共查询到3条相似文献,搜索用时 0 毫秒
1.
《International journal of medical informatics》2014,83(11):860-868
ObjectivesReusing data from electronic health records for clinical and translational research and especially for patient recruitment has been tackled in a broader manner since about a decade. Most projects found in the literature however focus on standalone systems and proprietary implementations at one particular institution often for only one singular trial and no generic evaluation of EHR systems for their applicability to support the patient recruitment process does yet exist. Thus we sought to assess whether the current generation of EHR systems in Germany provides modules/tools, which can readily be applied for IT-supported patient recruitment scenarios.MethodsWe first analysed the EHR portfolio implemented at German University Hospitals and then selected 5 sites with five different EHR implementations covering all major commercial systems applied in German University Hospitals. Further, major functionalities required for patient recruitment support have been defined and the five sample EHRs and their standard tools have been compared to the major functionalities.ResultsIn our analysis of the site's hospital information system environments (with four commercial EHR systems and one self-developed system) we found that – even though no dedicated module for patient recruitment has been provided – most EHR products comprise generic tools such as workflow engines, querying capabilities, report generators and direct SQL-based database access which can be applied as query modules, screening lists and notification components for patient recruitment support. A major limitation of all current EHR products however is that they provide no dedicated data structures and functionalities for implementing and maintaining a local trial registry.ConclusionsAt the five sites with standard EHR tools the typical functionalities of the patient recruitment process could be mostly implemented. However, no EHR component is yet directly dedicated to support research requirements such as patient recruitment. We recommend for future developments that EHR customers and vendors focus much more on the provision of dedicated patient recruitment modules. 相似文献
2.
3.
《Journal of biomedical informatics》2013,46(5):837-848
Patient condition is a key element in communication between clinicians. However, there is no generally accepted definition of patient condition that is independent of diagnosis and that spans acuity levels. We report the development and validation of a continuous measure of general patient condition that is independent of diagnosis, and that can be used for medical-surgical as well as critical care patients.A survey of Electronic Medical Record data identified common, frequently collected non-static candidate variables as the basis for a general, continuously updated patient condition score. We used a new methodology to estimate in-hospital risk associated with each of these variables. A risk function for each candidate input was computed by comparing the final pre-discharge measurements with 1-year post-discharge mortality. Step-wise logistic regression of the variables against 1-year mortality was used to determine the importance of each variable. The final set of selected variables consisted of 26 clinical measurements from four categories: nursing assessments, vital signs, laboratory results and cardiac rhythms. We then constructed a heuristic model quantifying patient condition (overall risk) by summing the single-variable risks. The model’s validity was assessed against outcomes from 170,000 medical-surgical and critical care patients, using data from three US hospitals.Outcome validation across hospitals yields an area under the receiver operating characteristic curve (AUC) of ⩾0.92 when separating hospice/deceased from all other discharge categories, an AUC of ⩾0.93 when predicting 24-h mortality and an AUC of 0.62 when predicting 30-day readmissions. Correspondence with outcomes reflective of patient condition across the acuity spectrum indicates utility in both medical-surgical units and critical care units. The model output, which we call the Rothman Index, may provide clinicians with a longitudinal view of patient condition to help address known challenges in caregiver communication, continuity of care, and earlier detection of acuity trends. 相似文献