首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundIncreased hip adduction and internal rotation can lead to excessive patellofemoral joint stress and contribute to patellofemoral pain development. The gluteus maximus acts as a hip extensor, abductor, and external rotator. Improving hip extensor use by increasing one’s forward trunk lean in the sagittal plane may improve frontal and transverse plane hip kinematics during stair ascent.Research questionDoes increasing forward trunk lean during stair ascent affect peak hip adduction and internal rotation?MethodsTwenty asymptomatic females performed five stair ascent trials (96 steps/min) on an instrumented stair using their self-selected and forward trunk lean postures. Three-dimensional kinematics (200 Hz) and kinetics (2000 Hz) were recorded during the stance phase of stair ascent. Biomechanical dependent variables were calculated during the stance phase of stair ascent and included peak forward trunk lean, hip flexion, hip adduction, hip internal rotation angles, and the average hip extensor moment.ResultsDuring the forward trunk lean condition, decreases were observed for peak hip adduction (MD = 2.8˚; 95% CI = 1.9, 3.8; p < 0.001) and peak hip internal rotation (MD = 1.1˚; 95% CI = 0.1, 2.2; p = 0.04). In contrast, increases were observed during the forward trunk lean condition for the peak forward trunk lean angle (MD = −34.7˚; 95% CI = −39.1, −30.3; p < 0.001), average hip extensor moment (MD = −0.5 N·m/kg; 95% CI = −0.5, −0.4; p < 0.001), and stance time duration (MD = −0.02 s; 95% CI = −0.04, 0.00; p = 0.017).SignificanceIncreasing forward trunk lean and hip extensor use during stair ascent decreased peak hip adduction and internal rotation in asymptomatic females. Future studies should examine the effects of increasing forward trunk lean on hip kinematics, self-reported pain, and function in individuals with patellofemoral pain.  相似文献   

2.
BackgoundDynamic valgus has been the focus of many studies to identify its association to an increased risk of running-related injuries. However, it is not known which physical and biomechanical variables are associated with this movement dysfunction. Research question: This study aimed to test the correlation between strength, flexibility and biomechanical variables and dynamic valgus in female runners.MethodsTwenty-nine healthy females ran on a treadmill at 2.92 m/s and performed strength, range of motion and endurance tests. Pelvic, hip and ankle kinematics were measured with a 3D motion analysis system. Six multiple linear regression models were used to identify the ability of physical and biomechanical variables to predict excursion and peak of contralateral pelvic drop, hip adduction and internal rotation.ResultsContralateral pelvic drop and hip adduction were positively correlated to ankle eversion and step cadence. Hip internal rotation had a negative correlation with ankle eversion. Despite significance, predictor variables explained less than 30% of dynamic valgus variance during running. No interest variable had significant correlation with the hip strength and hip and ankle passive range of motion.SignificanceThe results showed that distal joint kinematics and spatiotemporal variables should be considered during biomechanical running analysis to identify their possible relationship with joint overload caused by dynamic valgus. Caution should be taken when linking hip disorders during running to posterolateral hip strength and stiffness, core endurance, and ankle dorsiflexion range of motion since no correlation occurred amongstthese variables in this sample of female runners.  相似文献   

3.
BackgroundLateral hip pain during single leg loading, and hip abductor muscle weakness, are associated with gluteal tendinopathy, but it has not been shown how or whether kinematics in single leg stance differ in those with gluteal tendinopathy.PurposeTo compare kinematics in preparation for, and during, single leg stance between individuals with and without gluteal tendinopathy, and the effect of hip abductor muscle strength on kinematics.MethodsTwenty individuals with gluteal tendinopathy and 20 age-matched pain-free controls underwent three-dimensional kinematic analysis of single leg stance and maximum isometric hip abductor strength testing. Maximum values of hip adduction, pelvic obliquity (contralateral pelvis rise/drop), lateral pelvic translation (ipsilateral/contralateral shift) and ipsilateral trunk lean during preparation for leg lift and average values in steady single leg stance, were compared between groups using an analysis of covariance, with and without anthropometric characteristics and strength as covariates.ResultsIndividuals with gluteal tendinopathy demonstrated greater hip adduction (standardized mean difference (SMD) = 0.70, P = 0.04) and ipsilateral pelvic shift (SMD = 1.1, P = 0.002) in preparation for leg lift, and greater hip adduction (SMD = 1.2, P = 0.002) and less contralateral pelvic rise (SMD = 0.86, P = 0.02) in steady single leg stance than controls. When including strength as a covariate, only between-group differences in lateral pelvic shift persisted (SMD = 1.7, P = 0.01).ConclusionIndividuals with gluteal tendinopathy use different frontal plane kinematics of the hip and pelvis during single leg stance than pain-free controls. This finding is not influenced by pelvic dimension or the potentially modifiable factor of body mass index, but is by hip abductor muscle weakness.  相似文献   

4.
ObjectivesThis study aimed to investigate differences in stance phase pelvic and hip running kinematics based on maturation and sex among healthy youth distance runners.DesignCross-Sectional.Methods133 uninjured youth distance runners (M = 60, F = 73; age = 13.5 ± 2.7 years) underwent a three-dimensional running analysis on a treadmill at a self-selected speed (2.8 ± 0.6 m·s?1). Participants were stratified as pre-pubertal, mid-pubertal, or post-pubertal according to the modified Pubertal Maturational Observation Scale. Stance phase pelvis and hip range of motion (RoM) and peak joint positions were extracted. Two-way ANCOVAs (sex, maturation; covariate of running velocity) were used with Bonferroni-Holm method to control for multiple comparisons with a target alpha level of 0.05.ResultsA two-way interaction between sex and maturation was detected (p = 0.009) for frontal plane pelvic obliquity RoM. Post-hoc analysis identified a maturation main effect only among females (p?0.008). Pelvic obliquity RoM was significantly greater among post-pubertal (p = 0.001) compared to pre-pubertal females. Significant main effects of sex (p = 0.02), and maturation (p = 0.01) were found for hip adduction RoM. Post-hoc analysis indicated a significant increase in hip adduction RoM from pre-pubertal to post-pubertal female runners (p = 0.001). A significant main effect of sex was found for peak hip adduction angle (p = 0.001) with female runners exhibiting greater maximum peak hip adduction compared to males.ConclusionsMaturation influences pelvic and hip kinematics greater in female than male runners. Sex differences became more pronounced during later stages of puberty. These differences may correspond to an increased risk for running-related injuries in female runners compared to male runners.  相似文献   

5.
ObjectivesTo investigate validity and between-session reliability of frontal plane trunk, hip, and knee kinematics during three functional tasks in females with patellofemoral pain (PFP).DesignObservational.SettingResearch Laboratory.Participants20 females with PFP (22.7 ± 3.2 years, 69.9 ± 9.2 kg, 167.7 ± 9.6 cm).Main outcome measuresTrunk, hip, and knee frontal plane peak angles during the single leg squat (SLS), drop vertical jump (DVJ), and single leg hop (SLH) kinematics were evaluated using 2-dimensional (2D) and 3-dimensional (3D) motion capture. Participants returned to the lab one week later and competed a second 2D analysis of the functional tasks. Concurrent validity was assessed by evaluating relationship between 2D and 3D frontal plane kinematics with Pearson correlations. Between-session reliability was assessed by evaluating 2D kinematics with intraclass correlation coefficients by a single assessor.ResultsModerate to strong correlations (r = 0.55–0.76, p < .05) were found for frontal plane hip kinematics during all three tasks and the trunk during the SLH. Frontal plane kinematics demonstrated good to excellent test-retest reliability for each of the three tasks, (ICC (2,1) = 0.70–0.90).Conclusion2D hip joint angles during the three functional tasks were the only valid frontal plane angles. Trunk, hip, and knee 2D frontal plane kinematics ranged between good-excellent reliability.  相似文献   

6.
ObjectiveTo determine if there is a relationship among isometric hip strength, hip kinematics, and peak gluteal muscle forces in cross-country runners during running.DesignCross Sectional.SettingUniversity Biomechanics Laboratory.ParticipantsForty-six NCAA Division III collegiate cross-country runners (18 males, 28 females).Main outcome measuresPearson correlation coefficients were used to describe relationships among isometric hip strength, hip kinematics, and peak gluteal muscle forces during the stance phase of running. Strength of correlations were interpreted as little to no relationship (r < 0.25), fair relationship (0.25 ≤ r < 0.5), moderate relationship (0.5 ≤ r < 0.75), and strong relationship (r ≥ 0.75). Correlations were considered significant if p < 0.05.ResultsLittle to no relationships were found among isometric hip strength and gluteal muscle forces during running (r < 0.25). A fair relationship was present between prone external rotation isometric hip strength and peak hip adduction (0.25 < r < 0.5). Little to no relationship was shown between gluteus medius force and hip internal rotation. Moderate relationships were present among peak gluteus medius and minimus muscle forces and peak hip adduction (0.5 < r < 0.75).ConclusionIsometric hip strength does not appear to be related to gluteal muscle forces and hip kinematics during the stance phase of running while gluteal muscle force was moderately related to hip adduction. Factors other than strength may be related to muscle force production and hip kinematics during running.  相似文献   

7.
BackgroundRecent reports have shown that the daily cumulative moment in the frontal plane (i.e., product of hip moment impulse in the frontal plane during the stance phase and mean steps per day) is a risk factor for hip osteoarthritis. This study aimed to clarify the effect of contralateral cane use on hip moment impulse in the frontal plane of the stance limb.MethodsThis study included 15 healthy subjects who walked under four experimental conditions: (1) without a cane and (2–4) contralateral cane use with 10%, 15%, and 20% body weight support (BWS), respectively. To maintain the same walking speed in all conditions, the cadence was set to 80 steps/min, and the step length was fixed. The hip moment impulses in the frontal plane (i.e., area under the hip ab-adduction moment waveform) and peak hip adduction moments in all conditions were calculated.ResultsContralateral cane use significantly decreased the hip moment impulse in the frontal plane and peak hip adduction moment compared to non-cane use. Moreover, the hip moment impulse in the frontal plane and peak hip adduction moment decreased significantly with increased cane BWS. There were no significant differences in walking speed, cadence, and step length between the four conditions.ConclusionContralateral cane use decreases the hip moment impulse in the frontal plane and peak hip adduction moment in the stance limb. These findings may help clarify how to delay the progression of hip osteoarthritis.  相似文献   

8.
BackgroundBilateral internal rotation gait is a common gait abnormality in children with bilateral cerebral palsy, but still not fully understood.Research questionThe aim of this clinical study was to analyze the effects of artificially induced bilateral internal rotation gait on kinematics and kinetics. Our hypothesis was, that the internal rotation gait defined as increased dynamic internal hip rotation itself causes significant alterations in gait kinematics and kinetics.Methods30 typically developing children with a mean age of 12 (SD 3) years (range 8 – 16) performed three-dimensional gait analysis in two different conditions: with unaffected gait and with artificially induced bilateral internal rotation gait with two rotation bandages worn in order to internally rotate the hips. Kinematic and kinetic changes between these two conditions were calculated and compared using a mixed linear model with “gait condition” as fixed effect and both “limb” and “patient” as random effects.ResultsThe rotation bandages induced a significant increase in internal hip rotation and foot progression angle towards internal without affecting pelvic rotation. The peak hip internal rotator moment during loading response and the peak hip external rotator moment during the first half of stance phase increased significantly and the peak hip internal rotator moment during the second half of stance phase decreased significantly. Anterior pelvic tilt, hip flexion, knee flexion and ankle dorsiflexion increased significantly. The first peak of the frontal hip moment decreased, and the second increased significantly. The second peak of the frontal knee moment decreased significantly, while the first didn’t change significantly.SignificanceThe data suggest, that the bilaterally increased dynamic internal hip rotation itself has a relevant impact on frontal hip moments. The increased anterior pelvic tilt, hip and knee flexion may be either induced by the pull of the rotation bandage or a secondary gait deviation.  相似文献   

9.
BackgroundFatigue is an essential component of distance running. Still, little is known about the effects of running induced fatigue on three-dimensional lower extremity joint movement, in particular in the frontal and transverse planes of motion.Research questionHow are non-sagittal plane lower extremity joint kinematics of runners altered during a 10 km treadmill run with near-maximum effort?MethodsIn a cross-sectional study design, we captured three-dimensional kinematics and kinetics at regular intervals throughout a 10 km treadmill run in 24 male participants (subdivided into a competitive and recreational runner group) at a speed corresponding to 105 % of their season-best time. We calculated average and peak joint angles at the hip, knee and ankle during the stance phase.ResultsWe observed peak deviations of 3.5°, 3° and 5° for the hip (more adduction), knee (more abduction) and ankle (more eversion) in the frontal plane when comparing the final (10 km) with the first (0 km) measurement. At the end of the run peak knee internal rotation angles increased significantly (up to 3° difference). Running with a more abducted knee joint and with a higher demand for hip abductor muscles in the unfatigued state was related to greater fatigue-induced changes of joint kinematics at the knee and hip.SignificanceThe fatigue related change of non-sagittal joint kinematics needs to be considered when addressing risk factors for running-related injuries, when designing shoe interventions as well as strengthening and gait retraining protocols for runners. We speculate that strengthening ankle invertors and hip abductors and monitoring the dynamic leg axis during running appear to be promising in preventing fatigue induced alterations of non-sagittal joint kinematics.  相似文献   

10.
BackgroundIt is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements.Research questionHow do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane?MethodsSeven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed.ResultsIn the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC.SignificanceThe results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.  相似文献   

11.
BackgroundAge related progression needs to be considered when assessing current status and treatment outcomes in cerebral palsy (CP).Research questionWhat is the association between age, gait kinematics and clinical measures in children with bilateral CP?MethodA retrospective database review was conducted. Subjects with bilateral CP with baseline and follow-up 3D gait analyses, but no history of intervening surgery were identified. Clinical and summary kinematic measures were examined for age related change using repeat measures correlation. Interactions with GMFCS classification and whether surgery was recommended were examined using robust linear regression. Timeseries kinematic data for baseline and most recent follow-up analyses were analysed using statistical parametric mapping.Results180 subjects were included. 75% of participants were classified as GMFCS I or II at baseline. Mean time to follow-up was 4.89 (2.8) years (range 1–15.9 years) with a mean age of 6.4 (2.4) at baseline and 11.3 (3.4) at final follow-up. 15.5% of subjects demonstrated an improvement in GMFCS classification while GDI remained stable. Age related progression was noted across many clinical measures with moderate correlations (r ≥ 0.5) noted for reduced popliteal angle, long lever hip abduction and internal hip rotation range. In gait, there was reduced hip extension in late stance (p < 0.001), increased knee flexion in mid-stance (p < 0.001), reduced peak knee flexion in swing (p < 0.001) and increased ankle dorsiflexion in stance (p < 0.001). In the coronal plane, there was reduced hip abduction in swing (p < 0.001). In the transverse plane, increased external rotation of the knee (p < 0.001) and reduced external ankle rotation were noted in early stance and through swing (p < 0.001). There were no changes in foot progression or hip rotation.SignificanceIndividuals with CP show age related progression of clinical and kinematic variables. Treatment can only be deemed successful if outcomes exceed or match these age-related changes.  相似文献   

12.
ObjectivesWhile lateral and forward step-down tasks are commonly used, they may have different kinematic and performance demands that could influence clinical assessment and rehabilitation. Therefore, the purpose of this study was to compare 3D lower extremity kinematics and 2D quality of movement between the tasks.DesignCross-sectional comparative study.SettingResearch laboratory.ParticipantsThirty healthy adults (18 females, age = 23.2 ± 1.4 years, BMI = 23.9 ± 2.2 kg/m2).Main outcome measuresParticipants underwent 3D and 2D motion analysis. 3D variables were peak hip, knee, and ankle angles. Dichotomous clinical criteria were used for 2D assessment. An alpha level of 0.05 was used for statistical analyses.ResultsIn the sagittal plane, the forward step-down averaged 7° more knee flexion (p < 0.001, d = 2.30) and 4° more ankle dorsiflexion (p < 0.001, d = 1.72), but 2° less hip flexion (p = 0.001, d = 0.64). In the frontal plane, forward step-downs averaged 1° more hip adduction (p = 0.006, d = 0.54) and 1° more ankle eversion (p < 0.001, d = 1.04). The forward step-down elicited 2D movement faults more often (p = 0.003).ConclusionsThe increased knee flexion and ankle dorsiflexion demands of the forward step-down were accompanied by increases in frontal plane aberrations. The forward step-down may be more challenging for individuals with reduced tolerance to loaded knee flexion and/or limited ankle mobility.  相似文献   

13.
ObjectivesTo examine test-retest reliability of two-dimensional measured frontal and sagittal plane kinematics during running, and to determine how many steps to include to reach and maintain a stable mean.DesignReliability study.SettingResearch laboratory.ParticipantsTwenty-one recreational runners.Main outcome measuresLateral trunk position, contralateral pelvic drop, femoral adduction, hip adduction, knee flexion and ankle dorsiflexion during midstance, and foot and tibia inclination at initial contact were measured with two-dimensional video analysis during running for 10 consecutive steps for both legs. All participants were tested twice one week apart. A sequential estimation method was used to determine the number of steps needed to reach a stable mean. Intraclass correlation coefficients (ICC) and smallest detectable differences (SDD) were calculated.ResultsThe minimal number of steps was 6.3 ± 0.3. Lateral trunk position, femoral adduction and foot inclination showed excellent reliability (ICC 0.90–0.99; SDD 1.3°–2.3°). Tibia inclination and ankle dorsiflexion showed good to excellent reliability (ICC 0.73–0.92; SDD 2.2°–4.8°). Hip adduction and knee flexion showed good reliability (ICC 0.82–0.89; SDD 2.3°–3.8°). Contralateral pelvic drop showed moderate to good reliability (ICC 0.59–0.77; SDD 2.7°–2.8°).ConclusionTwo-dimensional video analysis is reliable to assess running kinematics on different days. The mean of at least 7 steps should be included.  相似文献   

14.
15.
ObjectivesTo evaluate the correlation between isometric muscle strength of the hip abductors (HABD) and lateral rotators (HLR) with the range of motion (ROM) of the pelvis/hip in the frontal/transverse planes, respectively, and between the strength of the knee extensors (KExt) with the ROM of the knee in the sagittal plane during seven tasks.DesignCross-sectional study.SettingLaboratory.ParticipantsThirty-five women with patellofemoral pain.Main outcome measuresMaximum isometric muscle strength of the HABD, HLR, and KExt was measured using a manual dynamometer, and pelvis and lower limbs kinematics were evaluated using 3D optical system during gait, ascending and descending stairs, the forward and lateral step down tests, and the propulsion and landing phases of the single leg hop test (SLHT).ResultsA weak correlation was found between KExt strength and knee ROM in the sagittal plane (p = 0.05; r = −0.33) during SLHT landing, and a moderate correlation between HABD strength and ROM of pelvic obliquity (p < 0.01; r = 0.50) during ascending stairs.ConclusionsThe lower strength of KExt has a weak correlation with higher knee flexion during the landing phase of the SLHT, and the lower strength of HABD has a moderate correlation with lower pelvis ROM in the frontal plane when ascending stairs.  相似文献   

16.
BackgroundHip external rotation stiffness, midfoot passive mechanical resistance and foot alignment may influence on ankle, knee and hip movement in the frontal and transverse planes during gait.Research questionAre hip stiffness, midfoot mechanical resistance and foot alignment associated with ankle, knee and hip kinematics during gait?MethodsHip stiffness, midfoot mechanical resistance, and foot alignment of thirty healthy participants (18 females and 12 males) with average age of 25.4 years were measured. In addition, lower limb kinematic data during the stance phase of gait were collected with the Qualisys System (Oqus 7+). Stepwise multiple linear regressions were performed to identify if hip stiffness, midfoot torque, midfoot stiffness and foot alignment were associated with hip and knee movement in the transverse plane and ankle movement in the frontal plane with α = 0.05.ResultsReduced midfoot torque was associated with higher hip range of motion (ROM) in the transverse plane (r2 = 0.18), reduced hip stiffness was associated with higher peak hip internal rotation (r2 = 0.16) and higher ROM in the frontal plane (r2 = 0.14), reduced midfoot stiffness was associated with higher peak knee internal rotation (r2 = 0.14) and increased midfoot torque and midfoot stiffness were associated with higher peak knee external rotation (r2 = 0.36).SignificanceThese findings demonstrated that individuals with reduced hip and midfoot stiffness have higher hip and knee internal rotation and higher ankle eversion during the stance phase of gait. On the other hand, individuals with increased midfoot torque and stiffness have higher knee external rotation. These relationships can be explained by the coupling between ankle movements in the frontal plane and knee and hip movements in the transverse plane. Finally, this study suggests that midfoot passive mechanical resistance and hip stiffness should be assessed in individuals presenting altered ankle, knee and hip movement during gait.  相似文献   

17.
Fifty patients with spastic diplegic cerebral palsy were included in this retrospective study which compared visual assessment of gait to three-dimensional (3D) gait analysis. Inter-observer variability was evaluated as well. Inclusion criteria comprehended independent ambulation (i.e. without assistive devices or orthoses). All subjects went through 3D gait analysis at the Gait Analysis Laboratory of the AACD Hospital. Four observers, viewing videotaped gait cycles, evaluated 10 specific points of interest of the cycle: hip flexion at terminal stance; knee flexion at initial contact; knee extension at terminal stance; knee flexion at initial swing; ankle dorsiflexion at initial contact; pelvic obliquity at mid stance; hip adduction at loading response; pelvic rotation; hip rotation at mid stance and foot progression angle, in relation to the lower limb, at mid stance. Their evaluation was then compared to the 3D kinematics data. A statistical analysis of the results was performed using kappa and McNemar's test in order to determine inter-observer and visual/3D analysis agreement. Results showed that inter-observer agreement was high but on the other hand, only two points of the gait cycle (knee flexion at initial contact and pelvic obliquity) were shown to have been similarly evaluated visually and with the 3D analysis. In conclusion, this study indicates that only knee flexion at initial contact and pelvic obliquity appear to be reliably evaluated on a visual basis alone. Visual observation is therefore inadequate for the evaluation of the other eight selected points of the gait cycle which require some form of quantitative assessment.  相似文献   

18.
BackgroundFemales are two times more likely to develop patellofemoral pain (PFP) than males. Abnormal trunk and pelvis kinematics are thought to contribute to the pathomechanics of this condition. However, there is a scarcity of evidence investigating proximal segments kinematics in females with PFP.Research questionThe purpose of this study was to investigate whether females with PFP demonstrate altered trunk, pelvis, and knee joint kinematics compared with healthy controls during running.MethodsThirty-four females (17 PFP, 17 controls) underwent a 3-dimensional motion analysis during treadmill running at preferred and fixed speeds, each trial for 30 s. Variables of interest included magnitudes of peak angles for trunk (forward flexion, ipsilateral trunk lean), pelvis (anterior tilt, contralateral drop), knee (flexion, valgus, internal rotation), range of motion (RoM) of trunk and pelvis in sagittal and frontal planes and RoM of knee joint in the three cardinal planes of motion. Kinematic data were compared between groups using mixed model repeated measure analysis of variance with the trial as the repeated measure.ResultsThe PFP group displayed significantly less pelvis frontal plane RoM, greater knee frontal plane RoM, and less knee sagittal plane RoM during running compared with controls, irrespective of running trial. No differences were found in peak kinematic variables between PFP and healthy groups.SignificanceThese results may suggest a rigid stabilization strategy at the pelvis, which the body has adapted to prevent further frontal plane knee malalignment. Less knee sagittal plane RoM may be indicative of another protective strategy in the PFP group to avoid patellofemoral joint reaction force. Clinical assessments and rehabilitative treatments may benefit from considering a global program with focus on pelvis kinematics in addition to the knee joint in females with PFP.  相似文献   

19.
BackgroundExcessive foot pronation during running in individuals with foot varus alignment may be reduced by medially wedged insoles.Research questionThis study investigated the effects of a medially wedged insole at the forefoot and at the rearfoot on the lower limbs angles and internal moments of runners with excessive foot pronation and foot varus alignment.MethodsKinematic and kinetic data of 19 runners (11 females and 8 males) were collected while they ran wearing flat (control condition) and medially wedged insoles (insole condition). Both insoles had arch support. We used principal component analysis for data reduction and dependent t-test to compare differences between conditions.ResultsThe insole condition reduced ankle eversion (p = 0.003; effect size = 0.63); reduced knee range of motion in the transverse plane (p = 0.012; effect size = 0.55); increased knee range of motion in the frontal plane in early stance and had earlier knee adduction peak (p = 0.018; effect size = 0.52); reduced hip range of motion in the transverse plane (p = 0.031; effect size = 0.48); reduced hip adduction (p = 0.024; effect size = 0.50); reduced ankle inversion moment (p = 0.012; effect size = 0.55); and increased the difference between the knee internal rotation moment in early stance and midstance (p = 0.012; effect size = 0.55).SignificanceInsoles with 7˚ medial wedges at the forefoot and rearfoot are able to modify motion and moments patterns that are related to lower limb injuries in runners with increased foot pronation and foot varus alignment with some non-desired effects on the knee motion in the frontal plane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号