首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Asthma is termed as the induction of chronic inflammation in the airway lumen of lungs due to accumulation of inflammatory cells which affects normal breathing process. Prolonged accumulation of inflammatory cells leads to oxidative stress and suppression of antioxidant activities. Therefore, in our present investigation, a potential phenolic compound, Syringic acid was tested for the suppression of inflammatory markers toward an antiasthmatic activity in ovalbumin (OVA)-induced asthmatic mice model. As a result, the Syringic acid treatment was found to suppress the inflammatory cells; eosinophil, neutrophil, macrophage, lymphocyte, and other inflammatory markers including IL-4, IL-5, IL-13, and TNF-α in the BALF of OVA-induced asthmatic mice. Similarly, IgE levels were significantly reduced in the blood serum of Syringic acid treated mice groups. In this context, the IFN-γ levels were found enhanced in the BALF of Syringic acid treated asthmatic mice groups, expressing an anti-inflammatory response. Enzymatic and nonenzymatic antioxidants such as SOD, CAT, and GSH levels were found high in the Syringic acid treatment than the asthmatic control group, which depicts the antioxidant response of Syringic acid on asthmatic groups. Intriguingly, the ROS, NO2, NO3, and MDA levels were inhibited in the BALF of Syringic acid treated mice groups. The airway hyper-reactivity (AHR) was comparatively normal in the Syringic acid treatment as it was severe in the case of asthmatic control group. Consequently, the effect of Syringic acid is prominent in the treatment of asthma by controlling the accumulation of inflammatory cells, other inflammatory markers along with enhancement of antioxidant markers, suppression of ROS and controlling airway hyperreactivity. Hence, Syringic acid may be recommended for clinical trials in the treatment of asthma.  相似文献   

2.
Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling.  相似文献   

3.
Homoegonol is a lignan derived from styraxlignolide A, which was isolated from Styrax japonica, a medicinal plant widely used for treatment of inflammatory diseases in Korea. We investigated the efficacy of homoegonol for the treatment of allergic asthma using an ovalbumin (OVA)-induced murine asthma model. The mice were sensitized through intraperitoneal injections of OVA on days 0 and 14. On days 21, 22 and 23 after the initial OVA sensitization, the mice were received OVA airway challenge. Homoegonol was administered by oral gavage at a dose of 30 mg/kg 1 h prior to the OVA challenge. The homoegonol-treated mice exhibited reduced inflammatory cell counts and Th2 cytokines in BALF, AHR, and IgE in the serum compared with the OVA-sensitized/challenged mice. The histological analysis of the lung tissue revealed that the administration of homoegonol attenuated the airway inflammation and the mucus overproduction in airway epithelial lesions induced by OVA through a reduction in expression of inducible nitric oxide synthase and matrix metalloproteinase-9. These findings indicate that homoegonol effectively suppresses the asthmatic responses induced by OVA challenge and suggests that homoegonol exhibits potential as therapeutic drug for allergic asthma.  相似文献   

4.
Copper oxide nanoparticles (CuONPs), metal oxide nanoparticles were used in multiple applications including wood preservation, antimicrobial textiles, catalysts for carbon monoxide oxidation and heat transfer fluid in machines. We investigated the effects of CuONPs on the respiratory system in Balb/c mice. In addition, to investigate the effects of CuONPs on asthma development, we used a murine model of ovalbumin (OVA)-induced asthma. CuONPs markedly increased airway hyper-responsiveness (AHR), inflammatory cell counts, proinflammatory cytokines and reactive oxygen species (ROS). CuONPs induced airway inflammation and mucus secretion with increases in phosphorylation of the MAPKs (Erk, JNK and p38). In the OVA-induced asthma model, CuONPs aggravated the increased AHR, inflammatory cell count, proinflammatory cytokines, ROS and immunoglobulin E induced by OVA exposure. In addition, CuONPs markedly increased inflammatory cell infiltration into the lung and mucus secretions, and MAPK phosphorylation was elevated compared to OVA-induced asthmatic mice. Taken together, CuONPs exhibited toxicity on the respiratory system, which was associated with the MAPK phosphorylation. In addition, CuONPs exposure aggravated the development of asthma. We conclude that CuONPs exposure has a potential toxicity in humans with respiratory disease.  相似文献   

5.
Allergic asthma is a chronic inflammatory airway disease arising from an aberrant immune response following exposure to environmental stimuli in genetically susceptible persons. The complement component 5 (C5)/C5a Receptor (C5aR/CD88) signaling pathway has been implicated in both experimental allergic asthma and human asthmatic disease. Targeting the C5a/C5aR signaling pathway in rodent models has been shown to either enhance or reduce allergic asthma consequences. Treatment with a recombinant humanized monoclonal antibody directed against C5 has shown unclear results in patients with asthma. The objective of this proof-of-concept animal study was to determine whether the low molecular weight C5aR peptidomimetic antagonist, PMX205, would reduce experimental allergic asthma consequences in mice. PMX205 or vehicle control was administered subcutaneously to BALB/c mice prior to and during standard ovalbumin (OVA) allergen sensitization and aerosolized challenge phases. PMX205 substantially reduced OVA-induced total cell (60%), neutrophil (66%) and eosinophil (65%) influxes in lavage fluid sampling. There were also significant reductions in OVA-induced lavage fluid IL-13 protein and lung Th2 cytokine gene expression with PMX205 administration. PMX205 treatment also diminished OVA-induced lung parenchyma cellular infiltration. PMX205 administration did not reduce OVA-induced serum IgE levels or epithelial mucous/goblet cell generation. There was no evidence of toxicity observed with PMX205 treatment in saline or OVA-challenged animals. These data provide evidence that pharmacologic blockade of C5aR by a low molecular weight antagonist (PMX205) reduces airway inflammatory cell and cytokine responses in experimental allergic asthma, and suggests that PMX205 might represent a novel therapeutic agent for reducing asthmatic outcomes.  相似文献   

6.
目的观察磷酸酰肌醇-3激酶(P13K)抑制剂LY294002对卵白蛋白诱导哮喘小鼠气道炎症的影响。方法Balb/c小鼠30只,采用随机数字表法分为3组,每组10只:LY294002处理组、卵白蛋白组、正常对照组。通过卵白蛋白多次腹腔注射致敏和反复雾化激发,建立哮喘小鼠模型。末次抗原激发后48h收集支气管肺泡灌洗液和骨髓标本,计数细胞总数和嗜酸性粒细胞,并行肺组织学检查。结果与卵白蛋白组比较,LY294002处理组支气管肺泡灌洗液中细胞总数及嗜酸性粒细胞绝对数明显减少(P〈0.05):肺组织中细支气管、血管周围嗜酸性粒细胞浸润得到控制,气道黏液分泌减少。结论P13K特异性抑制剂LY294002对卵白蛋白致敏的哮喘小鼠气道炎症具有抑制作用。  相似文献   

7.
S-Allyl cysteine (SAC) is an active component in garlic and has various pharmacological effects, such as anti-inflammatory, anti-oxidant, and anti-cancer activities. In this study, we explored the suppressive effects of SAC on allergic airway inflammation induced in an ovalbumin (OVA)-induced asthma mouse model. To induce asthma, BALB/c mice were sensitized to OVA on days 0 and 14 by intraperitoneal injection and exposed to OVA from days 21 to 23 using a nebulizer. SAC was administered to mice by oral gavage at a dose of 10 or 20 mg/kg from days 18 to 23. SAC significantly reduced airway hyperresponsiveness, inflammatory cell counts, and Th2 type cytokines in bronchoalveolar lavage fluid induced by OVA exposure, which was accompanied by reduced serum OVA-specific immunoglobulin E. In histological analysis of the lung tissue, administration of SAC reduced inflammatory cell accumulation into lung tissue and mucus production in airway goblet cells induced by OVA exposure. Additionally, SAC significantly decreased MUC5AC expression and nuclear factor-κB phosphorylation induced by OVA exposure. In summary, SAC effectively suppressed allergic airway inflammation and mucus production in OVA-challenged asthmatic mice. Therefore, SAC shows potential for use in treating allergic asthma.  相似文献   

8.
1. Imiquimod, a synthetic Toll-like receptor (TLR) 7 ligand, has been shown to attenuate airway inflammation and airway hyperresponsiveness (AHR) in acute murine models of allergic asthma. In the present study, we investigated the effect of imiquimod on allergen-induced airway remodelling in chronic experimental asthma. 2. Ovalbumin (OVA)-sensitized mice were chronically challenged with aerosolized OVA for 8 weeks. Some mice were exposed to an aerosol of 0.15% imiquimod daily during the period of OVA challenge. Twenty-four hours after the last OVA challenge, mice were evaluated for the development of airway inflammation, AHR and airway remodelling. The levels of total serum IgE and Th2 cytokines (interleukin (IL)-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) and the expression of transforming growth factor (TGF)-beta1 protein in lungs were measured by ELISA and immunohistochemistry, respectively. 3. The results demonstrated that imiquimod significantly inhibited chronic inflammation, persistent AHR and airway remodelling in chronic experimental asthma. In addition, imiquimod reduced levels of total serum IgE and BALF Th2 cytokines and diminished expression of TGF-beta1 in remodelled airways. 4. In summary, the results of the present study indicate that imiquimod may attenuate the progression of airway inflammation and remodelling, providing potential in the treatment of asthma.  相似文献   

9.
EC-18 is a synthetic monoacetyldiaglyceride that is a major constituent in antlers of Sika deer (Cervus nippon Temmenick). In this study, we evaluated the protective effects of EC-18 on Th2-type cytokines, eosinophil infiltration, and other factors in an aluminum hydroxide/ovalbumin (OVA)-induced murine asthma model. Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On days 21, 22 and 23 after the initial sensitization, the mice received an airway challenge with OVA for 1 h using an ultrasonic nebulizer. EC-18 was administered to mice by oral gavage at doses of 30 mg/kg and 60 mg/kg once daily from day 18 to 23. Methacholine responsiveness was measured 24 h after the final OVA challenge, and the bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. EC-18 significantly reduced methacholine responsiveness, T helper type 2 (Th2) cytokines, eotaxin-1, immunoglobulin (Ig) E, IgG, and the number of inflammatory cells. In addition, EC-18-treated mice exhibited the reduction in the expression of inducible nitric oxide synthase (iNOS) in lung tissue. In the histological analysis using hematoxylin–eosin stain and periodic acid–Schiff stain, EC-18 attenuated the infiltration of inflammatory cells into the airway and reduced the level of mucus production. Our results showed that EC-18 effectively suppressed the asthmatic response induced by OVA challenge. These effects were considered to be associated with iNOS suppression. In conclusion, this study suggests that EC-18 may be a therapeutic agent for allergic asthma.  相似文献   

10.
MX-68 is a newly synthesized antifolate, which is a derivative of methotrexate (MTX). In this paper, the effect of MX-68 on allergic airway responses in mice and guinea-pigs was studied. In the first experiment, antigen-induced airway inflammation and airway hyperresponsiveness (AHR) to acetylcholine in mice were examined and compared with the effects of classical antifolate methotrexate and prednisolone. Mice were sensitized with ovalbumin as an antigen and challenged with ovalbumin inhalation three times. After the last inhalation, AHR and airway inflammation were observed. An increase in Th2 cytokines (IL-4 and IL-5) and a decrease in a Th1 cytokine (IFN-gamma) in the bronchoalveolar lavage fluid (BALF), as well as an elevation of the immunoglobulin level in serum, were observed in sensitized mice. Oral administration of MX-68 had no effect on changes of body weight, but prednisolone reduced body weight during the experiment. The antigen-induced AHR and increases in the number of eosinophils and lymphocytes in BALF were significantly inhibited by MX-68. MX-68 interfered with the elevation of IL-4 and IL-5 levels in BALF, but had no effect on the decrease in IFN-gamma. Moreover, MX-68 significantly inhibited the elevation of serum IgE and IgG levels. In the guinea-pig model for bronchial asthma, biphasic increases in airway resistance (immediate asthmatic response, IAR, and late asthmatic response, LAR), as well as accumulated inflammatory cells in BALF, were observed after repeated antigen challenge. These asthmatic responses and inflammatory signs were significantly decreased by administration of MX-68. These results suggest that MX-68 obviously has an anti-inflammatory effect in an animal model of asthma and would be useful clinically for the treatment of bronchial asthma.  相似文献   

11.
Cigarette smoking (CS) is common in asthma, aggravating inflammatory reactions. However, the current treatment strategies for asthma are still not effective enough, and novel therapeutic approaches are required for CS-induced asthmatic disorders. We here investigated the ability of CpG oligodeoxynucleotides (CpG-ODNs) to inhibit airway inflammation and remodeling in ovalbumin (OVA)-associated asthma in mice exposed to chronic CS, revealing potential mechanistic insights. Lung tissue specimens were histologically analyzed. Th1/Th2/Th17 associated cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung specimens were quantitated by ELISA, qRT-PCR and immunoblot. Parameters of bone marrow-derived dendritic cells (BMDCs) functions were evaluated as well. The results showed that BALB/c mice after CS and OVA treatments developed an asthmatic phenotype with airway inflammation involving both eosinophils and neutrophils, goblet cell metaplasia, airway remodeling, and elevated OVA-specific serum IgE, serum IL-17A, and BALF Th17/Th2 associated cytokines. CpG-ODNs and budesonide were found to synergistically inhibit inflammatory cell recruitment in the lung, airway remodeling, IgE synthesis, and Th17/Th2 associated cytokines. Mechanistically, CpG-ODNs and budesonide acted synergistically on BMDCs via downregulation of TSLP receptor (TSLPR) and IL-23 production, and subsequently contributed to dampen Th17/Th2 polarization in CS-associated asthma. In conclusion, combined administration of CpG-ODNs and budesonide, in a synergistic manner, inhibits airway inflammation, and tissue remodeling mediated by BMDCs by regulating IL-23 secretion and blocking TSLP signaling, which subsequently contribute to alleviate Th17/Th2 imbalance in CS-associated asthma.  相似文献   

12.
1. Flavonoids are naturally occurring compounds that possess anti-allergic, anti-inflammatory, antiproliferative and anti-oxidant properties. In the present study, we investigated whether the flavonoid narirutin could reduce airway inflammation in ovalbumin (OVA)-sensitized/challenged NC/Nga mice, a model of allergic eosinophilic airway inflammation. 2. Mice were initially immunized intraperitoneally with OVA on Days 0 and 7 and then challenged with inhaled OVA on Days 14, 15 and 16. In addition, some mice received narirutin orally at doses of 0.1, 1 or 10 mg/kg bodyweight daily on Days 7-16. 3. At 10 mg/kg, but not 0.1 or 1 mg/kg, narirutin significantly diminished OVA-induced airway inflammation caused by infiltration of lung tissue with inflammatory and mucus-producing cells, as well as reduced eosinophil counts in the peripheral blood and bronchoalveolar lavage fluid (BALF), interleukin (IL)-4 levels in BALF and IgE levels in serum. 4. The mechanism of the anti-inflammatory effect of narirutin are likely to be associated with a reduction in the OVA-induced increases of IL-4 and IgE in a murine model of allergic eosinophilic airway inflammation. These findings suggest that narirutin may be an effective new tool in the treatment of bronchial asthma.  相似文献   

13.
目的:探讨热毒宁(RDN)对呼吸道合胞病毒(RSV)感染哮喘加重小鼠气道炎症的影响。方法:雌性BALB/c小鼠32只,随机分成4组,分别为对照组、鸡卵白蛋白(OVA)组、OVA/RSV组、OVA/RSV/RDN组。无创肺功能检测各组小鼠气道反应性;HE染色观察肺部炎症变化;小鼠支气管肺泡灌洗液(BALF)中炎性细胞计数并分类;ELISA法检测BALF中IL-4、IL-5、IL-13、IFN-γ含量。结果:RSV感染能够加重哮喘小鼠气道炎症与气道高反应性, RDN抑制RSV感染哮喘加重小鼠气道高反应性(P〈0.05);RDN显著减少RSV感染哮喘小鼠BALF 中IL-4、IL-5、IL-13、IFN-γ含量。结论:RDN可以减轻RSV感染的小鼠气道炎症反应,抑制气道高反应性。  相似文献   

14.
目的观察丹皮酚对急性哮喘小鼠模型气道炎症以及对胸腺基质淋巴细胞生成素(TSLP)表达的影响。方法 BALB/c小鼠48只随机分成正常对照组、哮喘模型组、丹皮酚组、布地奈德组,每组12只。卵蛋白致敏,气道激发,丹皮酚组给予丹皮酚100 mg/kg灌胃,1次/d,末次激发24 h后,检测各组小鼠气道反应性。HE染色观察气道炎症变化;采用ELISA观察支气管肺泡灌洗液(BALF)中IL-4、IL-13和血清总IgE的表达,real-time PCR观察TSLP的表达,Western-blot观察TSLP蛋白表达。结果哮喘组小鼠气道炎症和气道高反应性明显加重,丹皮酚能够显著抑制慢性哮喘小鼠模型的气道炎症和气道高反应性,哮喘BALF中Th2细胞因子IL-4、IL-13和血清总IgE含量显著降低。丹皮酚治疗后哮喘小鼠肺组织高表达的TSLP的mRNA和蛋白水平显著降低。结论丹皮酚能够抑制哮喘小鼠模型的气道炎症和气道高反应性,其机制可能通过抑制TSLP的的表达而实现。  相似文献   

15.
AIM: To explore the anti-inflammatory effects of amurensin H on asthma-like reaction induced by allergen in sensitized mice. METHODS: BALB/c mice were sensitized by ovalbumin (OVA, ip) on d 0 and d 14 and challenged with 1% OVA on d 18 to 22. Mice developed airway eosinophilia, mucus hypersecretion, and elevation in cytokine levels. Mice were administered amurensin H orally at the doses of 49, 70, or 100 mg/kg once every day from d 15 to the last day. Bronchoalveolar lavage fluid (BALF) were collected at 24 h and 48 h after the last OVA challenge. Levels of tumor necrosis factor-alpha (TNF-alpha), interleukin 4 (IL-4), interleukin 5 (IL-5), and interleukin 13 (IL-13) in BALF were measured using ELISA method. Differential cell counts of macrophages, lymphocytes, neutrophils and eosinophils were performed in 200 cells per slide (one slide per animal). Lung tissue sections of 6-mum thickness were stained with Mayer's hematoxylin and eosin for assessment of cell infiltration, mucus production, and tissue damage. RESULTS: Oral administration of amurensin H significantly inhibited OVA-induced increases in total cell counts, eosinophil counts, and TNF- alpha, IL-4, IL-5 and IL-13 levels in BALF. In addition, amuresin H dramatically decreased OVA-induced lung tissue damage and mucus production. CONCLUSION: Amurensin H may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   

16.
Ligustrazine which is isolated from Chinese herb ligusticum chuanxiong hort, has been widely used in traditional Chinese medicine (TCM) for asthma treatment. In this study, we aim to observe the effect of ligustrazine on inflammation and the associated chemokines and receptors in ovalbumin (OVA)-induced mouse asthma model. Our data demonstrates that ligustrazine suppresses airway hyperresponsiveness to methacholine and lung inflammation in OVA-induced mouse asthma model. Ligustrazine also induces inhibition of inflammatory cells including neutrophils, lymphocytes and eosinophils. In addition, ligustrazine significantly reduces IL-4, IL-5, IL-17A, CCL3, CCL19 and CCL21 level in BALF of asthma mice. Furthermore, ligustrazine induces down-regulation of CCL19 receptor CCR7, STAT3 and p38 MAPK protein expression. Collectively, these results suggest that ligustrazine is effective in attenuation of allergic airway inflammatory changes and related chemokines and receptors in OVA-induced asthma model, and this action might be associated with inhibition of STAT3 and p38 MAPK pathway, which indicates that ligustrazine may be used as a potential therapeutic method to treat asthma.  相似文献   

17.
We previously demonstrated the alleviation of ovalbumin (OVA)-induced airway inflammation by Inulae flos. In the present study, the effects of britanin, a sesquiterpene compound isolated from Inulae flos, were evaluated in an in vivo animal model for anti-asthma activity through observation of airway hyperresponsiveness (AHR), eosinophil recruitment, Th2 cytokine and IgE levels, and lung histopathology. Britanin administration effectively reduced AHR induced by aerosolized methacholine, airway eosinophilia, Th2 cytokines in bronchoalveolar lavage fluids and the supernatant of cultured splenocytes compared with OVA-induced mice. Histological studies showed that increased inflammatory cell infiltration and mucus secretion were reduced by britanin administration. Thus, britanin may have therapeutic potential for treating allergic asthma.  相似文献   

18.
Pinocembrin, one of the primary flavonoids in propolis, possesses many biological activities, including anti-inflammation, anti-oxidation and immunoregulation. This study aimed to evaluate whether pinocembrin could attenuate ovalbumin (OVA)-induced allergic airway inflammation in mice and to explore the possible mechanism. BALB/c mice sensitized and challenged with OVA were administered intraperitoneally with pinocembrin. Airway inflammation and airway hyperresponsiveness were examined. T-helper type (Th) 2 cytokines in bronchoalveolar lavage fluid (BALF) and OVA-specific immunoglobulin E (IgE) in serum were determined. The activation of nuclear factor kappa B (NF-κB) p65 were also measured. Our results showed that pinocembrin resulted in significant inhibition of pathophysiological signs of allergic asthma, including increased pulmonary eosinophilia infiltration, mucus hypersecretion and airway hyperresponsiveness (AHR). Treatment with pinocembrin significantly reduced Th2 cytokines interleukin (IL)-4, IL-5 and IL-13 in BALF, and OVA-specific IgE in serum. Moreover, pinocembrin treatment suppressed phosphorylation of inhibitor-κBα (IκBα) and NF-κB subunit p65 activation in lung tissue of OVA-sensitized mice. These data suggest that pinocembrin may inhibit allergic airway inflammation, and providing potential benefits in the treatment of inflammatory disease.  相似文献   

19.
Asthma is a persistent inflammatory disease characterized by airway obstruction and hyperresponsiveness in association with airway inflammation. In the current research, we studied the anti-inflammatory and anti-asthmatic effects of tiarellic acid (TA) isolated from Tiarella polyphylla, based on asthmatic parameters, such as immunoglobulin E (IgE) level, cytokine release, eosinophilia, airway hyperresponsiveness (AHR), reactive oxygen species (ROS) and mucus hypersecretion, in an ovalbumin (OVA)-sensitized/challenged mouse model. TA significantly inhibited increases in IgE, levels of ROS and T helper cytokines, such as interleukin (IL)-4, IL-5, TNF-α, and IL-13, in bronchoalveolar lavage fluid (BALF), and effectively suppressed airway hyperresponsiveness, eosinophilia, and mucus hypersecretion in the asthmatic mouse model. In addition, we found that administration of TA attenuated ovalbumin-induced increases in NF-κB activity in lungs. The efficacy of TA was comparable to that of montelukast, a currently available anti-asthmatic drug. Our results support the utility of TA as a herbal medicine for asthma treatment and may have application in the development of anti-inflammatory and anti-asthmatic drugs.  相似文献   

20.
Isoimperatorin (IMP), an active natural furocoumarin, has numerous pharmacologic effects, including anti-inflammatory, analgesic, antispasmodic, and anticancer activities. This study aimed to evaluate the preventive activity of IMP in an ovalbumin (OVA)-induced murine model of asthma and to investigate its possible molecular mechanisms. Female BALB/c mice were sensitized on days 0 and 14 via intraperitoneal injection of 20 μg OVA. On days 21–23 after the initial sensitization, the mice received an airway challenge with OVA (1% w/v in PBS) for 1 h; meanwhile, IMP (10 or 30 mg/kg once daily) was administered by gavage on days 18–23. Our results revealed that IMP significantly lowered the productions of interleukin (IL)-4, IL-5, IL-13, eotaxin, and immunoglobulin (Ig)E in bronchoalveolar lavage fluid (BALF), plasma, or lung tissues. Histological studies showed that IMP inhibited OVA-induced inflammatory cell infiltration and mucus production in the respiratory tract. In addition, pretreatment with IMP suppressed the activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular-signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB). Together, these results suggest that IMP effectively inhibits airway inflammation and mucus hypersecretion by downregulating the levels of Th2 cytokines and inhibiting NF-κB and MAPK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号