial in South Africa and Malawi, but vaccine efficacy was lower in Malawi (49.5%) than reported in South Africa (76.9%) and elsewhere. The aim of this study was to examine the molecular relationships of circulating wild-type rotaviruses detected during the clinical trial in Malawi to RIX4414 (the strain contained in Rotarix?) and to common human rotavirus strains. Of 88 rotavirus-positive, diarrhoeal stool specimens, 43 rotaviruses exhibited identifiable RNA migration patterns when examined by polyacrylamide gel electrophoresis. The genes encoding VP7, VP4, VP6 and NSP4 of 5 representative strains possessing genotypes G12P[6], G1P[8], G9P[8], and G8P[4] were sequenced. While their VP7 (G) and VP4 (P) genotype designations were confirmed, the VP6 (I) and NSP4 (E) genotypes were either I1E1 or I2E2, indicating that they were of human rotavirus origin. RNA-RNA hybridization using 21 culture-adapted strains showed that Malawian rotaviruses had a genomic RNA constellation common to either the Wa-like or the DS-1 like human rotaviruses. Overall, the Malawi strains appear similar in their genetic make-up to rotaviruses described in countries where vaccine efficacy is greater, suggesting that the lower efficacy in Malawi is unlikely to be explained by the diversity of circulating strains.  相似文献   

2.
《Vaccine》2018,36(47):7238-7242
BackgroundGhana introduced the monovalent rotavirus vaccine (Rotarix) into its national paediatric vaccination programme in May2012. Vaccine introduction was initiated nationwide and achieved >85% coverage within a few months. Rotavirus strain distribution pre- and post-RV vaccine introduction is reported.MethodsStool samples were collected from diarrhoeic children <5 years of age hospitalized between 2009 and 2016 at sentinel sites across Ghana and analyzed for the presence of group A rotavirus by enzyme immunoassay. Rotavirus strains were characterized by RT-PCR and sequencing.ResultsA total of 1363 rotavirus EIA-positive samples were subjected to molecular characterization. These were made up of 823 (60.4%) and 540 (39.6%) samples from the pre- and post-vaccine periods respectively. Rotavirus VP7 genotypes G1, G2 and G3, and VP4 genotypes P[6] and P[8] constituted more than 65% of circulating G and P types in the pre–vaccine period. The common strains detected were G1P[8] (20%), G3P[6] (9.2%) and G2P[6] (4.9%).During the post-vaccine period, G12, G1 and G10 genotypes, constituted more than 65% of the VP7 genotypes whilst P[6] and P[8] made up more than 75% of the VP4 genotypes. The predominant circulating strains were G12P[8] (26%), G10P[6] (10%) G3P[6] (8.1%) and G1P[8] (8.0%). We also observed the emergence of the unusual rotavirus strain G9P[4] during this period.ConclusionRotavirus G1P[8], the major strain in circulation during the pre-vaccination era, was replaced by G12P[8] as the most predominant strain after vaccine introduction. This strain replacement could be temporary and unrelated to vaccine introduction since an increase in G12 was observed in countries yet to introduce the rotavirus vaccine in West Africa. A continuous surveillance programme in the post-vaccine era is necessary for the monitoring of circulating rotavirus strains and the detection of unusual/emerging genotypes.  相似文献   

3.
Group A rotaviruses (RVA) are double stranded RNA viruses that are a significant cause of acute pediatric gastroenteritis. Beginning in 2006 and 2008, respectively, two vaccines, Rotarix™ and RotaTeq®, have been approved for use in the USA for prevention of RVA disease. The effects of possible vaccine pressure on currently circulating strains in the USA and their genome constellations are still under investigation. In this study we report 33 complete RVA genomes (ORF regions) collected in multiple cities across USA during 2006–2009, including 8 collected from children with verified receipt of 3 doses of rotavirus vaccine. The strains included 16 G1P[8], 10 G3P[8], and 7 G9P[8]. All 33 strains had a Wa like backbone with the consensus genotype constellation of G(1/3/9)-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. From maximum likelihood based phylogenetic analyses, we identified 3–7 allelic constellations grouped mostly by respective G types, suggesting a possible allelic segregation based on the VP7 gene of RVA, primarily for the G3 and G9 strains. The vaccine failure strains showed similar grouping for all genes in G9 strains and most genes of G3 strains suggesting that these constellations were necessary to evade vaccine-derived immune protection. Substitutions in the antigenic region of VP7 and VP4 genes were also observed for the vaccine failure strains which could possibly explain how these strains escape vaccine induced immune response. This study helps elucidate how RVA strains are currently evolving in the population post vaccine introduction and supports the need for continued RVA surveillance.  相似文献   

4.
This study aims to estimate the frequency of group A rotaviruses (RVA) infection with genotypes G3P[8] and G9P[8] in children that suffered from diarrheal disease (DD) between 2001 and 2011 in different Brazilian regions. In addition, the genetic diversity of G3P[8] and G9P[8] RVA strains recovered from vaccinated and non-vaccinated children was assessed. Laboratory-based RVA surveillance included 15,115 cases of DD, and RVA was detected by enzyme immune-assay and/or polyacrylamide gel electrophoresis in 3357 (22%) samples. RVA was genotyped by the semi-nested RT-PCR and among RVA-positive samples, 100 (2.9%) were G3 (63 G3P[8], 32 G3P not typed [NT], and 5 G3P[6]) and 378 (16.2%) were G9 (318 G9P[8], 59 G9P[NT], and 1 G9P[6]). From the G3 and G9 positive samples, 16 and 12, respectively, were obtained from children aged 4–48 months vaccinated with the monovalent vaccine (Rotarix®, RV1). Phylogenetic analyses of the VP7 and VP81 encoding genes were performed for 26 G3P[8] and 48 G9P[8] strains. VP81 phylogenetic analysis revealed that all strains analyzed belonged to P[8] lineage III, whereas RV1 belongs to P[8]-I lineage. VP7 analysis revealed that all G3 and G9 strains belonged to G3-lineage III and G9-lineage III. The comparison of the VP7 and VP81 antigenic epitopes regions of Brazilian strains with RV1 strain revealed several amino acid changes. However, no particular differences among Brazilian strains detected before and after vaccine introduction were observed, or among strains detected from vaccinated and non-vaccinated children. Complete genome characterization of four G3P[8] and seven G9P[8] strains revealed a typical conserved human Wa-like genomic constellation. Changes in the genetic diversity of G3P[8] and G9P[8] RVA detected from 2001 to 2011 in Brazil seemed not be related to RV1 introduction in Brazil.  相似文献   

5.
With the availability of rotavirus vaccines routine strain surveillance has been launched or continued in many countries worldwide. In this study relevant information is provided from Hungary in order to extend knowledge about circulating rotavirus strains. Direct sequencing of the RT-PCR products obtained by VP7 and VP4 genes specific primer sets was utilized as routine laboratory method. In addition we explored the advantage of random primed RT-PCR and semiconductor sequencing of the whole genome of selected strains. During the study year, 2012, we identified an increase in the prevalence of G9P[8] strains across the country. This genotype combination predominated in seven out of nine study sites (detection rates, 45–83%). In addition to G9P[8]s, epidemiologically major strains included genotypes G1P[8] (34.2%), G2P[4] (13.5%), and G4P[8] (7.4%), whereas unusual and rare strains were G3P[8] (1%), G2P[8] (0.5%), G1P[4] (0.2%), G3P[4] (0.2%), and G3P[9] (0.2%). Whole genome analysis of 125 Hungarian human rotaviruses identified nine major genotype constellations and uncovered both intra- and intergenogroup reassortment events in circulating strains. Intergenogroup reassortment resulted in several unusual genotype constellations, including mono-reassortant G1P[8] and G9P[8] strains whose genotype 1 (Wa-like) backbone gene constellations contained DS1-like NSP2 and VP3 genes, respectively, as well as, a putative bovine–feline G3P[9] reassortant strain. The conserved genomic constellations of epidemiologically major genotypes suggested the clonal spread of the re-emerging G9P[8] genotype and several co-circulating strains (e.g., G1P[8] and G2P[4]) in many study sites during 2012. Of interest, medically important G2P[4] strains carried bovine-like VP1 and VP6 genes in their genotype constellation. No evidence for vaccine associated selection, or, interaction between wild-type and vaccine strains was obtained. In conclusion, this study reports the reemergence of G9P[8] strains across the country and indicates the robustness of whole genome sequencing in routine rotavirus strain surveillance.  相似文献   

6.

Background

Group A rotavirus is the leading cause of acute gastroenteritis in children worldwide. We investigated G and P genotypes of group A rotavirus strains isolated from patients during 2013 and investigated which genotypes were identified from vaccinated patients.

Methods

From January to December 2013, 2235 fecal specimens were tested for rotavirus antigen, of which 374 specimens (16.7%) showed positive results. Strains from 288 rotavirus-positive specimens were genotyped using PCR and sequencing, and individual patients’ corresponding vaccine histories were investigated through the Korean Center for Disease Control website.

Results

G2 (22.6%) and P[4] (24.0%) were the most frequently identified G and P genotypes, respectively; accordingly, G2P[4] (19.8%) was the most prevalent G/P genotype observed in this period. G4P[6] (10.1%) was the second most prevalent G/P genotype and was mostly detected in neonates. Other genotypes, G1P[8], G9P[8], G1P[6], and G3P[6], were also detected. Of 288 rotavirus-positive specimens, 48 specimens were obtained from previously vaccinated patients. G2P[4] was also the genotype most frequently isolated from vaccinated patients. VP7 epitope analysis of G1P[8] and G2P[4] strains showed at least one amino acid differences in comparison with Rotarix and RotaTeq vaccine strains. The genotypic distribution of rotavirus strains in Korea has been shown temporal and geographical differences.

Conclusion

This study showed that G2P[4] was the genotype most frequently isolated from both vaccinated and unvaccinated patients in Korea during 2013. However, it is unclear whether the change of predominant genotype is due to the effect of vaccination or due to natural variation.  相似文献   

7.
《Vaccine》2018,36(43):6393-6400
Group A rotavirus causes a substantial proportion of diarrhoea related deaths worldwide among children under five years. We analyzed rotavirus prevalence and genotypes distribution among patients admitted with diarrhoea at icddr,b hospital in Dhaka during 2012–16. Stool specimens (n = 1110) were collected from diarrhoea patients and tested for RVA antigen using enzyme immunoassay. Rotavirus positive samples were G (VP7) and P (VP4) genotyped by RT-PCR and sanger sequencing. Data on clinical manifestations were collected from icddr,b hospital surveillance system. A total of 351 (32%) patients were positive for rotavirus antigen, about half of those were children under two years old. During the study period, G1P[8] (27%) was the most prevalent strain, followed by G12P[8] (15%) and G9[P4] (9%). Mixed G or P genotypes were identified in a substantial proportion (23%) with few strains of rare combinations such as G1P[4], G1P[6], G2P[6], G2P[8], G9P[6]. The genotypic fluctuation was noteworthy; G12P[8] was the major strain in 2012–14 but sharply decreased in 2015–16 when G1P[8] became the most common strain. G3P[8] re-emerged (17%) in 2016 after 11 years. Since the Government of Bangladesh has planned to include rotavirus vaccine in national immunization programme from 2018, our data will provide baseline information on rotavirus genotypes in the pre-vaccination era to observe the selection pressure on genotypes in the post vaccination epoch.  相似文献   

8.
To determine the frequency and genotypes of rotavirus strains, samples were collected from children hospitalized with acute diarrhea at the Regional Institute of Medical Sciences, Manipur. The globally common genotypes G1P[8] and G2P[4] constituted 58% of the total positive strains, while 3% and 8% strains were emerging genotypes, G9P[6] and G12P[6]. This is the first report of genotype G12 in Manipur. The G12 strains clustered with lineage III strains and had >98% identity with corresponding rotaviruses from Bangladesh, Thailand and the USA. Other uncommon G–P combinations including G4P[4], G4P[6], G10P[6] and G9P[19], along with a few strains that could not be typed were also found. The VP7 genes of G4 and G10 strains clustered with porcine and bovine strains, indicating possible zoonotic transmission. High frequency (36–62%) of rotavirus infection and predominance of G1P[8] and G2P[4] among children with acute diarrhea emphasized the need for implementation of currently available vaccines to reduce the burden of rotavirus induced diarrhea in India.  相似文献   

9.
Comprehensive reviews of pre licensure rotavirus strain prevalence data indicated the global importance of six rotavirus genotypes, G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]. Since 2006, two vaccines, the monovalent Rotarix (RV1) and the pentavalent RotaTeq (RV5) have been available in over 100 countries worldwide. Of these, 60 countries have already introduced either RV1 or RV5 in their national immunization programs. Post licensure vaccine effectiveness is closely monitored worldwide. This review aimed at describing the global changes in rotavirus strain prevalence over time. The genotype distribution of the nearly 47,000 strains that were characterized during 2007–2012 showed similar picture to that seen in the preceding period. An intriguing finding was the transient predominance of heterotypic strains, mainly in countries using RV1. Unusual and novel antigen combinations continue to emerge, including some causing local outbreaks, even in vaccinated populations. In addition, vaccine strains have been found in both vaccinated infants and their contacts and there is evidence for genetic interaction between vaccine and wild-type strains. In conclusion, the post-vaccine introduction strain prevalence data do not show any consistent pattern indicative of selection pressure resulting from vaccine use, although the increased detection rate of heterotypic G2P[4] strains in some countries following RV1 vaccination is unusual and this issue requires further monitoring.  相似文献   

10.
11.
Group A rotaviruses (RVA) are the leading cause of severe gastroenteritis in infants and young children worldwide. Due to their epidemiological complexity, it is important to compare the genetic characteristics of vaccine strains with the RVA strains circulating before the introduction of the vaccine in the Tunisian immunization program. In the present study, the nucleotide sequences of VP7 and VP81 (n = 31), the main targets for neutralizing antibodies, were determined. Comparison of antigenic epitopes of 11 G1P[8], 12 G2P[4], 4 G3P[8], 2 G4P[8], 1 G6P[9] and 1 G12P[8] RVA strains circulating in Tunisia from 2006 to 2011 with the RVA strains present in licensed vaccines showed that multiple amino acid differences existed in or near putative neutralizing domains of VP7 and VP81. The Tunisian G3 RVA strains were found to possess a potential extra N-linked glycosylation site. The Tunisian G4 RVA were closely related to the G4 vaccine strain in RotaTeq, belonging to the same lineage, but the alignment of their VP7 amino acids revealed an insertion of an asparagine residue at position 76 which is close to a glycosylation site (aa 69–71). Despite several differences detected between Tunisian and vaccine strains, which may affect binding of neutralizing antibodies, both vaccines are known to protect against the vast majority of the circulating genotypes, providing an indication of the high vaccine efficiency that can be expected in a future rotavirus immunization program.  相似文献   

12.
Group A rotaviruses (RV-A) are the leading cause of viral gastroenteritis in children worldwide and genotype G9P[8] is one of the five most common genotypes detected in humans. In order to gain insight into the degree of genetic variability of G9P[8] strains circulating in Cameroon, stool samples were collected during the 1999–2000 rotavirus season in two different geographic regions in Cameroon (Southwest and Western Regions). By RT-PCR, 15 G9P[8] strains (15/89 = 16.8%) were identified whose genomic configurations was subsequently determined by complete or partial gene sequencing. In general, all Cameroonian G9 strains clustered into current globally-spread sublineages of the VP7 gene and displayed 86.6–100% nucleotide identity amongst themselves and 81.2–99.5% nucleotide identity with global G9 strains. The full genome classification of all Cameroonian strains was G9-P[8]-I1–R1–C1–M1–A1–N1–T1–E1–H1 but phylogenetic analysis of each gene revealed that the strains were spread across 4 or more distinct lineages. An unusual strain, RVA/Human-wt/CMR/6788/1999/G9P[8], which shared the genomic constellation of other Cameroonian G9P[8] strains, contained a novel G9 subtype which diverged significantly (18.8% nucleotide and 19% amino acid distance) from previously described G9 strains. Nucleotide and amino acid alignments revealed that the 3′ end of this gene is highly divergent from other G9 VP7 genes suggesting that it arose through extensive accumulation of point mutations. The results of this study demonstrate that diverse G9 strains circulated in Cameroon during 1999–2000.  相似文献   

13.
After a sporadic detection in 1990s, G3P[8] rotaviruses emerged as a predominant genotype during recent years in many areas worldwide, including parts of Italy. The present study describes the molecular epidemiology and evolution of G3P[8] rotaviruses detected in Italian children with gastroenteritis during two survey periods (2004–2005 and 2008–2013). Whole genome of selected G3P[8] strains was determined and antigenic differences between these strains and rotavirus vaccine strains were analyzed. Among 819 (271 in 2004–2005 and 548 in 2008–2013) rotaviruses genotyped during the survey periods, the number of G3P[8] rotavirus markedly varied over the years (0/83 in 2004, 30/188 in 2005 and 0/96 in 2008, 6/88 in 2009, 4/97 in 2010, 0/83 in 2011, 9/82 in 2012, 56/102 cases in 2013). The genotypes of the 11 gene segments of 15 selected strains were assigned to G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1; thus all strains belonged to the Wa genogroup. Phylogenetic analysis of the Italian G3P[8] strains showed a peculiar picture of segregation with a 2012 lineage for VP1-VP3, NSP1, NSP2, NSP4 and NSP5 genes and a 2013 lineage for VP6, NSP1 and NSP3 genes, with a 1.3–20.2% nucleotide difference from the oldest Italian G3P[8] strains. The genetic variability of the Italian G3P[8] observed in comparison with sequences of rotaviruses available in GenBank suggested a process of selection acting on a global scale, rather than the emergence of local strains, as several lineages were already circulating globally. Compared with the vaccine strains, the Italian G3P[8] rotaviruses segregated in different lineages (5–5.3% and 7.2–11.4% nucleotide differences in the VP7 and VP4, respectively) with some mismatches in the putative neutralizing epitopes of VP7 and VP4 antigens. The accumulation of point mutations and amino acid differences between vaccine strains and currently circulating rotaviruses might generate, over the years, vaccine-resistant variants.  相似文献   

14.
15.
Rotavirus vaccination started in Slovenia in 2007 on a voluntarily basis. The vaccination rate is relatively low (up to 27%) and no increasing trend is observed. We present rotavirus genotype distribution among children hospitalized for rotavirus gastroenteritis in Slovenia. Eight consecutive rotavirus seasons were followed, from 2005/06 to 2012/13, and 113 strains of the most common rotavirus genotypes were randomly selected for molecular characterization of rotavirus VP7 and VP4 (VP81) genome segments. During the vaccine introduction period, from 2007 to 2013, rotavirus genotype prevalences changed, with G1P[8] decreasing from 74.1% to 8.7% between 2007/08 and 2010/11 seasons, replaced by G4P[8] and G2P[4], with up to 52.0% prevalence. Comparable analysis of VP7 and VP81 genome fragments within G1P[8] genotype lineages revealed considerable differences for rotavirus strains circulating before and during the vaccination period. The G1P[8] rotavirus strains from the pre-vaccination period clustered in a phylogenetic tree within Rotarix®-like VP7 and VP81 lineages. However, since 2007, the majority of G1P[8] strains have shifted to distant genetic lineages with lower nucleotide (88.1–94.0% for VP7 and 86.6–91.1% for VP81) and amino acid (93.8–95.2% for VP7 and 85.3–94.6% for VP81) identities to the vaccine Rotarix® strain. This change also resulted in a different deduced amino acid profile at the major VP7 and VP81 antigenic epitopes.  相似文献   

16.
Rotavirus (RV) vaccination programs have been established in several countries using the human-attenuated G1P[8] monovalent vaccine Rotarix (GlaxoSmithKline) and/or the human-bovine reassortant G1, G2, G3, G4, P[8] pentavalent vaccine RotaTeq (Merck). The efficacy of both vaccines is high (~90%) in developed countries, but can be remarkably lower in developing countries. For example, a vaccine efficacy against severe diarrhea of only 58% was observed in a 2007-2009 Nicaraguan study using RotaTeq. To gain insight into the significant level of vaccine failure in this country, we sequenced the genomes of RVs recovered from vaccinated Nicaraguan children with gastroenteritis. The results revealed that all had genotype specificities typical for human RVs (11 G1P[8], 1 G3P[8]) and that the sequences and antigenic epitopes of the outer capsid proteins (VP4 and VP7) of these viruses were similar to those reported for RVs isolated elsewhere in the world. As expected, nine of the G1P[8] viruses and the single G3P[8] virus had genome constellations typical of human G1P[8] and G3P[8] RVs: G1/3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. However, two of the G1P[8] viruses had atypical constellations, G1-P[8]-I1-R1-C1-M1-A1-N2-T1-E1-H1, due to the presence of a genotype-2 NSP2 (N2) gene. The sequence of the N2 NSP2 gene was identical to the bovine N2 NSP2 gene of RotaTeq, indicating that the two atypical viruses originated via reassortment of human G1P[8] RVs with RotaTeq viruses. Together, our data suggest that the high level of vaccine failure in Nicaraguan is probably not due to antigenic drift of commonly circulating virus strains nor the emergence of new antigenetically distinct virus strains. Furthermore, our data suggest that the widespread use of the RotaTeq vaccine has led to the introduction of vaccine genes into circulating human RVs.  相似文献   

17.
IntroductionIn 2015, Argentina included Rotarix™ monovalent vaccine for universal administration and it showed a sharp decline in all-cause and rotavirus-confirmed cases as well as an immediate predominance of the G2P[4] genotype. The aim of this study was to analyze the impact of rotavirus vaccination on laboratory-confirmed cases and genotype distribution in Argentina following its introduction.Material and methodsPrevalence and seasonality of laboratory-confirmed rotavirus cases data were assessed. Analyses of circulating genotypes were performed by conventional binary characterization (G and P typing). Phylogenetic study of VP7 gene was performed from emergent unusual strains.ResultsDuring 2017–2018, 1183 rotavirus cases (13.2%) were detected, and prevalence was uniform among different age subgroups. Weekly distribution showed a raise of confirmed cases around late July and early August. In 2017 the most frequently detected genotypes were G2P[4] and G3P[8]. However, in 2018 G12P[8] genotype increased and it was detected at a high rate. Noteworthy, the detection of uncommon G9P[4] and G8P[8] strains (bearing DS-1-like genetic backbones) was observed at moderate rates.DiscussionFollowing four years of universal vaccination, the prevalence of rotavirus remained low in children under 5 years of age with a shift of the seasonal peak in early spring. The emergence of uncommon genotypes was due to introduction of new strains rather than to reassortment of local strains. Continuous monitoring of rotavirus burden of disease and genotype distribution provides useful evidence to evaluate existing immunization strategies and to contribute in the development of new vaccines as well.  相似文献   

18.
Rotavirus is the main cause of acute viral gastroenteritis in infants and young children worldwide. Surveillance of group A rotavirus has been conducted in Chiang Mai, Thailand since 1987 up to 2004 and those studies revealed that group A rotavirus was responsible for about 20-61% of diarrheal diseases in hospitalized cases. In this study, we reported the continuing surveillance of group A rotavirus in 2005 and found that group A rotavirus was detected in 43 out of 147 (29.3%) stool samples. Five different G and P genotype combinations were detected, G1P[8] (27 strains), G2P[4] (12 strains), G9P[8] (2 strains), G3P[8] (1 strain), and G3P[10] (1 strain). In addition, analysis of their genotypic linkages of G (VP7), P (VP4), I (VP6), E (NSP4), and H (NSP5) genotypes demonstrated that the rotaviruses circulating in Chiang Mai, Thailand carried 3 unique linkage patterns. The G1P[8], G3P[8], and G9P[8] strains carried their VP6, NSP4, NSP5 genotypes of I1, E1, H1, respectively. The G2P[4] strains were linked with I2, E2, H2 genotypes, while an uncommon G3P[10] genotype carried unique genotypes of I8, E3 and H6. These findings provide the overall picture of genotypic linkage data of rotavirus strains circulating in Chiang Mai, Thailand.  相似文献   

19.
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis.We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012.Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed.These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines.  相似文献   

20.
Human group A rotaviruses (RVAs) possess a large genetic diversity and new RVA strains and G/P genotype combinations are been identified frequently. Only a few studies reporting the distribution and co-circulation of RVA G and P genotypes are available for Pakistan. This hospital based study showed a RVA prevalence rate of 23.8%, which is similar to RVA detection rates estimated in other Eastern Mediterranean countries. During 2010, the following RVA strains were found to co-circulate: G1P[8] and G2P[4] (both 24.3%), G1P[6] (12.1%), G9P[8] (10.8%), G9P[6] (5.4%), G12P[6] (6.7%), G6P[1] (2.7%) and mixed infections (6.7%). Sequence analyses of selected G1, G2, G9 and G12 RVA strains revealed a close evolutionary relationship with typical human RVA strains. Sequence identities among the Pakistani VP7 RVA genes encoding G1, G2, G9 and G12 ranged between 91.5–98.7%, 99.6–98.9%, 97.7–99.5% and 99.2–99.9%, respectively. Analysis of the VP4 genes revealed co-prevalence of distinct lineages of the P[8] genotype. P[6] and P[4] showed a close relationship with typical human RVA strains detected in several Asian countries. The two G6P[1] RVA strains were closely related to typical bovine RVA strains, suggesting one or multiple interspecies transmission events. Our data provide important baseline data on the burden of RVA disease and genotype distribution in Rawalpindi, Pakistan, which is important with respect to vaccine introduction in national immunization programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号